1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
## Copyright (C) 2012, 2014, 2016, 2018, 2019 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{t} @var{N} @var{B}] =} dtmcmtta (@var{P})
## @deftypefnx {Function File} {[@var{t} @var{N} @var{B}] =} dtmcmtta (@var{P}, @var{p0})
##
## @cindex mean time to absorption, DTMC
## @cindex absorption probabilities, DTMC
## @cindex fundamental matrix
## @cindex DTMC
## @cindex discrete time Markov chain
## @cindex Markov chain, discrete time
##
## Compute the expected number of steps before absorption for a
## DTMC with state space @math{@{1, @dots{}, N@}}
## and transition probability matrix @var{P}.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{P}(i,j)
## @math{N \times N} transition probability matrix.
## @code{@var{P}(i,j)} is the transition probability from state
## @math{i} to state @math{j}.
##
## @item @var{p0}(i)
## Initial state occupancy probabilities (vector of length @math{N}).
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{t}
## @itemx @var{t}(i)
## When called with a single argument, @var{t} is a vector of length
## @math{N} such that @code{@var{t}(i)} is the expected number of steps
## before being absorbed in any absorbing state, starting from state
## @math{i}; if @math{i} is absorbing, @code{@var{t}(i) = 0}. When
## called with two arguments, @var{t} is a scalar, and represents the
## expected number of steps before absorption, starting from the initial
## state occupancy probability @var{p0}.
##
## @item @var{N}(i)
## @itemx @var{N}(i,j)
## When called with a single argument, @var{N} is the @math{N \times N}
## fundamental matrix for @var{P}. @code{@var{N}(i,j)} is the expected
## number of visits to transient state @var{j} before absorption, if the
## system started in transient state @var{i}. The initial state is counted
## if @math{i = j}. When called with two arguments, @var{N} is a vector
## of length @math{N} such that @code{@var{N}(j)} is the expected number
## of visits to transient state @var{j} before absorption, given initial
## state occupancy probability @var{P0}.
##
## @item @var{B}(i)
## @itemx @var{B}(i,j)
## When called with a single argument, @var{B} is a @math{N \times N}
## matrix where @code{@var{B}(i,j)} is the probability of being
## absorbed in state @math{j}, starting from transient state @math{i};
## if @math{j} is not absorbing, @code{@var{B}(i,j) = 0}; if @math{i}
## is absorbing, @code{@var{B}(i,i) = 1} and @code{@var{B}(i,j) = 0}
## for all @math{i \neq j}. When called with two arguments, @var{B} is
## a vector of length @math{N} where @code{@var{B}(j)} is the
## probability of being absorbed in state @var{j}, given initial state
## occupancy probabilities @var{p0}.
##
## @end table
##
## @strong{REFERENCES}
##
## @itemize
## @item Grinstead, Charles M.; Snell, J. Laurie (July
## 1997). @cite{Introduction to Probability}, Ch. 11: Markov
## Chains. American Mathematical Society. ISBN 978-0821807491.
## @end itemize
##
## @seealso{ctmcmtta}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [t N B] = dtmcmtta( P, p0 )
persistent epsilon = 10*eps;
if ( nargin < 1 || nargin > 2 )
print_usage();
endif
[K err] = dtmcchkP(P);
(K>0) || ...
error(err);
if ( nargin == 2 )
( isvector(p0) && length(p0) == K && all(p0>=0) && abs(sum(p0)-1.0)<epsilon ) || ...
error( "p0 must be a state occupancy probability vector" );
endif
## identify transient states
tr = find(diag(P) < 1);
ab = find(diag(P) == 1);
k = length(tr); # number of transient states
if ( k == K )
error("There are no absorbing states");
endif
N = B = zeros(size(P));
t = zeros(1,rows(P));
tmpN = inv(eye(k) - P(tr,tr)); # matrix N = (I-Q)^-1
N(tr,tr) = tmpN;
R = P(tr,ab);
res = tmpN * ones(k,1);
t(tr) = res;
tmp = tmpN*R;
B(tr,ab) = tmp;
## set B(i,i) = 1 for all absorbing states i
dd = diag(B);
dd(ab) = 1;
B(1:K+1:end) = dd;
if ( nargin == 2 )
t = dot(p0,t);
N = p0*N;
B = p0*B;
endif
endfunction
%!test
%! fail( "dtmcmtta(1,2,3)" );
%! fail( "dtmcmtta()" );
%!test
%! P = dtmcbd([0 .5 .5 .5], [.5 .5 .5 0]);
%! [t N B] = dtmcmtta(P);
%! assert( t, [0 3 4 3 0], 10*eps );
%! assert( B([2 3 4],[1 5]), [3/4 1/4; 1/2 1/2; 1/4 3/4], 10*eps );
%! assert( B(1,1), 1 );
%! assert( B(5,5), 1 );
%!test
%! P = dtmcbd([0 .5 .5 .5], [.5 .5 .5 0]);
%! [t N B] = dtmcmtta(P);
%! assert( t(3), 4, 10*eps );
%! assert( B(3,1), 0.5, 10*eps );
%! assert( B(3,5), 0.5, 10*eps );
## Example on p. 422 of [GrSn97]
%!test
%! P = dtmcbd([0 .5 .5 .5 .5], [.5 .5 .5 .5 0]);
%! [t N B] = dtmcmtta(P);
%! assert( t(2:5), [4 6 6 4], 100*eps );
%! assert( B(2:5,1), [.8 .6 .4 .2]', 100*eps );
%! assert( B(2:5,6), [.2 .4 .6 .8]', 100*eps );
## Compute the probability of completing the "snakes and ladders"
## game in n steps, for various values of n. Also, computes the expected
## number of steps which are necessary to complete the game.
## Source:
## http://mapleta.emich.edu/aross15/coursepack3419/419/ch-04/chutes-and-ladders.pdf
%!demo
%! n = 6;
%! P = zeros(101,101);
%! for j=0:(100-n)
%! i=1:n;
%! P(1+j,1+j+i) = 1/n;
%! endfor
%! for j=(101-n):100
%! P(1+j,1+j) = (n-100+j)/n;
%! endfor
%! for j=(101-n):100
%! i=1:(100-j);
%! P(1+j,1+j+i) = 1/n;
%! endfor
%! Pstar = P;
%! ## setup snakes and ladders
%! SL = [1 38; ...
%! 4 14; ...
%! 9 31; ...
%! 16 6; ...
%! 21 42; ...
%! 28 84; ...
%! 36 44; ...
%! 47 26; ...
%! 49 11; ...
%! 51 67; ...
%! 56 53; ...
%! 62 19; ...
%! 64 60; ...
%! 71 91; ...
%! 80 100; ...
%! 87 24; ...
%! 93 73; ...
%! 95 75; ...
%! 98 78 ];
%! for ii=1:rows(SL);
%! i = SL(ii,1);
%! j = SL(ii,2);
%! Pstar(1+i,:) = 0;
%! for k=0:100
%! if ( k != i )
%! Pstar(1+k,1+j) = P(1+k,1+j) + P(1+k,1+i);
%! endif
%! endfor
%! Pstar(:,1+i) = 0;
%! endfor
%! Pstar += diag( 1-sum(Pstar,2) );
%! # spy(Pstar); pause
%! nsteps = 250; # number of steps
%! Pfinish = zeros(1,nsteps); # Pfinish(i) = probability of finishing after step i
%! pstart = zeros(1,101); pstart(1) = 1; pn = pstart;
%! for i=1:nsteps
%! pn = pn*Pstar;
%! Pfinish(i) = pn(101); # state 101 is the ending (absorbing) state
%! endfor
%! f = dtmcmtta(Pstar,pstart);
%! printf("Average number of steps to complete 'snakes and ladders': %f\n", f );
%! plot(Pfinish,"linewidth",2);
%! line([f,f],[0,1]);
%! text(f*1.1,0.2,["Mean Time to Absorption (" num2str(f) ")"]);
%! xlabel("Step number (n)");
%! title("Probability of finishing 'snakes and ladders' before step n");
## "Rat maze" problem (p. 453 of [GrSn97]);
%!test
%! P = zeros(9,9);
%! P(1,[2 4]) = .5;
%! P(2,[1 5 3]) = 1/3;
%! P(3,[2 6]) = .5;
%! P(4,[1 5 7]) = 1/3;
%! P(5,:) = 0; P(5,5) = 1;
%! P(6,[3 5 9]) = 1/3;
%! P(7,[4 8]) = .5;
%! P(8,[7 5 9]) = 1/3;
%! P(9,[6 8]) = .5;
%! t = dtmcmtta(P);
%! assert( t, [6 5 6 5 0 5 6 5 6], 10*eps );
|