1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
## Copyright (C) 2012, 2016, 2018, 2020, 2022 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{D})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{S}, @var{V})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{S}, @var{V}, @var{m})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})
##
## @cindex bounds, asymptotic
## @cindex asymptotic bounds
## @cindex closed network
## @cindex multiclass network, closed
## @cindex closed multiclass network
##
## Compute Asymptotic Bounds for closed, multiclass networks
## with @math{K} service centers and @math{C} customer classes.
## Single-server and infinite-server nodes are supported.
## Multiple-server nodes and general load-dependent servers are not
## supported.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}(c)
## number of class @math{c} requests in the system
## (vector of length @math{C}, @code{@var{N}(c) @geq{} 0}).
##
## @item @var{D}(c, k)
## class @math{c} service demand
## at center @math{k} (@math{C \times K} matrix, @code{@var{D}(c,k) @geq{} 0}).
##
## @item @var{S}(c, k)
## mean service time of class @math{c}
## requests at center @math{k} (@math{C \times K} matrix, @code{@var{S}(c,k) @geq{} 0}).
##
## @item @var{V}(c,k)
## average number of visits of class @math{c}
## requests to center @math{k} (@math{C \times K} matrix, @code{@var{V}(c,k) @geq{} 0}).
##
## @item @var{m}(k)
## number of servers at center @math{k}
## (if @var{m} is a scalar, all centers have that number of servers). If
## @code{@var{m}(k) < 1}, center @math{k} is a delay center (IS);
## if @code{@var{m}(k) = 1}, center @math{k} is a M/M/1-FCFS server.
## This function does not support multiple-server nodes. Default
## is 1.
##
## @item @var{Z}(c)
## class @math{c} external delay
## (vector of length @math{C}, @code{@var{Z}(c) @geq{} 0}). Default is 0.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{Xl}(c)
## @itemx @var{Xu}(c)
## Lower and upper bounds for class @math{c} throughput.
##
## @item @var{Rl}(c)
## @itemx @var{Ru}(c)
## Lower and upper bounds for class @math{c} response time.
##
## @end table
##
## @strong{REFERENCES}
##
## @itemize
## @item
## Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth
## C. Sevcik, @cite{Quantitative System Performance: Computer System
## Analysis Using Queueing Network Models}, Prentice Hall,
## 1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
## particular, see section 5.2 ("Asymptotic Bounds").
## @end itemize
##
## @seealso{qncsaba}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [Xl Xu Rl Ru] = qncmaba( varargin )
if ( nargin<2 || nargin>5 )
print_usage();
endif
[err N S V m Z] = qncmchkparam( varargin{:} );
isempty(err) || error(err);
all(m<=1) || ...
error("Multiple-server nodes are not supported");
if ( sum(N) == 0 ) # handle trivial case of empty network
Xl = Xu = Rl = Ru = zeros(size(S));
else
D = S .* V;
Dc_single = sum(D(:,(m==1)),2)'; # class c demand on single-server nodes
Dc_delay = sum(D(:,(m<1)),2)'; # class c demand on delay centers
Dc = sum(D,2)'; # class c total demand
Dcmax = max(D,[],2)'; # maximum class c demand at any server
Xl = N ./ ( dot(N,Dc_single) + Dc_delay + Z);
Xu = min( 1./Dcmax, N ./ (Dc + Z) );
Rl = N ./ Xu - Z;
Ru = N ./ Xl - Z;
endif
endfunction
%!test
%! fail("qncmaba([],[])", "nonempty");
%! fail("qncmaba([1 0], [1 2 3])", "2 rows");
%! fail("qncmaba([1 0], [1 2 3; 4 5 -1])", "nonnegative");
%! fail("qncmaba([1 2], [1 2 3; 4 5 6], [1 2 3])", "2 x 3");
%! fail("qncmaba([1 2], [1 2 3; 4 5 6], [1 2 3; 4 5 -1])", "nonnegative");
%! fail("qncmaba([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1])", "3 elements");
%! fail("qncmaba([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 2])", "not supported");
%! fail("qncmaba([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 -1],[1 2 3])", "2 elements");
%! fail("qncmaba([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 -1],[1 -2])", "nonnegative");
%!test
%! [Xl Xu Rl Ru] = qncmaba([0 0], [1 2 3; 1 2 3]);
%! assert( all(Xl(:) == 0) );
%! assert( all(Xu(:) == 0) );
%! assert( all(Rl(:) == 0) );
%! assert( all(Ru(:) == 0) );
%!test
%! S = [10 7 5 4; ...
%! 5 2 4 6];
%! NN=20;
%! Xl = Xu = Rl = Ru = Xmva = Rmva = zeros(NN,2);
%! for n=1:NN
%! N=[n,10];
%! [a b c d] = qncmaba(N,S);
%! Xl(n,:) = a; Xu(n,:) = b; Rl(n,:) = c; Ru(n,:) = d;
%! [U R Q X] = qncmmva(N,S,ones(size(S)));
%! Xmva(n,:) = X(:,1)'; Rmva(n,:) = sum(R,2)';
%! endfor
%! assert( all(Xl <= Xmva) );
%! assert( all(Xu >= Xmva) );
%! assert( all(Rl <= Rmva) );
%! assert( all(Xu >= Xmva) );
%!demo
%! S = [10 7 5 4; ...
%! 5 2 4 6];
%! NN=20;
%! Xl = Xu = Rl = Ru = Xmva = Rmva = zeros(NN,2);
%! for n=1:NN
%! N=[n,10];
%! [a b c d] = qncmaba(N,S);
%! Xl(n,:) = a; Xu(n,:) = b; Rl(n,:) = c; Ru(n,:) = d;
%! [U R Q X] = qncmmva(N,S,ones(size(S)));
%! Xmva(n,:) = X(:,1)'; Rmva(n,:) = sum(R,2)';
%! endfor
%! subplot(2,2,1);
%! plot(1:NN,Xl(:,1), 1:NN,Xu(:,1), 1:NN,Xmva(:,1), ";MVA;", "linewidth", 2);
%! ylim([0, 0.2]);
%! title("Class 1 throughput"); legend("boxoff");
%! subplot(2,2,2);
%! plot(1:NN,Xl(:,2), 1:NN,Xu(:,2), 1:NN,Xmva(:,2), ";MVA;", "linewidth", 2);
%! ylim([0, 0.2]);
%! title("Class 2 throughput"); legend("boxoff");
%! subplot(2,2,3);
%! plot(1:NN,Rl(:,1), 1:NN,Ru(:,1), 1:NN,Rmva(:,1), ";MVA;", "linewidth", 2);
%! ylim([0, 700]);
%! title("Class 1 response time"); legend("location", "northwest"); legend("boxoff");
%! subplot(2,2,4);
%! plot(1:NN,Rl(:,2), 1:NN,Ru(:,2), 1:NN,Rmva(:,2), ";MVA;", "linewidth", 2);
%! ylim([0, 700]);
%! title("Class 2 response time"); legend("location", "northwest"); legend("boxoff");
|