File: qncscmva.m

package info (click to toggle)
octave-queueing 1.2.8-3
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 2,288 kB
  • sloc: makefile: 56
file content (256 lines) | stat: -rw-r--r-- 7,821 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
## Copyright (C) 2011, 2012, 2016, 2018, 2020 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncscmva (@var{N}, @var{S}, @var{Sld}, @var{V})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncscmva (@var{N}, @var{S}, @var{Sld}, @var{V}, @var{Z})
##
## @cindex conditional MVA (CMVA)
## @cindex Mean Value Analysis, conditional (CMVA)
## @cindex closed network, single class
## @cindex CMVA
##
## Conditional MVA (CMVA) algorithm, a numerically stable variant of
## MVA. This function supports a network of @math{M @geq{} 1} service
## centers and a single delay center. Servers @math{1, @dots{}, (M-1)}
## are load-independent; server @math{M} is load-dependent.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}
## Number of requests in the system, @code{@var{N} @geq{} 0}. If
## @code{@var{N} == 0}, this function returns @code{@var{U} = @var{R}
## = @var{Q} = @var{X} = 0}
##
## @item @var{S}(k)
## mean service time on server @math{k = 1, @dots{}, (M-1)}
## (@code{@var{S}(k) > 0}). If there are no fixed-rate servers, then
## @code{S = []}
##
## @item @var{Sld}(n)
## inverse service rate at server @math{M} (the load-dependent server)
## when there are @math{n} requests, @math{n=1, @dots{}, N}.
## @code{@var{Sld}(n) = } @math{1 / \mu(n)}.
##
## @item @var{V}(k)
## average number of visits to service center @math{k=1, @dots{}, M},
## where @code{@var{V}(k) @geq{} 0}. @code{@var{V}(1:M-1)} are the
## visit rates to the fixed rate servers; @code{@var{V}(M)} is the
## visit rate to the load dependent server.
##
## @item @var{Z}
## External delay for customers (@code{@var{Z} @geq{} 0}). Default is 0.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}(k)
## center @math{k} utilization (@math{k=1, @dots{}, M})
##
## @item @var{R}(k)
## response time of center @math{k} (@math{k=1, @dots{}, M}). The
## system response time @var{Rsys} can be computed as @code{@var{Rsys}
## = @var{N}/@var{Xsys} - Z}
##
## @item @var{Q}(k)
## average number of requests at center @math{k} (@math{k=1, @dots{}, M}).
##
## @item @var{X}(k)
## center @math{k} throughput (@math{k=1, @dots{}, M}).
##
## @end table
##
## @strong{REFERENCES}
##
## @itemize
## @item
## G. Casale. @cite{A note on stable flow-equivalent aggregation in
## closed networks}. Queueing Syst. Theory Appl., 60:193–-202, December
## 2008, @uref{http://dx.doi.org/10.1007/s11134-008-9093-6, 10.1007/s11134-008-9093-6}
## @end itemize
##
## @end deftypefn

## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/

function [U R Q X] = qncscmva( N, S, Sld, V, Z )

  ## This is a numerically stable implementation of the MVA algorithm,
  ## described in G. Casale, A note on stable flow-equivalent aggregation in
  ## closed networks. Queueing Syst. Theory Appl., 60:193–-202, December
  ## 2008, http://dx.doi.org/10.1007/s11134-008-9093-6


  if ( nargin < 4 || nargin > 5 )
    print_usage();
  endif

  isscalar(N) && N >= 0 || ...
      error("N must be a positive scalar");

  (isempty(S) || isvector(S)) || ...
      error("S must be a vector");
  S = S(:)'; # make S a row vector
  M = length(S)+1; # total number of service centers (excluding the delay center)

  isvector(Sld) && length(Sld) == N && all(Sld>=0) || ...
      error("Sld must be a vector with %d elements >= 0", N);
  Sld = Sld(:)'; # Make Sld a row vector

  isvector(V) && length(V) == M && all(V>=0) || ...
      error("V must be a vector with %d elements", M);
  V = V(:)'; # Make V a row vector

  ## The reference paper assumes queue M (LD center) as reference.
  ## Therefore, we need to rescale V

  V(M) > 0 || ...
      error("V(M) must be >0");

  V = V / V(M);

  if ( nargin == 5 )
    isscalar(Z) && Z>=0 || ...
	error("Z must be nonnegative");
  else
    Z = 0;
  endif

  if ( N == 0 )
    U = R = Q = X = zeros(1,M);
    return;
  endif

  ## Di(1+k) = service demand of server k=0,1,...,M-1 (server 0 is the delay center)
  Di = zeros(1,M);
  Di(1) = Z;
  Di(2:M) = S .* V(1:M-1);
  ## DM(n,t), n=1, ..., N, t=1, ..., N
  DM = zeros(N,N);

  mu = 1./Sld; # rate function

  ## Ri(1+k,:,:) = response time of server k=0,1,...,M
  Ri = zeros(1+M,N,N);

  ## Qi(k,1+n,t) = queue length of server k=1,...,M, n=0,1,...,N, t=1,...,N+1
  Qi = zeros(M,1+N,N+1);

  Xs = zeros(N,N); # Xs = system throughput

  ## Main MVA loop
  for n=1:N
    for t=1:(N-n+1)
      if ( n==1 )
	DM(n,t) = 1/mu(t);
      else # n>=2
	DM(n,t) = Xs(n-1,t)/Xs(n-1,t+1)*DM(n-1,t);
      endif

      Ri(1+0,n,t) = Di(1+0);
      i=1:M-1; Ri(1+i,n,t) = Di(1+i).*(1+Qi(i,1+n-1,t))';
      Ri(1+M,n,t) = DM(n,t)*(1+Qi(M,1+n-1,t+1));

      Xs(n,t) = n/sum(Ri(:,n,t));

      i=1:M-1; Qi(i,1+n,t) = Di(1+i) .* Xs(n,t) .* (1+Qi(i,1+n-1,t))';
      Qi(M,1+n,t) = DM(n,t) * Xs(n,t) * (1+Qi(M,1+n-1,t+1));
    endfor
  endfor
  X = Xs(N,1).*V;
  Q = Qi(1:M,1+N,1)';
  ## Note that the result R is the *response time*, while the value
  ## computed by the reference paper is the *residence time*. The
  ## response time is equal to the residence time divided by the visit
  ## ratios.
  R = Ri(2:M+1,N,1)' ./ V;
  U = [Di(2:M) DM(N,1)] .* X ./ V;
endfunction
%!test
%! N=5;
%! S = [1 0.3 0.8 0.9];
%! V = [1 1 1 1];
%! [U1 R1 Q1 X1] = qncscmva( N, S(1:3), repmat(S(4),1,N), V );
%! [U2 R2 Q2 X2] = qncsmva(N, S, V);
%! assert( X1, X2, 1e-5 );
%! assert( U1, U2, 1e-5 );
%! assert( R1, R2, 1e-5 );
%! assert( Q1, Q2, 1e-5 );

%!test
%! N=5;
%! S = [1 1 1 1 1; ...
%!      1 1 1 1 1; ...
%!      1 1 1 1 1; ...
%!      1 1/2 1/3 1/4 1/5];
%! V = [1 1 1 1];
%! [U1 R1 Q1 X1] = qncscmva( N, S(1:3,1), S(4,:), V );
%! [U2 R2 Q2 X2] = qncsmvald(N, S, V);
%! assert( U1, U2, 1e-5 );
%! assert( R1, R2, 1e-5 );
%! assert( Q1, Q2, 1e-5 );
%! assert( X1, X2, 1e-5 );

%!test
%! N=5;
%! S = [1 1 1 1 1; ...
%!      1 1 1 1 1; ...
%!      1 1 1 1 1; ...
%!      1 1/2 1/3 1/4 1/5];
%! V = [1 2 1 1];
%! Z = 3;
%! [U1 R1 Q1 X1] = qncscmva( N, S(1:3,1), S(4,:), V, Z );
%! [U2 R2 Q2 X2] = qncsmvald(N, S, V, Z);
%! assert( U1, U2, 1e-5 );
%! assert( R1, R2, 1e-5 );
%! assert( Q1, Q2, 1e-5 );
%! assert( X1, X2, 1e-5 );

%!demo
%! maxN = 90; # Max population size
%! Rmva = Rconv = Rcmva = zeros(1,maxN); # Results
%! S = 4; Z = 10; m = 8;
%! old = warning("query","qn:numerical-instability");
%! warning("off","qn:numerical-instability");
%! for N=1:maxN
%!   [U R] = qncsmva(N,S,1,m,Z);		# Use MVA
%!   Rmva(N) = R(1);
%!   [U R] = qncsconv(N,[S Z],[1 1],[m -1]);	# Use Convolution
%!   Rconv(N) = R(1);
%!   if ( N > m )
%!     Scmva = S ./ min(1:N,m);
%!   else
%!     Scmva = S ./ (1:N);
%!   endif
%!   [U R] = qncscmva(N,[],Scmva,1,Z);		# Use CMVA
%!   Rcmva(N) = R(1);
%! endfor
%! warning(old.state,"qn:numerical-instability");
%! plot(1:maxN, Rmva, ";MVA;", ...
%!      1:maxN, Rconv, ";Convolution;", ...
%!      1:maxN, Rcmva, ";CNVA;", "linewidth",2);
%! xlabel("Population size (N)");
%! ylabel("Response Time");
%! ax=axis(); ax(3) = 0; ax(4) = 40; axis(ax);
%! legend("location","northwest"); legend("boxoff");