1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
## Copyright (C) 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V}, @var{m})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z}, @var{tol})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z}, @var{tol}, @var{iter_max})
##
## @cindex Mean Value Analysys (MVA), approximate
## @cindex MVA, approximate
## @cindex approximate MVA
## @cindex closed network, single class
## @cindex closed network, approximate analysis
##
## Analyze closed, single class queueing networks using the Approximate
## Mean Value Analysis (MVA) algorithm. This function is based on
## approximating the number of customers seen at center @math{k} when a
## new request arrives as @math{Q_k(N) \times (N-1)/N}. This function
## only handles single-server and delay centers; if your network
## contains general load-dependent service centers, use the function
## @code{qncsmvald} instead.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}
## Population size (number of requests in the system, @code{@var{N} > 0}).
##
## @item @var{S}(k)
## mean service time on server @math{k}
## (@code{@var{S}(k)>0}).
##
## @item @var{V}(k)
## average number of visits to service center
## @math{k} (@code{@var{V}(k) @geq{} 0}).
##
## @item @var{m}(k)
## number of servers at center @math{k}
## (if @var{m} is a scalar, all centers have that number of servers). If
## @code{@var{m}(k) < 1}, center @math{k} is a delay center (IS); if
## @code{@var{m}(k) == 1}, center @math{k} is a regular queueing
## center (FCFS, LCFS-PR or PS) with one server (default). This function
## does not support multiple server nodes (@code{@var{m}(k) > 1}).
##
## @item @var{Z}
## External delay for customers (@code{@var{Z} @geq{} 0}). Default is 0.
##
## @item @var{tol}
## Stopping tolerance. The algorithm stops when the maximum relative
## difference between the new and old value of the queue lengths
## @var{Q} becomes less than the tolerance. Default is @math{10^{-5}}.
##
## @item @var{iter_max}
## Maximum number of iterations (@code{@var{iter_max}>0}.
## The function aborts if convergenge is not reached within the maximum
## number of iterations. Default is 100.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}(k)
## If @math{k} is a FCFS, LCFS-PR or PS node (@code{@var{m}(k) == 1}),
## then @code{@var{U}(k)} is the utilization of center @math{k}. If
## @math{k} is an IS node (@code{@var{m}(k) < 1}), then
## @code{@var{U}(k)} is the @emph{traffic intensity} defined as
## @code{@var{X}(k)*@var{S}(k)}.
##
## @item @var{R}(k)
## response time at center @math{k}.
## The system response time @var{Rsys}
## can be computed as @code{@var{Rsys} = @var{N}/@var{Xsys} - Z}
##
## @item @var{Q}(k)
## average number of requests at center @math{k}. The number of
## requests in the system can be computed either as
## @code{sum(@var{Q})}, or using the formula
## @code{@var{N}-@var{Xsys}*@var{Z}}.
##
## @item @var{X}(k)
## center @math{k} throughput. The system throughput @var{Xsys} can be
## computed as @code{@var{Xsys} = @var{X}(1) / @var{V}(1)}
##
## @end table
##
## @strong{REFERENCES}
##
## This implementation is based on Edward D. Lazowska, John Zahorjan,
## G. Scott Graham, and Kenneth C. Sevcik, @cite{Quantitative System
## Performance: Computer System Analysis Using Queueing Network Models},
## Prentice Hall,
## 1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
## particular, see section 6.4.2.2 ("Approximate Solution Techniques").
##
## @seealso{qncsmva,qncsmvald}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U R Q X] = qncsmvaap( N, S, V, m, Z, tol, iter_max )
if ( nargin < 3 || nargin > 7 )
print_usage();
endif
isscalar(N) && N >= 0 || ...
error( "N must be >= 0" );
isvector(S) || ...
error( "S must be a vector" );
isvector(V) || ...
error( "V must be a vector" );
S = S(:)'; # make S a row vector
V = V(:)'; # make V a row vector
K = length(S); # Number of servers
if ( nargin < 4 )
m = ones(1,K);
else
isvector(m) || ...
error( "m must be a vector" );
m = m(:)'; # make m a row vector
endif
[err S V m] = common_size(S, V, m);
(err == 0) || ...
error( "S, V and m are of incompatible size" );
all(S>=0) || ...
error( "S must be a vector >= 0" );
all(V>=0) || ...
error( "V must be a vector >= 0" );
all(m<=1) || ...
error( "Vector m must be <= 1 (this function supports IS and single-server nodes only)" );
if ( nargin < 5 )
Z = 0;
else
(isscalar(Z) && Z >= 0) || ...
error( "Z must be >= 0" );
endif
if ( nargin < 6 )
tol = 1e-5;
else
( isscalar(tol) && tol>0 ) || ...
error("tol must be a positive scalar");
endif
if ( nargin < 7 )
iter_max = 100;
else
( isscalar(iter_max) && iter_max > 0 ) || ...
error("iter_max must be a positive integer");
endif
U = R = Q = X = zeros( 1, K );
## Trivial case of empty population: just return all zeros
if ( N == 0 )
return;
endif
Q = N/K * ones(1,K); # initialize queue lengths
iter = 0;
do
iter++;
Qold = Q;
A = (N-1)/N * Q;
R = S.*(1+A.*(m==1));
Rs = dot(V,R);
Xs = N/(Z+Rs);
Q = Xs*(V.*R);
err = norm((Q-Qold)./Qold, "inf");
until (err < tol || iter>iter_max);
if ( iter > iter_max )
warning( "qncsmvaap(): Convergence not reached after %d iterations", iter_max );
endif
X = Xs * V;
U = X .* S;
endfunction
%!test
%! fail( "qncsmvaap()", "Invalid" );
%! fail( "qncsmvaap( 10, [1 2], [1 2 3] )", "S, V and m" );
%! fail( "qncsmvaap( 10, [-1 1], [1 1] )", ">= 0" );
%! fail( "qncsmvaap( 10, [1 2], [1 2], [1 2] )", "supports");
%! fail( "qncsmvaap( 10, [1 2], [1 2], [1 1], 0, -1)", "tol");
%!test
%! # Example p. 117 Lazowska et al.
%! S = [0.605 2.1 1.35];
%! V = [1 1 1];
%! N = 3;
%! Z = 15;
%! m = 1;
%! [U R Q X] = qncsmvaap(N, S, V, m, Z);
%! Rs = dot(V,R);
%! Xs = N/(Z+Rs);
%! assert( Q, [0.0973 0.4021 0.2359], 1e-3 );
%! assert( Xs, 0.1510, 1e-3 );
%! assert( Rs, 4.87, 1e-3 );
%!demo
%! S = [ 0.125 0.3 0.2 ];
%! V = [ 16 10 5 ];
%! N = 30;
%! m = ones(1,3);
%! Z = 4;
%! Xmva = Xapp = Rmva = Rapp = zeros(1,N);
%! for n=1:N
%! [U R Q X] = qncsmva(n,S,V,m,Z);
%! Xmva(n) = X(1)/V(1);
%! Rmva(n) = dot(R,V);
%! [U R Q X] = qncsmvaap(n,S,V,m,Z);
%! Xapp(n) = X(1)/V(1);
%! Rapp(n) = dot(R,V);
%! endfor
%! subplot(2,1,1);
%! plot(1:N, Xmva, ";Exact;", "linewidth", 2, 1:N, Xapp, "x;Approximate;", "markersize", 7);
%! legend("location","southeast"); legend("boxoff");
%! ylabel("Throughput X(n)");
%! subplot(2,1,2);
%! plot(1:N, Rmva, ";Exact;", "linewidth", 2, 1:N, Rapp, "x;Approximate;", "markersize", 7);
%! legend("location","southeast"); legend("boxoff");
%! ylabel("Response Time R(n)");
%! xlabel("Number of Requests n");
|