1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018, 2019 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmarkov (@var{lambda}, @var{S}, @var{C}, @var{P})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmarkov (@var{lambda}, @var{S}, @var{C}, @var{P}, @var{m})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmarkov (@var{N}, @var{S}, @var{C}, @var{P})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmarkov (@var{N}, @var{S}, @var{C}, @var{P}, @var{m})
##
## @cindex closed network, single class
## @cindex open network, single class
## @cindex closed network, finite capacity
## @cindex blocking queueing network
## @cindex RS blocking
##
## Compute utilization, response time, average queue length and
## throughput for open or closed queueing networks with finite capacity
## and a single class of requests.
## Blocking type is Repetitive-Service (RS). This function explicitly
## generates and solve the underlying Markov chain, and thus might
## require a large amount of memory.
##
## More specifically, networks which can me analyzed by this
## function have the following properties:
##
## @itemize @bullet
##
## @item There exists only a single class of customers.
##
## @item The network has @math{K} service centers. Center
## @math{k \in @{1, @dots{}, K@}}
## has @math{m_k > 0} servers, and has a total (finite) capacity of
## @math{C_k \geq m_k} which includes both buffer space and servers.
## The buffer space at service center @math{k} is therefore
## @math{C_k - m_k}.
##
## @item The network can be open, with external arrival rate to
## center @math{k} equal to
## @math{\lambda_k}, or closed with fixed
## population size @math{N}. For closed networks, the population size
## @math{N} must be strictly less than the network capacity:
## @math{N < \sum_{k=1}^K C_k}.
##
## @item Average service times are load-independent.
##
## @item @math{P_{i, j}} is the probability that requests completing
## execution at center @math{i} are transferred to
## center @math{j}, @math{i \neq j}. For open networks, a request may leave the system
## from any node @math{i} with probability @math{1-\sum_{j=1}^K P_{i, j}}.
##
## @item Blocking type is Repetitive-Service (RS). Service
## center @math{j} is @emph{saturated} if the number of requests is equal
## to its capacity @math{C_j}. Under the RS blocking discipline,
## a request completing service at center @math{i} which is being
## transferred to a saturated server @math{j} is put back at the end of
## the queue of @math{i} and will receive service again. Center @math{i}
## then processes the next request in queue. External arrivals to a
## saturated servers are dropped.
##
## @end itemize
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{lambda}(k)
## @itemx @var{N}
## If the first argument is a vector @var{lambda}, it is considered to be
## the external arrival rate @code{@var{lambda}(k) @geq{} 0} to service center
## @math{k} of an open network. If the first argument is a scalar, it is
## considered as the population size @var{N} of a closed network; in this case
## @var{N} must be strictly
## less than the network capacity: @code{@var{N} < sum(@var{C})}.
##
## @item @var{S}(k)
## average service time at service center @math{k}
##
## @item @var{C}(k)
## capacity of service center @math{k}. The capacity includes both
## the buffer and server space @code{@var{m}(k)}. Thus the buffer space is
## @code{@var{C}(k)-@var{m}(k)}.
##
## @item @var{P}(i,j)
## transition probability from service center
## @math{i} to service center @math{j}.
##
## @item @var{m}(k)
## number of servers at service center
## @math{k}. Note that @code{@var{m}(k) @geq{} @var{C}(k)} for each @var{k}.
## If @var{m} is omitted, all service centers are assumed to have a
## single server (@code{@var{m}(k) = 1} for all @math{k}).
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}(k)
## center @math{k} utilization.
##
## @item @var{R}(k)
## response time on service center @math{k}.
##
## @item @var{Q}(k)
## average number of customers in the
## service center @math{k}, @emph{including} the request in service.
##
## @item @var{X}(k)
## throughput of service center @math{k}.
##
## @end table
##
## @strong{NOTES}
##
## The space complexity of this implementation is @math{O(\prod_{k=1}^K (C_k + 1)^2)}. The time complexity is dominated by
## the time needed to solve a linear system with @math{\prod_{k=1}^K (C_k + 1)} unknowns.
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U R Q X] = qnmarkov( x, S, C, P, m )
if ( nargin < 4 || nargin > 5 )
print_usage();
endif
isvector(S) || error( "S must be a vector" );
K = length(S); # number of service centers
if ( nargin < 5 )
m = ones(1,K);
else
size_equal(m,S) || error( "m must have the same langth as S" );
endif
( [K,K] == size(P) && all( all(P>=0)) && all(sum(P,2) <= 1)) || ...
error( "P must be SxS and nonnegative" );
if ( isscalar(x) )
is_open = false;
N = x; # closed network
( N < sum(C) ) || ...
error( "The population size exceeds the network capacity" );
all( abs(sum(P,2)-1) < 1000*eps ) || ...
error( "P for closed networks cannot have exit nodes" );
else
is_open = true;
lambda = x; # open network
size_equal(lambda, S ) || ...
error( "lambda must have the same langth as S" );
endif
( all(m > 0) && all(m <= C) ) || ...
error( "Capacities C must be greater or equal than m" );
q_size = prod( C+1 ); # number of states of the system
## The infinitesimal generator matrix Q_markovmight be sparse, so it
## would be appropriate to represent it as a sparse matrix. In this
## case the UMFPACK library must be installed to solve the @math{{\bf
## A}x=b} sparse system. Since I'm not sure everyone built Octave with
## sparse matrix support, I leave Q_markov as a full matrix here.
Q_markov = zeros( q_size, q_size );
cur_state = zeros(1, K);
if ( is_open )
valid_populations = linspace(0, sum(C), sum(C)+1);
else
valid_populations = [ N ];
endif
## exit_prob(i) is the probability that a job leaves the system from node i
exit_prob = 1 - sum(P,2);
for n=valid_populations
pop_mix = qncmpopmix( n, C );
for cur_state=pop_mix' # for each feasible configuration with n customers
cur_idx = sub2cell( C, cur_state );
for i=1:K
if ( is_open ) # for open networks only
## handle new external arrival to center i
if ( lambda(i) > 0 && cur_state(i) < C(i) )
next_state = cur_state; next_state(i) += 1;
next_idx = sub2cell( C, next_state );
Q_markov( cur_idx, next_idx ) = lambda(i);
endif
## handle requests that leave the system from center i
## exit_prob = 1-sum(P(i,:));
if ( exit_prob(i) > 0 && cur_state(i) > 0 )
next_state = cur_state; next_state(i) -= 1;
next_idx = sub2cell( C, next_state );
Q_markov( cur_idx, next_idx ) = min(m(i), cur_state(i))*exit_prob(i)/S(i);
endif
endif # end open networks only
## for both open and closed networks
for j=[1:(i-1) (i+1):K]
## check whether a job can move from server i to server j!=i
if ( cur_state(i) > 0 && cur_state(j) < C(j) && P(i,j) > 0 )
next_state = cur_state; next_state(i) -= 1; next_state(j) += 1;
next_idx = sub2cell( C, next_state );
Q_markov( cur_idx, next_idx ) = min(m(i), cur_state(i))*P(i,j)/S(i);
endif
endfor
endfor
endfor
endfor
##spy( Q_markov );
## complete the diagonal elements of the matrix Q
d = sum(Q_markov,2);
Q_markov -= diag( d );
## Solve the ctmc
prob = ctmc( Q_markov );
## Compute the average queue length
p = zeros(K, max(C)+1); # p(k,i+1) = prob that there are i requests at service center k
for n=valid_populations
pop_mix = qncmpopmix( n, C );
for cur_state=pop_mix'
cur_idx = sub2cell( C, cur_state );
for k=1:K
i=cur_state(k);
p(k,i+1) += prob(cur_idx);
endfor
endfor
endfor
## We can now compute all the performance measures
U = R = Q = X = zeros(1,K);
for k=1:K
j = [0:m(k)-1];
U(k) = 1 - sum( ( m(k) - j ) ./ m(k) .* p(k,1+j) );
##X(k) = U(k)/S(k);
j = [1:C(k)];
Q(k) = sum( j .* p(k,1+j) );
##R(k) = Q(k)/X(k);
endfor
X = U./S;
R = Q./X;
endfunction
%!test
%! S = [5 2.5];
%! P = [0 1; 1 0];
%! C = [3 3];
%! m = [1 1];
%! [U R Q X] = qnmarkov( 3, S, C, P, m );
%! assert( U, [0.9333 0.4667], 1e-4 );
%! assert( X, [0.1867 0.1867], 1e-4 );
%! assert( R, [12.1429 3.9286], 1e-4 );
## Example 7.5 p. 292 Bolch et al.
%!test
%! S = [1/0.8 1/0.6 1/0.4];
%! P = [0.6 0.3 0.1; 0.2 0.3 0.5; 0.4 0.1 0.5];
%! C = [3 3 3];
%! [U R Q X] = qnmarkov( 3, S, C, P );
%! assert( U, [0.543 0.386 0.797], 1e-3 );
%! assert( Q, [0.873 0.541 1.585], 1e-3 );
## Example 10.19, p. 551 Bolch et al.
%!##
%! S = [2 0.9];
%! C = [7 5];
%! P = [0 1; 1 0];
%! [U R Q X] = qnmarkov( 10, S, C, P );
%! assert( Q, [6.73 3.27], 1e-3 );
## Example 8.1 p. 317 Bolch et al.
%!test
%! S = [1/0.8 1/0.6 1/0.4];
%! P = [(1-0.667-0.2) 0.667 0.2; 1 0 0; 1 0 0];
%! m = [2 3 1];
%! C = [3 3 3];
%! [U R Q X] = qnmarkov( 3, S, C, P, m );
%! assert( U, [0.590 0.350 0.473], 1e-3 );
%! assert( Q(1:2), [1.290 1.050], 1e-3 );
## This is a simple test of an open QN with fixed capacity queues. There
## are two service centers, S1 and S2. C(1) = 2 and C(2) = 1. Transition
## probability from S1 to S2 is 1. Transition probability from S2 to S1
## is p.
%!test
%! p = 0.5; # transition prob. from S2 to S1
%! mu = [1 2]; # Service rates
%! C = [2 1]; # Capacities
%! lambda = [0.5 0]; # arrival rate at service center 1
%!
%! PP = [ 0 1; p 0 ];
%! [U R Q X] = qnmarkov( lambda, 1./mu, C, PP );
%! ## Now we generate explicitly the infinitesimal generator matrix
%! ## of the underlying MC.
%! ## 00 01 10 11 20 21
%! QQ = [ 0 0 lambda(1) 0 0 0; ... ## 00
%! mu(2)*(1-p) 0 mu(2)*p lambda(1) 0 0; ... ## 01
%! 0 mu(1) 0 0 lambda(1) 0; ... ## 10
%! 0 0 mu(2)*(1-p) 0 mu(2)*p lambda(1); ... ## 11
%! 0 0 0 mu(1) 0 0; ... ## 20
%! 0 0 0 0 mu(2)*(1-p) 0 ]; ## 21
%! ## Complete matrix
%! sum_el = sum(QQ,2);
%! QQ -= diag(sum_el);
%! q = ctmc(QQ);
%! ## Compare results
%! assert( U(1), 1-sum(q([1, 2])), 1e-5 );
%! assert( U(2), 1-sum(q([1,3,5])), 1e-5 );
## This is a closed network with fixed-capacity queues. The population
## size N is such that blocking never occurs, so this model can be
## analyzed using the conventional MVA algorithm. MVA and qnmarkov()
## must produce the same results.
%!test
%! P = [0 0.5 0.5; 1 0 0; 1 0 0];
%! C = [6 6 6];
%! S = [1 0.8 1.8];
%! N = 6;
%! [U1 R1 Q1 X1] = qnclosed( N, S, qncsvisits(P) );
%! [U2 R2 Q2 X2] = qnmarkov( N, S, C, P );
%! assert( U1, U2, 1e-6 );
%! assert( R1, R2, 1e-6 );
%! assert( Q1, Q2, 1e-6 );
%! assert( X1, X2, 1e-6 );
## return a linear index corresponding to index idx on a
## multidimensional vector of dimension(s) dim
function i = sub2cell( dim, idx )
idx_cell = num2cell( idx+1 );
i = sub2ind( dim+1, idx_cell{:} );
endfunction
|