File: erlangb.m

package info (click to toggle)
octave-queueing 1.2.8-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,288 kB
  • sloc: makefile: 56
file content (125 lines) | stat: -rw-r--r-- 3,848 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
## Copyright (C) 2014, 2016, 2018, 2019 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
##
## @deftypefn {Function File} {@var{B} =} erlangb (@var{A}, @var{m})
##
## @cindex Erlang-B formula
##
## Compute the steady-state blocking probability in the Erlang loss model.
##
## The Erlang-B formula @math{E_B(A, m)} gives the probability that an
## open system with @math{m} identical servers, arrival rate
## @math{\lambda}, individual service rate @math{\mu} and offered load
## @math{A = \lambda / \mu} has all servers busy. This corresponds to
## the rejection probability of an @math{M/M/m/0} system with @math{m}
## servers and no queue.
##
## @tex
## @math{E_B(A, m)} is defined as:
##
## $$
## E_B(A, m) = \displaystyle{{A^m \over m!} \left( \sum_{k=0}^m {A^k \over k!} \right) ^{-1}}
## $$
## @end tex
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{A}
## Offered load, defined as @math{A = \lambda / \mu} where
## @math{\lambda} is the mean arrival rate and @math{\mu} the mean
## service rate of each individual server (real, @math{A > 0}).
##
## @item @var{m}
## Number of identical servers (integer, @math{m @geq{} 1}). Default @math{m = 1}
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{B}
## The value @math{E_B(A, m)}
##
## @end table
##
## @var{A} or @var{m} can be vectors, and in this case, the results will
## be vectors as well.
##
## @strong{REFERENCES}
##
## @itemize
## @item
## G. Zeng, @cite{Two common properties of the Erlang-B function, Erlang-C function, and Engset blocking function}, Mathematical and Computer Modelling, Volume 37, Issues 12-13, June 2003, Pages 1287-1296
## @end itemize
##
## @seealso{erlangc,engset,qsmmm}
##
## @end deftypefn

## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function B = erlangb(A, m)
  if ( nargin < 1 || nargin > 2 )
    print_usage();
  endif

  ( isnumeric(A) && all( A(:) > 0 ) ) || error("A must be positive");

  if ( nargin == 1 )
    m = 1;
  else
    ( isnumeric(m) && all( fix(m(:)) == m(:)) && all( m(:) > 0 ) ) || error("m must be a positive integer");
  endif

  [err A m] = common_size(A, m);
  if ( err )
    error("parameters are not of common size");
  endif

  B = arrayfun( @__erlangb_compute, A, m);
endfunction

## Compute E_B(A,m) recursively, as described in:
##
## Guoping Zeng, Two common properties of the erlang-B function,
## erlang-C function, and Engset blocking function, Mathematical and
## Computer Modelling Volume 37, Issues 12–13, June 2003, Pages
## 1287–1296 http://dx.doi.org/10.1016/S0895-7177(03)90040-9
##
## To improve numerical stability, the recursion is based on the inverse
## 1 / E_B rather than E_B itself.
function B = __erlangb_compute(A, m)
  Binv = 1.0;
  for k=1:m
    Binv = 1.0 + k/A*Binv;
  endfor
  B = 1.0 / Binv;
endfunction

%!test
%! fail("erlangb(1, -1)", "positive");
%! fail("erlangb(-1, 1)", "positive");
%! fail("erlangb(1, 0)", "positive");
%! fail("erlangb(0, 1)", "positive");
%! fail("erlangb('foo',1)", "positive");
%! fail("erlangb(1,'bar')", "positive");
%! fail("erlangb([1 1],[1 1 1])","common size");