1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
% STK_HALFPINTL computes an intersection of lower half-planes
%
% CALL: [A, B, Z] = stk_halfpintl (A, B)
%
% computes the intersection of the lower half-planes defined by the vector
% of slopes A and the vector of intercepts B. The output vectors A and B
% contain the slopes and intercept of the lines that actually contribute to
% the boundary of the intersection, sorted in such a way that the k^th
% element corresponds to the k^th piece of the piecewise affine boundary.
% The output Z contains the intersection points (shorter by one element).
%
% ALGORITHM
%
% The algorithm implemented in this function is described in [1, 2].
%
% REFERENCE
%
% [1] P. I. Frazier, W. B. Powell, and S. Dayanik. The Knowledge-Gradient
% Policy for Correlated Normal Beliefs. INFORMS Journal on Computing
% 21(4):599-613, 2009.
%
% [2] W. Scott, P. I. Frazier and W. B. Powell. The correlated knowledge
% gradient for simulation optimization of continuous parameters using
% Gaussian process regression. SIAM J. Optim, 21(3):996-1026, 2011.
% Copyright Notice
%
% Copyright (C) 2017 CentraleSupelec
%
% Author: Julien Bect <julien.bect@centralesupelec.fr>
% Copying Permission Statement
%
% This file is part of
%
% STK: a Small (Matlab/Octave) Toolbox for Kriging
% (http://sourceforge.net/projects/kriging)
%
% STK is free software: you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free
% Software Foundation, either version 3 of the License, or (at your
% option) any later version.
%
% STK is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
% License for more details.
%
% You should have received a copy of the GNU General Public License
% along with STK. If not, see <http://www.gnu.org/licenses/>.
function [a, b, z] = stk_halfpintl (a, b)
% a: slopes
% b: intercepts
m = length (a);
assert (isequal (size (a), [m 1]));
assert (isequal (size (b), [m 1]));
if m == 1
z = [];
return
end
% 1) Sort by decreasing slopes (and increasing intercept in case of equality)
tmp = [a b];
tmp = sortrows (tmp, [-1 2]);
a_in = tmp(:, 1);
b_in = tmp(:, 2);
% 2) Prepare output lists
a_out = nan (m, 1); % *at most* m lines in the output list
b_out = nan (m, 1);
z_out = nan (m - 1, 1); % the maximal number of intersections in m - 1, then
a_out(1) = a_in(1);
b_out(1) = b_in(1);
k_in = 2; % index of the next input element to be analyzed
k_out = 1; % index of the last element stored in the output list
% 3) Process input list
while k_in <= m
if a_in(k_in) == a_out(k_out) % equality of slopes
k_in = k_in + 1;
else % inequality: a_in(k_in) < a_out(k_out)
% Compute intersection
z = (b_in(k_in) - b_out(k_out)) / (a_out(k_out) - a_in(k_in));
if (k_out == 1) || (z > z_out(k_out-1))
% Insert the new element at the end of the output list
z_out(k_out) = z;
k_out = k_out + 1;
a_out(k_out) = a_in(k_in);
b_out(k_out) = b_in(k_in);
k_in = k_in + 1;
else
% Remove the last element of the output list
k_out = k_out - 1;
end
end % if
end % while
a = a_out(1:k_out);
b = b_out(1:k_out);
z = z_out(1:(k_out - 1));
end % function
%!test % case #1
%! a = 1;
%! b = 1;
%! [a_out, b_out, z_out] = stk_halfpintl (a, b);
%! assert (a_out == 1)
%! assert (b_out == 1)
%! assert (isempty (z_out))
%!test % case #2: two lines, slopes not equal, already sorted
%! a = [1; -1];
%! b = [0; 2];
%! [a_out, b_out, z_out] = stk_halfpintl (a, b);
%! assert (isequal (a_out, [1; -1]))
%! assert (isequal (b_out, [0; 2]))
%! assert (z_out == 1)
%!test % case #3: same as #2, but not sorted
%! a = [-1; 1];
%! b = [ 2; 0];
%! [a_out, b_out, z_out] = stk_halfpintl (a, b);
%! assert (isequal (a_out, [1; -1]))
%! assert (isequal (b_out, [0; 2]))
%! assert (z_out == 1)
%!test % case #4: two lines, equal slopes, already sorted
%! a = [0; 0];
%! b = [1; 2];
%! [a_out, b_out, z_out] = stk_halfpintl (a, b);
%! assert (a_out == 0)
%! assert (b_out == 1)
%! assert (isempty (z_out))
%!test % case #5: same as #4, but not sorted
%! a = [0; 0];
%! b = [2; 1];
%! [a_out, b_out, z_out] = stk_halfpintl (a, b);
%! assert (a_out == 0)
%! assert (b_out == 1)
%! assert (isempty (z_out))
%!test % case #6: add a dominated line to #2 (the result does not change)
%! a = [1; -1; 0];
%! b = [0; 2; 1];
%! [a_out, b_out, z_out] = stk_halfpintl (a, b);
%! assert (isequal (a_out, [1; -1]))
%! assert (isequal (b_out, [0; 2]))
%! assert (z_out == 1)
%!test % case #7: permutation of #6
%! a = [1; 0; -1];
%! b = [0; 1; 2];
%! [a_out, b_out, z_out] = stk_halfpintl (a, b);
%! assert (isequal (a_out, [1; -1]))
%! assert (isequal (b_out, [0; 2]))
%! assert (z_out == 1)
%!test % case #8: another permutation of #6
%! a = [0; 1; -1];
%! b = [1; 0; 2];
%! [a_out, b_out, z_out] = stk_halfpintl (a, b);
%! assert (isequal (a_out, [1; -1]))
%! assert (isequal (b_out, [0; 2]))
%! assert (z_out == 1)
%!test % case #9: same as #8, with some duplicated lines added
%! a = [0; 1; 0; -1; 0; -1; 1];
%! b = [1; 0; 1; 2; 1; 2; 0];
%! [a_out, b_out, z_out] = stk_halfpintl (a, b);
%! assert (isequal (a_out, [1; -1]))
%! assert (isequal (b_out, [0; 2]))
%! assert (z_out == 1)
|