1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
% STK_SAMPLING_MAXIMINLHS generates a "maximin" LHS design
%
% CALL: X = stk_sampling_maximinlhs (N, DIM)
%
% generates a "maximin" Latin Hypercube Sample of size N in the
% DIM-dimensional hypercube [0; 1]^DIM. More precisely, NITER = 1000
% independent random LHS are generated, and the one with the biggest
% separation distance is returned.
%
% CALL: X = stk_sampling_maximinlhs (N, DIM, BOX)
%
% does the same thing in the DIM-dimensional hyperrectangle specified by the
% argument BOX, which is a 2 x DIM matrix where BOX(1, j) and BOX(2, j) are
% the lower- and upper-bound of the interval on the j^th coordinate.
%
% CALL: X = stk_sampling_maximinlhs (N, DIM, BOX, NITER)
%
% allows to change the number of independent random LHS that are used.
%
% See also: stk_mindist, stk_sampling_randomlhs
% Copyright Notice
%
% Copyright (C) 2017 CentraleSupelec
% Copyright (C) 2011-2014 SUPELEC
%
% Authors: Julien Bect <julien.bect@centralesupelec.fr>
% Emmanuel Vazquez <emmanuel.vazquez@centralesupelec.fr>
% Copying Permission Statement
%
% This file is part of
%
% STK: a Small (Matlab/Octave) Toolbox for Kriging
% (http://sourceforge.net/projects/kriging)
%
% STK is free software: you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free
% Software Foundation, either version 3 of the License, or (at your
% option) any later version.
%
% STK is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
% License for more details.
%
% You should have received a copy of the GNU General Public License
% along with STK. If not, see <http://www.gnu.org/licenses/>.
function x = stk_sampling_maximinlhs (n, d, box, niter)
if nargin > 4,
stk_error ('Too many input arguments.', 'TooManyInputArgs');
end
% Read argument dim
if (nargin < 2) || ((nargin < 3) && (isempty (d)))
d = 1; % Default dimension
elseif (nargin > 2) && (~ isempty (box))
d = size (box, 2);
end
% Read argument 'box'
if (nargin < 3) || isempty (box)
box = stk_hrect (d); % build a default box
else
box = stk_hrect (box); % convert input argument to a proper box
end
if nargin < 4,
niter = 1000;
end
if n == 0, % no input => no output
xdata = zeros (0, d);
else % at least one input point
xx = lhsdesign_ (n, d, niter);
xdata = stk_rescale (xx, [], box);
end
x = stk_dataframe (xdata, box.colnames);
end % function
%%%%%%%%%%%%%%%%%%
%%% lhsdesign_ %%%
%%%%%%%%%%%%%%%%%%
function x = lhsdesign_ (n, d, niter)
x = generatedesign_ (n, d);
if niter > 1,
bestscore = stk_mindist (x);
for j = 2:niter
y = generatedesign_ (n, d);
score = stk_mindist (y);
if score > bestscore
x = y;
bestscore = score;
end
end
end
end % function
%%%%%%%%%%%%%%%%%%%%%%%
%%% generatedesign_ %%%
%%%%%%%%%%%%%%%%%%%%%%%
function x = generatedesign_ (n, d)
x = zeros (n, d);
for i = 1:d % for each dimension, draw a random permutation
[ignd, x(:,i)] = sort (rand (n,1)); %#ok<ASGLU> CG#07
end
x = (x - rand (size (x))) / n;
end % function
%%
% Check error for incorrect number of input arguments
%!shared x, n, dim, box, niter
%! n = 20; dim = 2; box = [0, 0; 1, 1]; niter = 1;
%!error x = stk_sampling_maximinlhs ();
%!test x = stk_sampling_maximinlhs (n);
%!test x = stk_sampling_maximinlhs (n, dim);
%!test x = stk_sampling_maximinlhs (n, dim, box);
%!test x = stk_sampling_maximinlhs (n, dim, box, niter);
%!error x = stk_sampling_maximinlhs (n, dim, box, niter, pi);
%%
% Check that the output is a dataframe
% (all stk_sampling_* functions should behave similarly in this respect)
%!assert (isa (x, 'stk_dataframe'));
%%
% Check that column names are properly set, if available in box
%!assert (isequal (x.colnames, {}));
%!test
%! cn = {'W', 'H'}; box = stk_hrect (box, cn);
%! x = stk_sampling_maximinlhs (n, dim, box);
%! assert (isequal (x.colnames, cn));
%%
% Check output argument
%!test
%! for dim = 1:5,
%! x = stk_sampling_randomlhs (n, dim);
%! assert (isequal (size (x), [n dim]));
%! u = double (x); u = u(:);
%! assert (~ any (isnan (u) | isinf (u)));
%! assert ((min (u) >= 0) && (max (u) <= 1));
%! assert (stk_is_lhs (x, n, dim));
%! end
|