1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsbsb (@var{N}, @var{D})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsbsb (@var{N}, @var{S}, @var{V})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsbsb (@var{N}, @var{S}, @var{V}, @var{m})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsbsb (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})
##
## @cindex bounds, balanced system
## @cindex closed network, single class
## @cindex balanced system bounds
##
## Compute Balanced System Bounds on system throughput and response time for closed, single-class networks with @math{K} service centers.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}
## number of requests in the system (scalar, @code{@var{N} @geq{} 0}).
##
## @item @var{D}(k)
## service demand at center @math{k} (@code{@var{D}(k) @geq{} 0}).
##
## @item @var{S}(k)
## mean service time at center @math{k} (@code{@var{S}(k) @geq{} 0}).
##
## @item @var{V}(k)
## average number of visits to center @math{k} (@code{@var{V}(k)
## @geq{} 0}). Default is 1.
##
## @item @var{m}(k)
## number of servers at center @math{k}. This function supports
## @code{@var{m}(k) = 1} only (single-eserver FCFS nodes); this
## parameter is only for compatibility with @code{qncsaba}. Default is
## 1.
##
## @item @var{Z}
## External delay (@code{@var{Z} @geq{} 0}). Default is 0.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{Xl}
## @itemx @var{Xu}
## Lower and upper bound on the system throughput.
##
## @item @var{Rl}
## @itemx @var{Ru}
## Lower and upper bound on the system response time.
##
## @end table
##
## @strong{REFERENCES}
##
## @itemize
## @item
## Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth
## C. Sevcik, @cite{Quantitative System Performance: Computer System
## Analysis Using Queueing Network Models}, Prentice Hall,
## 1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
## particular, see section 5.4 ("Balanced Systems Bounds").
## @end itemize
##
## @seealso{qncmbsb}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [Xl Xu Rl Ru] = qncsbsb( varargin )
if (nargin<2 || nargin>5)
print_usage();
endif
[err N S V m Z] = qncschkparam( varargin{:} );
isempty(err) || error(err);
all(m==1) || ...
error( "this function supports M/M/1 servers only" );
D = S .* V;
D_max = max(D);
D_tot = sum(D);
D_ave = mean(D);
Xl = N/(D_tot+Z+( (N-1)*D_max )/( 1+Z/(N*D_tot) ) );
Xu = min( 1/D_max, N/( D_tot+Z+( (N-1)*D_ave )/(1+Z/D_tot) ) );
Rl = max( N*D_max-Z, D_tot+( (N-1)*D_ave )/( 1+Z/D_tot) );
Ru = D_tot + ( (N-1)*D_max )/( 1+Z/(N*D_tot) );
endfunction
%!test
%! fail("qncsbsb(-1,0)", "N must be");
%! fail("qncsbsb(1,[])", "nonempty");
%! fail("qncsbsb(1,[-1 2])", "nonnegative");
%! fail("qncsbsb(1,[1 2],[1 2 3])", "incompatible size");
%! fail("qncsbsb(1,[1 2 3],[1 2 3],[1 2])", "incompatible size");
%! fail("qncsbsb(1,[1 2 3],[1 2 3],[1 2 1])", "M/M/1 servers");
%! fail("qncsbsb(1,[1 2 3],[1 2 3],[1 1 1],-1)", "nonnegative");
%! fail("qncsbsb(1,[1 2 3],[1 2 3],[1 1 1],[0 0])", "scalar");
%!test
%! S = [1 0.8 1.2 0.5];
%! V = [1 2 2 1];
%! D = S .* V;
%! N = 50;
%! tol = 1e-7; # compensate for numerical inaccuracies
%! for n=1:N
%! [U R Q X] = qncsmva(n, S, V);
%! Xs = X(1)/V(1);
%! Rs = dot(R,V);
%! [Xl Xu Rl Ru] = qncsbsb( n, D );
%! assert( Xl <= Xs+tol );
%! assert( Xu >= Xs-tol );
%! assert( Rl <= Rs+tol );
%! assert( Ru >= Rs-tol );
%! endfor
|