File: qnos.m

package info (click to toggle)
octave-queueing 1.2.8-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,288 kB
  • sloc: makefile: 56
file content (222 lines) | stat: -rw-r--r-- 6,449 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnos (@var{lambda}, @var{S}, @var{V})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnos (@var{lambda}, @var{S}, @var{V}, @var{m})
##
## @cindex open network, single class
## @cindex BCMP network
##
## Analyze open, single class BCMP queueing networks with @math{K} service centers.
##
## This function works for a subset of BCMP single-class open networks
## satisfying the following properties:
##
## @itemize
##
## @item The allowed service disciplines at network nodes are: FCFS,
## PS, LCFS-PR, IS (infinite server);
##
## @item Service times are exponentially distributed and
## load-independent;
##
## @item Center @math{k} can consist of @code{@var{m}(k) @geq{} 1}
## identical servers.
##
## @item Routing is load-independent
##
## @end itemize
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{lambda}
## Overall external arrival rate (@code{@var{lambda}>0}).
##
## @item @var{S}(k)
## average service time at center @math{k} (@code{@var{S}(k)>0}).
##
## @item @var{V}(k)
## average number of visits to center @math{k} (@code{@var{V}(k) @geq{} 0}).
##
## @item @var{m}(k)
## number of servers at center @math{i}. If @code{@var{m}(k) < 1},
## enter @math{k} is a delay center (IS); otherwise it is a regular
## queueing center with @code{@var{m}(k)} servers. Default is
## @code{@var{m}(k) = 1} for all @math{k}.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}(k)
## If @math{k} is a queueing center,
## @code{@var{U}(k)} is the utilization of center @math{k}.
## If @math{k} is an IS node, then @code{@var{U}(k)} is the
## @emph{traffic intensity} defined as @code{@var{X}(k)*@var{S}(k)}.
##
## @item @var{R}(k)
## center @math{k} average response time.
##
## @item @var{Q}(k)
## average number of requests at center @math{k}.
##
## @item @var{X}(k)
## center @math{k} throughput.
##
## @end table
##
## @strong{REFERENCES}
##
## @itemize
## @item
## G. Bolch, S. Greiner, H. de Meer and K. Trivedi, @cite{Queueing Networks
## and Markov Chains: Modeling and Performance Evaluation with Computer
## Science Applications}, Wiley, 1998
## @end itemize
##
## @seealso{qnopen,qnclosed,qnosvisits}
##
## @end deftypefn

## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/

function [U R Q X] = qnos( varargin )
  if ( nargin < 3 || nargin > 4 )
    print_usage();
  endif

  [err lambda S V m] = qnoschkparam( varargin {:} );
  isempty(err) || error(err);

  all(S>0) || ...
      error( "S must be positive" );

  ## If there are M/M/k servers with k>=1, compute the maximum
  ## processing capacity
  m(m<1) = -1; # avoids division by zero in next line
  [Umax kmax] = max( lambda * S .* V ./ m );
  (Umax < 1) || ...
      error( "Processing capacity exceeded at center %d", kmax );

  l = lambda*V; # arrival rates

  i = find( m == 1 ); # single station queueing centers
  if numel(i)
    [U(i) R(i) Q(i) X(i)] = qsmm1( l(i), 1./S(i) );
  endif

  i = find( m<1 ); # delay centers
  if numel(i)
    [U(i) R(i) Q(i) X(i)] = qsmminf( l(i), 1./S(i) );
  endif

  i = find( m>1 ); # multiple stations queueing centers
  if numel(i)
    [U(i) R(i) Q(i) X(i)] = qsmmm( l(i), 1./S(i), m(i) );
  endif
endfunction
%!test
%! lambda = 0;
%! S = [1 1 1];
%! V = [1 1 1];
%! fail( "qnos(lambda,S,V)","lambda must be");
%! lambda = 1;
%! S = [1 0 1];
%! fail( "qnos(lambda,S,V)","S must be");
%! S = [1 1 1];
%! m = [1 1];
%! fail( "qnos(lambda,S,V,m)","incompatible size");
%! V = [1 1 1 1];
%! fail( "qnos(lambda,S,V)","incompatible size");
%! fail( "qnos(1.0, [0.9 1.2], [1 1])", "exceeded at center 2");
%! fail( "qnos(1.0, [0.9 2.0], [1 1], [1 2])", "exceeded at center 2");
%! qnos(1.0, [0.9 1.9], [1 1], [1 2]); # should not fail
%! qnos(1.0, [0.9 1.9], [1 1], [1 0]); # should not fail
%! qnos(1.0, [1.9 1.9], [1 1], [0 0]); # should not fail
%! qnos(1.0, [1.9 1.9], [1 1], [2 2]); # should not fail

%!test
%! # Example 34.1 p. 572 Bolch et al.
%! lambda = 3;
%! V = [16 7 8];
%! S = [0.01 0.02 0.03];
%! [U R Q X] = qnos( lambda, S, V );
%! assert( R, [0.0192 0.0345 0.107], 1e-2 );
%! assert( U, [0.48 0.42 0.72], 1e-2 );
%! assert( Q, R.*X, 1e-5 ); # check Little's Law

%!test
%! # Example p. 113, Lazowska et al.
%! V = [121 70 50];
%! S = [0.005 0.03 0.027];
%! lambda=0.3;
%! [U R Q X] = qnos( lambda, S, V );
%! assert( U(1), 0.182, 1e-3 );
%! assert( X(1), 36.3, 1e-2 );
%! assert( Q(1), 0.222, 1e-3 );
%! assert( Q, R.*X, 1e-5 ); # check Little's Law

%!test
%! lambda=[1];
%! P=[0];
%! V=qnosvisits(P,lambda);
%! S=[0.25];
%! [U1 R1 Q1 X1]=qnos(sum(lambda),S,V);
%! [U2 R2 Q2 X2]=qsmm1(lambda(1),1/S(1));
%! assert( U1, U2, 1e-5 );
%! assert( R1, R2, 1e-5 );
%! assert( Q1, Q2, 1e-5 );
%! assert( X1, X2, 1e-5 );

## Check if processing capacity is properly accounted for
%!test
%! lambda = 1.1;
%! V = 1;
%! m = [2];
%! S = [1];
%! [U1 R1 Q1 X1] = qnos(lambda,S,V,m);
%! m = [-1];
%! lambda = 90.0;
%! [U1 R1 Q1 X1] = qnos(lambda,S,V,m);

%!demo
%! lambda = 3;
%! V = [16 7 8];
%! S = [0.01 0.02 0.03];
%! [U R Q X] = qnos( lambda, S, V );
%! R_s = dot(R,V) # System response time
%! N = sum(Q) # Average number in system

%!test
%! # Example 7.4 p. 287 Bolch et al.
%! S = [ 0.04 0.03 0.06 0.05 ];
%! P = [ 0 0.5 0.5 0; 1 0 0 0; 0.6 0 0 0; 1 0 0 0 ];
%! lambda = [0 0 0 4];
%! V=qnosvisits(P,lambda);
%! k = [ 3 2 4 1 ];
%! [U R Q X] = qnos( sum(lambda), S, V );
%! assert( X, [20 10 10 4], 1e-4 );
%! assert( U, [0.8 0.3 0.6 0.2], 1e-2 );
%! assert( R, [0.2 0.043 0.15 0.0625], 1e-3 );
%! assert( Q, [4, 0.429 1.5 0.25], 1e-3 );