1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmix (@var{lambda}, @var{N}, @var{S}, @var{V}, @var{m})
##
## @cindex Mean Value Analysys (MVA)
## @cindex mixed network
##
## Mean Value Analysis for mixed queueing networks. The network
## consists of @math{K} service centers (single-server or delay
## centers) and @math{C} independent customer chains. Both open and
## closed chains are possible. @var{lambda} is the vector of per-chain
## arrival rates (open classes); @var{N} is the vector of populations
## for closed chains.
##
## Class switching is @strong{not} allowed. Each customer class
## @emph{must} correspond to an independent chain.
##
## If the network is made of open or closed classes only, then this
## function calls @code{qnom} or @code{qncmmva} respectively, and
## prints a warning message.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{lambda}(c)
## @itemx @var{N}(c)
## For each customer chain @math{c}:
##
## @itemize
##
## @item if @math{c} is a closed chain, then @code{@var{N}(c)>0} is the
## number of class @math{c} requests and @code{@var{lambda}(c)} must be
## zero;
##
## @item If @math{c} is an open chain,
## @code{@var{lambda}(c)>0} is the arrival rate of class @math{c}
## requests and @code{@var{N}(c)} must be zero;
##
## @end itemize
##
## @noindent In other words, for each class @math{c} the following must hold:
##
## @example
## (@var{lambda}(c)>0 && @var{N}(c)==0) || (@var{lambda}(c)==0 && @var{N}(c)>0)
## @end example
##
## @item @var{S}(c,k)
## mean class @math{c} service time at center @math{k},
## @code{@var{S}(c,k) @geq{} 0}. For FCFS nodes, service times must be
## class-independent.
##
## @item @var{V}(c,k)
## average number of visits of class @math{c} customers to center
## @math{k} (@code{@var{V}(c,k) @geq{} 0}).
##
## @item @var{m}(k)
## number of servers at center @math{k}. Only single-server
## (@code{@var{m}(k)==1}) or IS (Infinite Server) nodes
## (@code{@var{m}(k)<1}) are supported. If omitted, each center is
## assumed to be of type @math{M/M/1}-FCFS. Queueing discipline for
## single-server nodes can be FCFS, PS or LCFS-PR.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}(c,k)
## class @math{c} utilization at center @math{k}.
##
## @item @var{R}(c,k)
## class @math{c} response time at center @math{k}.
##
## @item @var{Q}(c,k)
## average number of class @math{c} requests at center @math{k}.
##
## @item @var{X}(c,k)
## class @math{c} throughput at center @math{k}.
##
## @end table
##
## @strong{REFERENCES}
##
## @itemize
## @item
## Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
## Sevcik, @cite{Quantitative System Performance: Computer System
## Analysis Using Queueing Network Models}, Prentice Hall,
## 1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
## particular, see section 7.4.3 ("Mixed Model Solution Techniques").
## Note that in this function we compute the mean response time @math{R}
## instead of the mean residence time as in the reference.
##
## @item
## Herb Schwetman, @cite{Implementing the Mean Value Algorithm for the
## Solution of Queueing Network Models}, Technical Report
## @uref{http://docs.lib.purdue.edu/cstech/286/, CSD-TR-355}, Department
## of Computer Sciences, Purdue University, revised Feb 15, 1982.
## @end itemize
##
## @seealso{qncmmva, qncm}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U R Q X] = qnmix( lambda, N, S, V, m )
if ( nargin < 4 || nargin > 5 )
print_usage();
endif
isvector(lambda) || ...
error( "lambda must be a vector" );
lambda = lambda(:)';
isvector(N) || ...
error( "N must be a vector" );
N = N(:)';
size_equal(lambda,N) || ...
error( "lambda and N must be of equal length" );
( !any( lambda>0 & N>0 ) ) || ...
error("A class cannot be open and closed at the same time. Check lambda and N" );
( all( lambda>0 | N>0 ) ) || ...
error( "A class cannot be neither open nor closed. Check lambda and N" );
size_equal(S,V) || ...
error( "S and V must have the same size" );
C = length(lambda); # number of classes
K = columns(S); # number of service centers
rows(S) == C || ...
error( "S must have %d rows", C );
if ( nargin < 5 )
m = ones(1,K);
else
isvector( m ) || ...
error( "m must be a vector" );
m = m(:)';
size_equal(lambda,m) || ...
error( "lambda and m must be of equal length" );
endif
all( m<=1 ) || ...
error( "This function supports single-server and delay centers only. Check m" );
if ( !any(lambda>0) )
warning( "qnmix(): There are no open classes. Using qncmmva()" );
[U R Q X] = qncmmva( N, S, V, m );
return;
endif
if ( !any(N>0) )
warning( "qnmix(): There are no closed classes. Using qnom()" );
[U R Q X] = qnom( lambda, S, V, m );
return;
endif
D = S.*V; # service demands
op = find( lambda>0 ); # indexes of open networks
cl = find( N>0 ); # indexes of closed networks
## Initialize results
U = R = Q = X = zeros(C,K);
U(op,:) = diag( lambda(op) )* D(op,:); # U(c,:) = lambda(c)*D(c,:);
Uo = sum(U,1); # Total utilization for open classes on service center k
## Build closed model to solve
Ncl = N(cl);
Scl = S;
for c=cl
Scl(c,:) = Scl(c,:) ./ (1-Uo);
endfor
Scl = Scl(cl,:); # select only rows for closed classes
Vcl = V(cl,:);
[Ucl Rcl Qcl Xcl] = qncmmva(Ncl, Scl, Vcl, m );
## Results for closed classes
X(cl,:) = Xcl;
Q(cl,:) = Qcl;
R(cl,:) = Rcl;
U(cl,:) = X(cl,:) .* D(cl,:);
## Results for open classes
Qc = sum(Q(cl,:),1);
i_single=find(m==1);
i_multi=find(m<1);
for c=op
R(c,i_single) = S(c,i_single).*(1+Qc) ./ (1-Uo); # This is the Response time, _not_ the residence time
R(c,i_multi) = S(c,i_multi);
endfor
Q(op,:) = (diag(lambda(op))*V(op,:)).*R(op,:); # Q(c,k) = lambda(c)*V(c,k)*R(c,k)
## The following is needed to avoid division by zero
idx = false(size(X));
idx(op,:) = ( S(op,:)>0 & V(op,:)>0 );
X(idx) = U(idx) ./ S(idx);
endfunction
%!test
%! lambda = [1 0 0];
%! N = [1 1 1];
%! S = V = [1 1 1; 1 1 1; 1 1 1];
%! fail( "qnmix( lambda, N, S, V)", "same time");
%! N = [0 0 1];
%! fail( "qnmix( lambda, N, S, V)", "open nor closed" );
%! N = [0 1 2];
%! m = [ 1 1 2 ];
%! fail( "qnmix( lambda, N, S, V, m)", "single-server and delay" );
%! S = V = [1 1 1; 1 1 1];
%! fail( "qnmix( lambda, N, S, V)", "rows" );
%!test
%! # Example p. 148 Zahorjan et al.
%! lambda = [1 1/2 0 0];
%! N = [0 0 1 1];
%! V = [1 1; 1 1; 1 1; 1 1];
%! S = [1/4 1/6; 1/2 1; 1/2 1; 1 4/3];
%! [U R Q X] = qnmix(lambda, N, S, V );
%! assert( Q(3,1), 4/19, 1e-4 );
%! assert( Q(3,2), 15/19, 1e-4 );
%! assert( Q(4,1), 5/19, 1e-4 );
%! assert( Q(4,2), 14/19, 1e-4 );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
%!test
%! # Example 8.6 p. 345 Bolch et al.
%! lambda = [0.5 0.25 0 0];
%! N = [0 0 1 1];
%! V = [2 1; 2.5 1.5; 1 0.5; 1 0.4];
%! S = [0.4 0.6; 0.8 1.6; 0.3 0.5; 0.5 0.8];
%! [U R Q X] = qnmix( lambda, N, S, V );
%! assert( U([1 2],:), [0.4 0.3; 0.5 0.6], 1e-3 );
%! assert( R([3 4],:), [4.829 6.951; 7.727 11.636], 1e-3 );
%! assert( Q([3 4],:), [0.582 0.418; 0.624 0.376], 1e-3 );
%! assert( Q([1 2],:), [8.822 5.383; 11.028 10.766], 1e-3 );
%! assert( R([1 2],:), [8.822 10.766; 17.645 28.710], 1e-3 );
%! assert( X(3,1)/V(3,1), 0.120, 1e-3 );
%! assert( X(4,1)/V(4,1), 0.081, 1e-3 );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
%!test
%! ## example figure 10 p. 26 Schwetman, "Implementing the Mean Value
%! ## Analysis for the Solution of Queueing Network Models", Technical
%! ## Report CSD-TR-355, feb 15, 1982, Purdue University.
%! S = [.25 0; .25 .10];
%! V = [1 0; 1 1];
%! lambda = [1 0];
%! N = [0 3];
%! [U R Q X] = qnmix( lambda, N, S, V );
%! assert( U(1,1), .25, 1e-3 );
%! assert( X(1,1), 1.0, 1e-3 );
%! assert( [R(1,1) R(2,1) R(2,2)], [1.201 0.885 0.135], 1e-3 );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
|