1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsconv (@var{N}, @var{S}, @var{V})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsconv (@var{N}, @var{S}, @var{V}, @var{m})
##
## @cindex closed network, single class
## @cindex normalization constant
## @cindex convolution algorithm
##
## Analyze product-form, single class closed networks with @math{K} service centers using the convolution algorithm.
##
## Load-independent service centers, multiple servers (@math{M/M/m}
## queues) and IS nodes are supported. For general load-dependent
## service centers, use @code{qncsconvld} instead.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}
## Number of requests in the system (@code{@var{N}>0}).
##
## @item @var{S}(k)
## average service time on center @math{k} (@code{@var{S}(k) @geq{} 0}).
##
## @item @var{V}(k)
## visit count of service center @math{k} (@code{@var{V}(k) @geq{} 0}).
##
## @item @var{m}(k)
## number of servers at center @math{k}. If @code{@var{m}(k) < 1},
## center @math{k} is a delay center (IS); if @code{@var{m}(k) @geq{}
## 1}, center @math{k} it is a regular @math{M/M/m} queueing center
## with @code{@var{m}(k)} identical servers. Default is
## @code{@var{m}(k) = 1} for all @math{k}.
##
## @end table
##
## @strong{OUTPUT}
##
## @table @code
##
## @item @var{U}(k)
## center @math{k} utilization.
## For IS nodes, @code{@var{U}(k)} is the @emph{traffic intensity}
## @code{@var{X}(k) * @var{S}(k)}.
##
## @item @var{R}(k)
## average response time of center @math{k}.
##
## @item @var{Q}(k)
## average number of customers at center @math{k}.
##
## @item @var{X}(k)
## throughput of center @math{k}.
##
## @item @var{G}(n)
## Vector of normalization constants. @code{@var{G}(n+1)} contains the value of
## the normalization constant with @math{n} requests
## @math{G(n)}, @math{n=0, @dots{}, N}.
##
## @end table
##
## @strong{NOTE}
##
## For a network with @math{K} service centers and @math{N} requests,
## this implementation of the convolution algorithm has time and space
## complexity @math{O(NK)}.
##
## @strong{REFERENCES}
##
## @itemize
## @item
## Jeffrey P. Buzen, @cite{Computational Algorithms for Closed Queueing
## Networks with Exponential Servers}, Communications of the ACM, volume
## 16, number 9, September 1973,
## pp. 527--531. @uref{http://doi.acm.org/10.1145/362342.362345, 10.1145/362342.362345}
## @end itemize
##
## This implementation is based on G. Bolch, S. Greiner, H. de Meer and
## K. Trivedi, @cite{Queueing Networks and Markov Chains: Modeling and
## Performance Evaluation with Computer Science Applications}, Wiley,
## 1998, pp. 313--317.
##
## @seealso{qncsconvld}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U R Q X G] = qncsconv( varargin )
if ( nargin < 3 || nargin > 4 )
print_usage();
endif
## To be compliant with the reference, we use K to denote the
## population size
[err K S V m] = qncschkparam( varargin{:} );
isempty(err) || error(err);
N = length(S); # Number of service centers
## This implementation is based on G. Bolch, S. Greiner, H. de Meer
## and K. Trivedi, Queueing Networks and Markov Chains: Modeling and
## Performance Evaluation with Computer Science Applications, Wiley,
## 1998, pp. 313--317.
## First, we remember the indexes of IS nodes
i_delay = find(m<1);
m( i_delay ) = K; # IS nodes are handled as if they were M/M/K nodes with number of servers equal to the population size K, such that queueing never occurs.
## Initialization
G_n = G_nm1 = zeros(1,K+1);
F_n = zeros(N,K+1); F_n(:,1) = 1;
k=1:K; G_n(1) = 1; G_n(k+1) = F_n(1,k+1) = F(1,k,V,S,m);
## Main convolution loop
for n=2:N
G_nm1 = G_n;
k=1:K; F_n(n,1+k) = F(n,k,V,S,m);
# G_n(1) = 1;
G_n = conv( F_n(n,:), G_nm1(:) )(1:K+1);
endfor
## Done computation of G(n,k).
G = G_n(:)'; # ensure G is a row vector
## Computes performance measures
X = V*G(K)/G(K+1);
U = X .* S ./ m;
## Adjust utilization of delay centers
U(i_delay) = X(i_delay) .* S(i_delay);
Q = zeros(1,N);
i_multi = find(m>1);
for i=i_multi
G_N_i = zeros(1,K+1);
G_N_i(1) = 1;
for k=1:K
j=1:k;
G_N_i(k+1) = G(k+1)-dot( F_n(i,j+1), G_N_i(k-j+1) );
endfor
k=0:K;
p_i(k+1) = F_n(i,k+1)./G(K+1).*G_N_i(K-k+1);
Q(i) = dot( k, p_i( k+1 ) );
endfor
i_single = find(m==1);
for i=i_single
k=1:K;
Q(i) = sum( ( V(i)*S(i) ) .^ k .* G(K+1-k)/G(K+1) );
endfor
R = Q ./ X;
endfunction
%!test
%! # Example 8.1 p. 318 Bolch et al.
%! K=3;
%! S = [ 1/0.8 1/0.6 1/0.4 ];
%! m = [2 3 1];
%! V = [ 1 .667 .2 ];
%! [U R Q X G] = qncsconv( K, S, V, m );
%! assert( G, [1 2.861 4.218 4.465], 5e-3 );
%! assert( X, [0.945 0.630 0.189], 1e-3 );
%! assert( U, [0.590 0.350 0.473], 1e-3 );
%! assert( Q, [1.290 1.050 0.660], 1e-3 );
%! assert( R, [1.366 1.667 3.496], 1e-3 );
%!test
%! # Example 8.3 p. 331 Bolch et al.
%! # compare results of convolution to those of mva
%! S = [ 0.02 0.2 0.4 0.6 ];
%! K = 6;
%! V = [ 1 0.4 0.2 0.1 ];
%! [U_mva R_mva Q_mva X_mva G_mva] = qncsmva(K, S, V);
%! [U_con R_con Q_con X_con G_con] = qncsconv(K, S, V);
%! assert( U_mva, U_con, 1e-5 );
%! assert( R_mva, R_con, 1e-5 );
%! assert( Q_mva, Q_con, 1e-5 );
%! assert( X_mva, X_con, 1e-5 );
%! assert( G_mva, G_con, 1e-5 );
%!test
%! # Compare the results of convolution to those of mva
%! S = [ 0.02 0.2 0.4 0.6 ];
%! K = 6;
%! V = [ 1 0.4 0.2 0.1 ];
%! m = [ 1 -1 2 1 ]; # center 2 is IS
%! [U_mva R_mva Q_mva X_mva] = qncsmva(K, S, V, m);
%! [U_con R_con Q_con X_con G] = qncsconv(K, S, V, m );
%! assert( U_mva, U_con, 1e-5 );
%! assert( R_mva, R_con, 1e-5 );
%! assert( Q_mva, Q_con, 1e-5 );
%! assert( X_mva, X_con, 1e-5 );
## result = F(i,j,v,S,m)
##
## Helper fuction to compute F(i,j) as defined in Eq 7.61 p. 289 of
## Bolch, Greiner, de Meer, Trivedi "Queueing Networks and Markov
## Chains: Modeling and Performance Evaluation with Computer Science
## Applications", Wiley, 1998. This function has been vectorized,
## and accepts a vector as parameter j.
function result = F(i,j,v,S,m)
isscalar(i) || ...
error( "i must be a scalar" );
k_i = j;
if ( m(i) == 1 )
result = ( v(i)*S(i) ).^k_i;
else
ii = find(k_i<=m(i)); ## if k_i<=m(i)
result(ii) = ( v(i)*S(i) ).^k_i(ii) ./ factorial(k_i(ii));
ii = find(k_i>m(i)); ## if k_i>m(i)
result(ii) = ( v(i)*S(i) ).^k_i(ii) ./ ( factorial(m(i))*m(i).^(k_i(ii)-m(i)) );
endif
endfunction
%!demo
%! n = [1 2 0];
%! N = sum(n); # Total population size
%! S = [ 1/0.8 1/0.6 1/0.4 ];
%! m = [ 2 3 1 ];
%! V = [ 1 .667 .2 ];
%! [U R Q X G] = qncsconv( N, S, V, m );
%! p = [0 0 0]; # initialize p
%! # Compute the probability to have n(k) jobs at service center k
%! for k=1:3
%! p(k) = (V(k)*S(k))^n(k) / G(N+1) * ...
%! (G(N-n(k)+1) - V(k)*S(k)*G(N-n(k)) );
%! printf("Prob( n(%d) = %d )=%f\n", k, n(k), p(k) );
%! endfor
|