1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
## Copyright (C) 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {@var{M} =} dtmcfpt (@var{P})
##
## @cindex first passage times
## @cindex mean recurrence times
## @cindex discrete time Markov chain
## @cindex Markov chain, discrete time
## @cindex DTMC
##
## Compute mean first passage times and mean recurrence times
## for an irreducible discrete-time Markov chain over the state space
## @math{@{1, @dots{}, N@}}.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{P}(i,j)
## transition probability from state @math{i} to state @math{j}.
## @var{P} must be an irreducible stochastic matrix, which means that
## the sum of each row must be 1 (@math{\sum_{j=1}^N P_{i j} = 1}),
## and the rank of @var{P} must be @math{N}.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{M}(i,j)
## For all @math{1 @leq{} i, j @leq{} N}, @math{i \neq j}, @code{@var{M}(i,j)} is
## the average number of transitions before state @var{j} is entered
## for the first time, starting from state @var{i}.
## @code{@var{M}(i,i)} is the @emph{mean recurrence time} of state
## @math{i}, and represents the average time needed to return to state
## @var{i}.
##
## @end table
##
## @strong{REFERENCES}
##
## @itemize
## @item Grinstead, Charles M.; Snell, J. Laurie (July
## 1997). @cite{Introduction to Probability}, Ch. 11: Markov
## Chains. American Mathematical Society. ISBN 978-0821807491.
## @end itemize
##
## @seealso{ctmcfpt}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function result = dtmcfpt( P )
if ( nargin != 1 )
print_usage();
endif
[N err] = dtmcchkP(P);
( N>0 ) || ...
error(err);
if ( any(diag(P) == 1) )
error("Cannot compute first passage times for absorbing chains");
endif
w = dtmc(P); # steady state probability vector
W = repmat(w,N,1);
## Z = (I - P + W)^-1 where W is the matrix where each row is the
## steady-state probability vector for P
Z = inv(eye(N)-P+W);
## m_ij = (z_jj - z_ij) / w_j
result = (repmat(diag(Z)',N,1) - Z) ./ repmat(w,N,1) + diag(1./w);
endfunction
%!test
%! P = [1 1 1; 1 1 1];
%! fail( "dtmcfpt(P)" );
%!test
%! P = dtmcbd([1 1 1], [0 0 0] );
%! fail( "dtmcfpt(P)", "absorbing" );
%!test
%! P = [ 0.0 0.9 0.1; ...
%! 0.1 0.0 0.9; ...
%! 0.9 0.1 0.0 ];
%! p = dtmc(P);
%! M = dtmcfpt(P);
%! assert( diag(M)', 1./p, 1e-8 );
## Example on p. 461 of [GrSn97]
%!test
%! P = [ 0 1 0 0 0; ...
%! .25 .0 .75 0 0; ...
%! 0 .5 0 .5 0; ...
%! 0 0 .75 0 .25; ...
%! 0 0 0 1 0 ];
%! M = dtmcfpt(P);
%! assert( M, [16 1 2.6667 6.3333 21.3333; ...
%! 15 4 1.6667 5.3333 20.3333; ...
%! 18.6667 3.6667 2.6667 3.6667 18.6667; ...
%! 20.3333 5.3333 1.6667 4 15; ...
%! 21.3333 6.3333 2.6667 1 16 ], 1e-4 );
%!test
%! sz = 10;
%! P = reshape( 1:sz^2, sz, sz );
%! normP = repmat(sum(P,2),1,columns(P));
%! P = P./normP;
%! M = dtmcfpt(P);
%! for i=1:rows(P)
%! for j=1:columns(P)
%! assert( M(i,j), 1 + dot(P(i,:), M(:,j)) - P(i,j)*M(j,j), 1e-8);
%! endfor
%! endfor
## "Rat maze" problem (p. 453 of [GrSn97]);
%!test
%! P = zeros(9,9);
%! P(1,[2 4]) = .5;
%! P(2,[1 5 3]) = 1/3;
%! P(3,[2 6]) = .5;
%! P(4,[1 5 7]) = 1/3;
%! P(5,[2 4 6 8]) = 1/4;
%! P(6,[3 5 9]) = 1/3;
%! P(7,[4 8]) = .5;
%! P(8,[7 5 9]) = 1/3;
%! P(9,[6 8]) = .5;
%! M = dtmcfpt(P);
%! assert( M(1:9 != 5,5)', [6 5 6 5 5 6 5 6], 100*eps );
|