File: qnsolve.m

package info (click to toggle)
octave-queueing 1.2.8-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,288 kB
  • sloc: makefile: 56
file content (719 lines) | stat: -rw-r--r-- 23,215 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2022 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"closed"}, @var{N}, @var{QQ}, @var{V})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"closed"}, @var{N}, @var{QQ}, @var{V}, @var{Z})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"open"}, @var{lambda}, @var{QQ}, @var{V})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"mixed"}, @var{lambda}, @var{N}, @var{QQ}, @var{V})
##
## High-level function for analyzing QN models.
##
## @itemize
##
## @item For @strong{closed} networks, the following server types are
## supported: @math{M/M/m}--FCFS, @math{-/G/\infty}, @math{-/G/1}--LCFS-PR,
## @math{-/G/1}--PS and load-dependent variants.
##
## @item For @strong{open} networks, the following server types are supported:
## @math{M/M/m}--FCFS, @math{-/G/\infty} and @math{-/G/1}--PS. General
## load-dependent nodes are @emph{not} supported. Multiclass open networks
## do not support multiple server @math{M/M/m} nodes, but only
## single server @math{M/M/1}--FCFS.
##
## @item For @strong{mixed} networks, the following server types are supported:
## @math{M/M/1}--FCFS, @math{-/G/\infty} and @math{-/G/1}--PS. General
## load-dependent nodes are @emph{not} supported.
##
## @end itemize
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}
## @itemx @var{N}(c)
## Number of requests in the system for closed networks. For
## single-class networks, @var{N} must be a scalar. For multiclass
## networks, @code{@var{N}(c)} is the population size of closed class
## @math{c}.
##
## @item @var{lambda}
## @itemx @var{lambda}(c)
## External arrival rate (scalar) for open networks. For single-class
## networks, @var{lambda} must be a scalar. For multiclass networks,
## @code{@var{lambda}(c)} is the class @math{c} overall arrival rate.
##
## @item @var{QQ}@{i@}
## List of queues in the network. This must be a cell array
## with @math{N} elements, such that @code{@var{QQ}@{i@}} is
## a struct produced by the @code{qnmknode} function.
##
## @item @var{Z}
## External delay ("think time") for closed networks. Default 0.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}(k)
## If @math{k} is a FCFS node, then @code{@var{U}(k)} is the utilization
## of service center @math{k}. If @math{k} is an IS node, then
## @code{@var{U}(k)} is the @emph{traffic intensity} defined as
## @code{@var{X}(k)*@var{S}(k)}.
##
## @item @var{R}(k)
## average response time of service center @math{k}.
##
## @item @var{Q}(k)
## average number of customers in service center @math{k}.
##
## @item @var{X}(k)
## throughput of service center @math{k}.
##
## @end table
##
## Note that for multiclass networks, the computed results are per-class
## utilization, response time, number of customers and throughput:
## @code{@var{U}(c,k)}, @code{@var{R}(c,k)}, @code{@var{Q}(c,k)},
## @code{@var{X}(c,k)}.
##
## String literals are case-insensitive, so @var{"closed"}, @var{"Closed"}
## and @var{"CLoSEd"} are all equivalent.
##
## @end deftypefn

## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/

function [U R Q X] = qnsolve( network_type, varargin )
  if ( nargin < 2 )
    print_usage();
  endif

  ischar(network_type) || ...
      error("First parameter must be a string");

  network_type = tolower(network_type);

  if ( strcmp(network_type, "open" ) )
    [U R Q X] = __qnsolve_open( varargin{:} );
  elseif ( strcmp(network_type, "closed" ) )
    [U R Q X] = __qnsolve_closed( varargin{:} );
  elseif (strcmp(network_type, "mixed" ) )
    [U R Q X] = __qnsolve_mixed( varargin{:} );
  else
    error( "Invalid network type %s: must be one of \"open\", \"closed\" or \"mixed\"", network_type );
  endif
endfunction

##############################################################################
## Dispatcher function for open networks
function [U R Q X] = __qnsolve_open( lambda, varargin )
  if ( isscalar(lambda) )
    [U R Q X] = __qnsolve_open_single( lambda, varargin{:} );
  else
    [U R Q X] = __qnsolve_open_multi( lambda, varargin{:} );
  endif
endfunction

##############################################################################
## Worker function for open, single class networks
function [U R Q X] = __qnsolve_open_single( lambda, QQ, V )

  if ( nargin != 3 )
    print_usage();
  endif

  ( isscalar(lambda) && (lambda>0) ) || ...
      error( "lambda must be a scalar > 0" );

  iscell(QQ) || ...
      error( "QQ must be a cell array" );

  N = length(QQ);

  ( isvector(V) && length(V) == N ) || ...
      error( "V must be a vector of length %d", N );

  V = V(:); # make V a row vector
  all(V>=0) || ...
      error( "V must be >= 0" );

  ## Initialize vectors
  S = zeros(size(V));
  m = ones(size(V));
  for i=1:N
    QQ{i}.c == 1 || ...
	error( "Multiclass networks are not supported by this function" );
    S(i) = QQ{i}.S;
    if __is_li(QQ{i})
      ; # nothing to do
    elseif __is_multi(QQ{i})
      m(i) = QQ{i}.m;
    elseif __is_is(QQ{i})
      m(i) = -1;
    else
      error( "Unsupported type \"%s\" for node %d", QQ{i}.node, i );
    endif
  endfor

  [U R Q X] = qnos( lambda, S, V, m );
  __prettyprint( 0, lambda, QQ, V, U, R, Q, X );
endfunction


##############################################################################
## Worker function for open, multiclass networks
function [U R Q X] = __qnsolve_open_multi( lambda, QQ, V )
  if ( nargin != 3 )
    print_usage();
  endif
  isvector(lambda) && all(lambda > 0) || ...
      error( "lambda must be a vector >0" );
  lambda = lambda(:)'; # make lambda a row vector
  iscell(QQ) || ...
      error( "QQ must be a cell array" );
  C = length(lambda);
  K = length(QQ);
  [C,K] == size(V) || ...
      error( "V size mismatch" );
  all( all( V>= 0 ) ) || ...
      error( "V must be >= 0 " );

  S = zeros(C,K);
  m = ones(1,K);
  for i=1:K
    QQ{i}.c == C || ...
	error( "Wrong number of classes for center %d (is %d, should be %d)", i, QQ{i}.c, C );
    S(:,i) = QQ{i}.S(:);
    if __is_li(QQ{i})
      ; # nothing to do
    elseif __is_is(QQ{i})
      m(i) = -1;
    else
      error( "Unsupported type \"%s\" for node %d", QQ{i}.node, i );
    endif
  endfor

  [U R Q X] = qnom( lambda, S, V, m );
  __prettyprint( 0, lambda, QQ, V, U, R, Q, X );
endfunction


##############################################################################
## Dispatcher function for closed networks
function [U R Q X] = __qnsolve_closed( N, varargin )
  if ( isscalar(N) )
    [U R Q X] = __qnsolve_closed_single( N, varargin{:} );
  else
    [U R Q X] = __qnsolve_closed_multi( N, varargin{:} );
  endif
endfunction


##############################################################################
## Worker function for closed, single-class networks
function [U R Q X] = __qnsolve_closed_single( N, QQ, V, Z )

  if ( nargin < 3 || nargin > 4 )
    error();
  endif

  isscalar(N) || ...
      error( "Multiclass networks are not supported by this function" );

  iscell(QQ) || ...
      error( "QQ must be a cell array" );

  if ( nargin < 4 )
    Z = 0;
  else
    isscalar(Z) && Z >= 0 || ...
        error( "Z must be >= 0" );
  endif

  K = length(QQ);

  ( isvector(V) && length(V) == K ) || ...
      error( "V must be a vector of length %d", K );

  found_ld = false;
  for k=1:K
    if ( __is_ld(QQ{k}) )
      found_ld = true;
      break;
    endif
  endfor

  if ( found_ld )
    S = zeros(K, N);
    for k=1:K
      ( QQ{k}.c == 1 ) || ...
	  error( "Multiclass networks are not supported by this function" );
      if __is_li(QQ{k})
	S(k,:) = QQ{k}.S;
      elseif __is_multi(QQ{k})
	S(k,:) = QQ{k}.S ./ min(1:N,QQ{k}.m);
      elseif __is_is(QQ{k})
	S(k,:) = QQ{k}.S ./ (1:N);
      elseif __is_ld(QQ{k})
	S(k,:) = QQ{k}.S;
      else
	error( "Unsupported type \"%s\" for node %d", QQ{k}.node, k );
      endif
    endfor
    [U R Q X] = qncsmvald(N, S, V, Z);
  else
    S = zeros(1,K);
    m = ones(1,K);
    for k=1:K
      ( QQ{k}.c == 1 ) || ...
	  error( "Multiclass networks are not supported by this function" );
      S(k) = QQ{k}.S;
      if __is_li(QQ{k})
	# nothing to do
      elseif __is_multi(QQ{k})
	m(k) = QQ{k}.m;
      elseif __is_is(QQ{k})
	m(k) = -1;
      else
	error( "Unsupported type \"%s\" for node %d", QQ{k}.node, k );
      endif
    endfor
    [U R Q X] = qncsmva(N, S, V, m, Z);
  endif

  __prettyprint( N, 0, QQ, V, U, R, Q, X );
endfunction

##############################################################################
## Worker function for closed, multi-class networks
function [U R Q X] = __qnsolve_closed_multi( N, QQ, V, Z )

  if ( nargin < 3 || nargin > 4 )
    print_usage();
  endif

  isvector(N) && all( N>0 ) || ...
      error( "N must be >0" );

  iscell(QQ) || ...
      error( "QQ must be a cell array" );

  C = length(N); ## Number of classes
  K = length(QQ); ## Number of service centers
  size(V) == [C,K] || ...
      error( "V size mismatch" );

  if ( nargin < 4 )
    Z = zeros(1,C);
  else
    isvector(Z) && length(Z) == C || ...
	error( "Z size mismatch" );
  endif

  ## Check consistence of parameters
  all( all( V >= 0 ) ) || ...
      error( "V must be >=0" );

  ## Initialize vectors
  i_single = i_multi = i_delay = i_ld = [];
  S = zeros(C,K);
  for i=1:K
    ( QQ{i}.c == C ) || ...
	error( "Service center %d has wrong number of classes (is %d, should be %d)", i, QQ{i}.c, C );

    if __is_li(QQ{i})
      i_single = [i_single i];
      ( !strcmpi( QQ{i}.node, "m/m/m-fcfs" ) || all( QQ{i}.S(1) == QQ{i}.S )) || ...
	  error( "Service times at FIFO node %d are not class-independent", i );
    elseif __is_multi(QQ{i})
      i_multi = [i_multi i];
    elseif __is_is(QQ{i})
      i_delay = [i_delay i];
    elseif __is_ld(QQ{i})
      columns( QQ{i}.S ) == sum(N) || ...
	  error( "Load-dependent center %d has insufficient data (is %d, should be %d", i, columns(QQ{i}.S), sum(N) );
      i_ld = [i_ld i];
    else
      error( "Unknown or unsupported type \"%s\" for node %d", QQ{i}.node, i );
    endif
  endfor

  ## Initialize results
  U = R = zeros( C, K );
  X = zeros( 1, C );
  Q_next = Q = sparse( prod(N+1),K );
  p = cell(1,K);
  for k=i_multi
    ## p{i}(j+1,k+1) is the probability to have j jobs at node i
    ## where the network is in state k
    p{k} = zeros( QQ{k}.m+1,prod(N+1) );
    p{k}(1,__get_idx( N, 0*N )) = 1;
  endfor

  for k=i_ld
    ## p{i}(j+1,k+1) is the probability to have j jobs at node i
    ## where the network is in state k
    p{k} = zeros( columns(QQ{k}.S )+1, prod(N+1) );
    p{k}(1,__get_idx( N, 0*N )) = 1;
  endfor

  ## Main loop
  for n=1:sum(N)
    feasible_set = qncmpopmix( n, N );
    for nn=1:rows(feasible_set)
      n_bar = feasible_set(nn,:);
      for c=1:C
	if ( n_bar(c) > 0 )

	  ## single server nodes
          for k=i_single
            n_bar_c = __minusonec(n_bar,c);
            idx = __get_idx( N, n_bar_c );
            R(c,k) = QQ{k}.S(c)*(1 + Q( idx, k ) );
            ## for FCFS nodes with class-dependent service times,
            ## it is possible to use the following approximation
            ## (p. 469 Bolch et al.)
            ##
            ## R(c,k) = S(c,k) + sum( S(:,k) * Q(idx(:), k) );
	  endfor

	  ## multi server nodes
	  for k=i_multi
            n_bar_c = __minusonec(n_bar,c);
            idx = __get_idx( N, n_bar_c );
            j=0:QQ{k}.m-2; # range
            R(c,k) = QQ{k}.S(c)/QQ{k}.m*(1 + Q( idx, k ) + ...
					 dot(QQ{k}.m-j-1,p{k}(j+1,idx) ) );
	  endfor

	  ## General load-dependent nodes
	  for k=i_ld
            n_bar_c = __minusonec(n_bar,c);
            idx = __get_idx( N, n_bar_c );
            j=1:sum(n_bar); # range
            R(c,k) = sum( j .* QQ{k}.S(c,j) .* p{k}(j,idx)' );
	  endfor
	endif

	## delay centers
	for k=i_delay
          R(c,k) = QQ{k}.S(c);
        endfor

      endfor # c
      X = n_bar ./ ( Z + dot(R,V,2)' ); # X(c) = N(c) / ( Z(c) + sum_k R(c,k) * V(c,k) )

      idx = __get_idx( N, n_bar );
      ## Q_k = sum_c X(c) * R(c,k)
      for k=1:K
        Q_next( idx, k ) = dot( X, R(:,k) .* V(:,k) );
      endfor

      ## Adjust probabilities for multiple server nodes
      for k=i_multi
        s=0; # it is actually a vector
        j=1:QQ{k}.m-1;
        for r=find(n_bar>0) # I don't know how to vectorize this
          ii = __minusonec(n_bar,r);
          s+=QQ{k}.S(r)*V(r,k)*X(r)*p{k}(j,__get_idx(N,ii));
        endfor
        p{k}(j+1,idx) = s./j;
        p{k}(1,idx) = 1-1/QQ{k}.m*(sum( QQ{k}.S(:) .* V(:,k) .* X(:) ) + ...
                                   dot( QQ{k}.m-j, p{k}(j+1,idx) ) );
      endfor

      ## Adjust probabilities for general load-dependent server nodes
      for k=i_ld
        s=0; # it is actually a vector
        j=1:sum(n_bar);
        for r=find(n_bar>0)
          ii = __minusonec(n_bar,r);
          s+=QQ{k}.S(r,sum(n_bar))*V(r,k)*X(r)*p{k}(j,__get_idx(N,ii));
        endfor
        p{k}(j+1,idx) = s;
        p{k}(1,idx) = 1-sum(p{k}(1+j,idx));
      endfor
    endfor
    Q = Q_next;
    Q_next = sparse( prod(N+1), K );
  endfor
  for k=1:K
    if __is_ld(QQ{k})
      U(:,k) = 1-p{k}(1, __get_idx(N,N));
    else
      U(:,k) = X(:) .* QQ{k}.S(:) .* V(:,k); # U(c,k) = X(c)*D(c,k)
    endif
  endfor
  Q = (diag(X)*R).*V; # dmult(X,R).*V;
  X = diag(X)*V; # dmult(X,V);
endfunction

##############################################################################
## Compute the linear index corresponding to vector i from a population
## of N.
function idx = __get_idx( N, i )
  i_cell = num2cell( i+1 );
  idx = sub2ind( N+1, i_cell{:} );
endfunction

##############################################################################
## Given an input vector n, returns an output vector r which is equal to
## n except that the element at the c-th position is decreased by one:
## r(c) = n(c)-1. Warning: no check is made on the parameters
function r = __minusonec( n, c )
  r = n; r(c) -= 1;
endfunction


##############################################################################
## Worker function for mixed networks. This function delegates to qnmix
function [U R Q X] = __qnsolve_mixed( lambda, N, QQ, V )
  if ( nargin != 4 )
    print_usage();
  endif
  ( isvector(lambda) && isvector(N) && size_equal(lambda,N) ) || ...
      error( "lambda and N must be vectors of the same size" );
  ( iscell(QQ) && length(QQ) == length(lambda) ) || ...
      error( "QQ size mismatch (is %d, should be %d)", length(QQ), length(lambda) );

  C = length(lambda); # number of classes
  K = length(QQ); # number of service centers
  S = zeros(C,K);
  m = ones(1,K);
  ## fill S matrix
  for k=1:K
    if __is_ld(QQ{k})
      error( "General load-dependent service center %d is not supported", k );
    elseif __is_is(QQ{k})
      m(k) = -1;
    else
      m(k) = QQ{k}.m;
    endif
    S(:,k) = QQ{k}.S;
  endfor
  [U R Q X] = qnmix( lambda, N, S, V, m );
  __prettyprint( N, lambda, QQ, V, U, R, Q, X );
endfunction

##############################################################################
## return true iff Q is an infinite server (IS) node
function result = __is_is( Q )
  result = strcmp(Q.node, "-/g/inf" );
endfunction

##############################################################################
## return true iff Q is a multi-server FIFO node
function result = __is_multi( Q )
  result =  (strcmp(Q.node, "m/m/m-fcfs") && Q.m>1);
endfunction

##############################################################################
## return true iff Q is a single-server, load-dependent node
function result = __is_ld( Q )
  result = ( (strcmp(Q.node, "m/m/m-fcfs") || ...
	      strcmp(Q.node, "-/g/1-lcfs-pr") || ...
	      strcmp(Q.node, "-/g/1-ps" ) ) && ...
	    columns( Q.S ) > 1 );
endfunction

##############################################################################
## return ture iff Q is a single-server, load-independent node
function result = __is_li( Q )
  result = ((Q.m==1) && (1 == columns( Q.S )) && !strcmp( Q.node, "-/g/inf" ) );
endfunction

##############################################################################
## This function is used to "pretty-print" a solved network. Used for
## debugging
function __prettyprint( N, lambda, QQ, V, U, R, Q, X )
  return; ## immediately return
  [errorcode, N, lambda] = common_size( N, lambda );
  if ( errorcode)
    error( "N and lambda are of incompatible size" );
  endif
  ( isvector(N) && isvector(lambda) && size_equal(lambda,N) ) || ...
      error( "N and lambda must be vector of the same length" );
  C = length(N);
  K = length(QQ); # number of service centers

  [C,K] == size(V) || ...
      error( "V size mismatch" );
  [C,K] == size(U) || ...
      error( "U size mismatch" );
  [C,K] == size(R) || ...
      error( "R size mismatch" );
  [C,K] == size(Q) || ...
      error( "Q size mismatch" );
  [C,K] == size(X) || ...
      error( "X size mismatch" );

  for c=1:C
    printf("\n");
    printf("=== CLASS %d ===\n", c );
    if ( N(c)>0 )
      printf("Type: CLOSED\nPopulation: %d\n", N(c))
    else
      printf("Type: OPEN\nRequests arrival rate: %6.2f\n", lambda(c))
    endif
    printf("\n");
    printf("+---+---------------+---+------+------+------+------+------+------+\n");
    printf("| i |     Node type | m | S(i) | V(i) | U(i) | R(i) | Q(i) | X(i) |\n");
    printf("+---+---------------+---+------+------+------+------+------+------+\n");
    for i=1:K
      if ( isscalar(QQ{i}.S(c)) )
	serv = sprintf("%6.2f",QQ{i}.S(c));
      else
	serv = "LD";
      endif
      printf("|%3d|%-33s|      |      |      |      |\n", i, QQ{i}.comment);
      printf("|   |%15s|%3d|%6s|%6.2f|%6.4f|%6.2f|%6.2f|%6.2f|\n",
	     QQ{i}.node, QQ{i}.m, serv, V(c,i), U(c,i), R(c,i), Q(c,i), X(c,i) );

    endfor
    printf("+---+---------------+---+------+------+------+------+------+------+\n");
    printf("|               THIS CLASS STATISTICS | ---- |%6.2f|%6.2f|%6.2f|\n",
	   dot(R(c,:),V(c,:)), sum(Q(c,:)), X(c,1)/V(c,1) );
    printf("+---+---------------+---+------+------+------+------+------+------+\n\n");
  endfor
endfunction

%!test
%! # Example 8.7 p. 349 Bolch et al.
%! N = 3;
%! Q1 = qnmknode( "m/m/m-fcfs", .5, 2 );
%! Q2 = qnmknode( "m/m/m-fcfs", 1/1.667 );
%! Q3 = qnmknode( "m/m/m-fcfs", 1/1.25 );
%! Q4 = qnmknode( "m/m/m-fcfs", 1./[1 2 3] );
%! V = [ 1 .5 .5 1 ];
%! [U R Q X] = qnsolve("closed",N, { Q1, Q2, Q3, Q4 }, V);
%! assert( Q, [0.624 0.473 0.686 1.217], 1e-3 );
%! assert( R, [0.512 0.776 1.127 1], 1e-3 );

%!test
%! # Example 8.7 p. 349 Bolch et al.
%! N = 3;
%! Q1 = qnmknode( "m/m/m-fcfs", 1/2, 2 );
%! Q2 = qnmknode( "m/m/m-fcfs", 1/1.667 );
%! Q3 = qnmknode( "m/m/m-fcfs", 1/1.25 );
%! Q4 = qnmknode( "-/g/inf", 1 );
%! V = [ 1 .5 .5 1 ];
%! [U R Q X] = qnsolve("closed",N, { Q1, Q2, Q3, Q4 }, V);
%! assert( Q, [0.624 0.473 0.686 1.217], 1e-3 );
%! assert( R, [0.512 0.776 1.127 1], 1e-3 );

%!test
%! # Example 8.4 p. 333 Bolch et al.
%! N = 3;
%! Q1 = qnmknode( "m/m/m-fcfs", .5, 2 );
%! Q2 = qnmknode( "m/m/m-fcfs", .6 );
%! Q3 = qnmknode( "m/m/m-fcfs", .8 );
%! Q4 = qnmknode( "-/g/inf", 1 );
%! V = [ 1 .5 .5 1 ];
%! [U R Q X] = qnsolve("closed",N, { Q1, Q2, Q3, Q4 }, V);
%! assert( U(1:3), [.304 .365 .487], 1e-3 );
%! assert( X, [1.218 0.609 0.609 1.218], 1e-3 );

%!test
%! # Same as above, with center 1 replaced with a load-dependent service center
%! N = 3;
%! Q1 = qnmknode( "m/m/m-fcfs", [.5 .25 .25] );
%! Q2 = qnmknode( "m/m/m-fcfs", .6 );
%! Q3 = qnmknode( "m/m/m-fcfs", .8 );
%! Q4 = qnmknode( "m/m/m-fcfs", [1 1/2 1/3] );
%! V = [ 1 .5 .5 1 ];
%! [U R Q X] = qnsolve("closed",N, { Q1, Q2, Q3, Q4 }, V);
%! assert( U(2:3), [.365 .487], 1e-3 ); ## NOTE: Utilization U(1) is computed differently from M/M/m nodes and load-dependent M/M/1 nodes
%! assert( X, [1.218 0.609 0.609 1.218], 1e-3 );

%!test
%! # Example 7.4 p. 287 Bolch et al.
%! QQ = { qnmknode( "m/m/m-fcfs", 0.04 ), ...
%!        qnmknode( "m/m/m-fcfs", 0.03 ), ...
%!        qnmknode( "m/m/m-fcfs", 0.06 ), ...
%!        qnmknode( "m/m/m-fcfs", 0.05 ) };
%! P = [ 0 0.5 0.5 0; 1 0 0 0; 0.6 0 0 0; 1 0 0 0 ];
%! lambda = [0 0 0 4];
%! [U R Q X] = qnsolve("open", sum(lambda), QQ, qnosvisits(P,lambda) );
%! assert( X, [20 10 10 4], 1e-4 );
%! assert( U, [0.8 0.3 0.6 0.2], 1e-2 );
%! assert( R, [0.2 0.043 0.15 0.0625], 1e-3 );
%! assert( Q, [4, 0.429 1.5 0.25], 1e-3 );

%!test
%! V = [1 1; 1 1];
%! Q1 = qnmknode( "m/m/m-fcfs", [1;2] );
%! Q2 = qnmknode( "m/m/m-fcfs", [3;4] );
%! lambda = [3/19 2/19];
%! [U R Q] = qnsolve("open", lambda, { Q1, Q2 }, diag( lambda / sum(lambda) ) * V);
%! assert( U(1,1), 3/19, 1e-6 );
%! assert( U(2,1), 4/19, 1e-6 );
%! assert( R(1,1), 19/12, 1e-6 );
%! assert( R(1,2), 57/2, 1e-6 );
%! assert( Q(1,1), .25, 1e-6 );

## Example 9.5 p. 337, Bolch et al.
%!test
%! QQ = { qnmknode( "m/m/m-fcfs", [0.2; 0.2], 2 ), ...
%!        qnmknode( "-/g/1-ps", [0.4; 0.6] ), ...
%!        qnmknode( "-/g/inf", [1; 2] ) };
%! V = [ 1 0.6 0.4; 1 0.3 0.7 ];
%! N = [ 2 1 ];
%! [U R Q X] = qnsolve( "closed", N, QQ, V );
%! assert( Q, [ 0.428 0.726 0.845; 0.108 0.158 0.734 ], 1e-3 );
%! assert( X(1,1), 2.113, 1e-3 ); # CHECK
%! assert( X(2,1), 0.524, 1e-3 ); # CHECK
%! assert( all( all(U(:,[1,2])<=1) ) );

## Same as above, but with general load-dependent centers
%!test
%! QQ = { qnmknode( "m/m/m-fcfs", [0.2 0.1 0.1; 0.2 0.1 0.1] ), ...
%!        qnmknode( "-/g/1-ps", [0.4; 0.6] ), ...
%!        qnmknode( "-/g/inf", [1; 2] ) };
%! V = [ 1 0.6 0.4; 1 0.3 0.7 ];
%! N = [ 2 1 ];
%! [U R Q X] = qnsolve( "closed", N, QQ, V );
%! assert( Q, [ 0.428 0.726 0.845; 0.108 0.158 0.734 ], 1e-3 );
%! assert( X(1,1), 2.113, 1e-3 ); # CHECK
%! assert( X(2,1), 0.524, 1e-3 ); # CHECK
%! assert( all( all(U(:,[1,2])<=1) ) );

%!test
%! # example p. 26 Schwetman
%! QQ = { qnmknode( "m/m/m-fcfs", [.25; .25] ),
%!        qnmknode( "-/g/1-ps", [0; .1] ) };
%! V = [1 0; 1 1];
%! lambda = [1 0];
%! N = [0 3];
%! [U R Q X] = qnsolve( "mixed", lambda, N, QQ, V );
%! assert( U(1,1), .25, 1e-3 );
%! assert( X(1,1), 1.0, 1e-3 );
%! assert( [R(1,1) R(2,1) R(2,2)], [1.201 0.885 0.135], 1e-3 );

%!demo
%! QQ = { qnmknode( "m/m/m-fcfs", [0.2 0.1 0.1; 0.2 0.1 0.1] ), ...
%!        qnmknode( "-/g/1-ps", [0.4; 0.6] ), ...
%!        qnmknode( "-/g/inf", [1; 2] ) };
%! V = [ 1 0.6 0.4; ...
%!       1 0.3 0.7 ];
%! N = [ 2 1 ];
%! [U R Q X] = qnsolve( "closed", N, QQ, V );