File: qncmaba.m

package info (click to toggle)
octave-queueing 1.2.8-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,288 kB
  • sloc: makefile: 56
file content (193 lines) | stat: -rw-r--r-- 6,742 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
## Copyright (C) 2012, 2016, 2018, 2020, 2022 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{D})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{S}, @var{V})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{S}, @var{V}, @var{m})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})
##
## @cindex bounds, asymptotic
## @cindex asymptotic bounds
## @cindex closed network
## @cindex multiclass network, closed
## @cindex closed multiclass network
##
## Compute Asymptotic Bounds for closed, multiclass networks
## with @math{K} service centers and @math{C} customer classes.
## Single-server and infinite-server nodes are supported.
## Multiple-server nodes and general load-dependent servers are not
## supported.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}(c)
## number of class @math{c} requests in the system
## (vector of length @math{C}, @code{@var{N}(c) @geq{} 0}).
##
## @item @var{D}(c, k)
## class @math{c} service demand
## at center @math{k} (@math{C \times K} matrix, @code{@var{D}(c,k) @geq{} 0}).
##
## @item @var{S}(c, k)
## mean service time of class @math{c}
## requests at center @math{k} (@math{C \times K} matrix, @code{@var{S}(c,k) @geq{} 0}).
##
## @item @var{V}(c,k)
## average number of visits of class @math{c}
## requests to center @math{k} (@math{C \times K} matrix, @code{@var{V}(c,k) @geq{} 0}).
##
## @item @var{m}(k)
## number of servers at center @math{k}
## (if @var{m} is a scalar, all centers have that number of servers). If
## @code{@var{m}(k) < 1}, center @math{k} is a delay center (IS);
## if @code{@var{m}(k) = 1}, center @math{k} is a M/M/1-FCFS server.
## This function does not support multiple-server nodes. Default
## is 1.
##
## @item @var{Z}(c)
## class @math{c} external delay
## (vector of length @math{C}, @code{@var{Z}(c) @geq{} 0}). Default is 0.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{Xl}(c)
## @itemx @var{Xu}(c)
## Lower and upper bounds for class @math{c} throughput.
##
## @item @var{Rl}(c)
## @itemx @var{Ru}(c)
## Lower and upper bounds for class @math{c} response time.
##
## @end table
##
## @strong{REFERENCES}
##
## @itemize
## @item
## Edward D. Lazowska, John Zahorjan, G.  Scott Graham, and Kenneth
## C. Sevcik, @cite{Quantitative System Performance: Computer System
## Analysis Using Queueing Network Models}, Prentice Hall,
## 1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
## particular, see section 5.2 ("Asymptotic Bounds").
## @end itemize
##
## @seealso{qncsaba}
##
## @end deftypefn

## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/

function [Xl Xu Rl Ru] = qncmaba( varargin )

  if ( nargin<2 || nargin>5 )
    print_usage();
  endif

  [err N S V m Z] = qncmchkparam( varargin{:} );
  isempty(err) || error(err);

  all(m<=1) || ...
      error("Multiple-server nodes are not supported");

  if ( sum(N) == 0 ) # handle trivial case of empty network
    Xl = Xu = Rl = Ru = zeros(size(S));
  else
    D = S .* V;

    Dc_single = sum(D(:,(m==1)),2)'; # class c demand on single-server nodes
    Dc_delay = sum(D(:,(m<1)),2)'; # class c demand on delay centers
    Dc = sum(D,2)'; # class c total demand
    Dcmax = max(D,[],2)'; # maximum class c demand at any server
    Xl = N ./ ( dot(N,Dc_single) + Dc_delay + Z);
    Xu = min( 1./Dcmax, N ./ (Dc + Z) );
    Rl = N ./ Xu - Z;
    Ru = N ./ Xl - Z;
  endif
endfunction

%!test
%! fail("qncmaba([],[])", "nonempty");
%! fail("qncmaba([1 0], [1 2 3])", "2 rows");
%! fail("qncmaba([1 0], [1 2 3; 4 5 -1])", "nonnegative");
%! fail("qncmaba([1 2], [1 2 3; 4 5 6], [1 2 3])", "2 x 3");
%! fail("qncmaba([1 2], [1 2 3; 4 5 6], [1 2 3; 4 5 -1])", "nonnegative");
%! fail("qncmaba([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1])", "3 elements");
%! fail("qncmaba([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 2])", "not supported");
%! fail("qncmaba([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 -1],[1 2 3])", "2 elements");
%! fail("qncmaba([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 -1],[1 -2])", "nonnegative");

%!test
%! [Xl Xu Rl Ru] = qncmaba([0 0], [1 2 3; 1 2 3]);
%! assert( all(Xl(:) == 0) );
%! assert( all(Xu(:) == 0) );
%! assert( all(Rl(:) == 0) );
%! assert( all(Ru(:) == 0) );

%!test
%! S = [10 7 5 4; ...
%!      5  2 4 6];
%! NN=20;
%! Xl = Xu = Rl = Ru = Xmva = Rmva = zeros(NN,2);
%! for n=1:NN
%!   N=[n,10];
%!   [a b c d] = qncmaba(N,S);
%!   Xl(n,:) = a; Xu(n,:) = b; Rl(n,:) = c; Ru(n,:) = d;
%!   [U R Q X] = qncmmva(N,S,ones(size(S)));
%!   Xmva(n,:) = X(:,1)'; Rmva(n,:) = sum(R,2)';
%! endfor
%! assert( all(Xl <= Xmva) );
%! assert( all(Xu >= Xmva) );
%! assert( all(Rl <= Rmva) );
%! assert( all(Xu >= Xmva) );

%!demo
%! S = [10 7 5 4; ...
%!      5  2 4 6];
%! NN=20;
%! Xl = Xu = Rl = Ru = Xmva = Rmva = zeros(NN,2);
%! for n=1:NN
%!   N=[n,10];
%!   [a b c d] = qncmaba(N,S);
%!   Xl(n,:) = a; Xu(n,:) = b; Rl(n,:) = c; Ru(n,:) = d;
%!   [U R Q X] = qncmmva(N,S,ones(size(S)));
%!   Xmva(n,:) = X(:,1)'; Rmva(n,:) = sum(R,2)';
%! endfor
%! subplot(2,2,1);
%! plot(1:NN,Xl(:,1), 1:NN,Xu(:,1), 1:NN,Xmva(:,1), ";MVA;", "linewidth", 2);
%! ylim([0, 0.2]);
%! title("Class 1 throughput"); legend("boxoff");
%! subplot(2,2,2);
%! plot(1:NN,Xl(:,2), 1:NN,Xu(:,2), 1:NN,Xmva(:,2), ";MVA;", "linewidth", 2);
%! ylim([0, 0.2]);
%! title("Class 2 throughput"); legend("boxoff");
%! subplot(2,2,3);
%! plot(1:NN,Rl(:,1), 1:NN,Ru(:,1), 1:NN,Rmva(:,1), ";MVA;", "linewidth", 2);
%! ylim([0, 700]);
%! title("Class 1 response time"); legend("location", "northwest"); legend("boxoff");
%! subplot(2,2,4);
%! plot(1:NN,Rl(:,2), 1:NN,Ru(:,2), 1:NN,Rmva(:,2), ";MVA;", "linewidth", 2);
%! ylim([0, 700]);
%! title("Class 2 response time"); legend("location", "northwest"); legend("boxoff");