1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
% STK_SAMPLING_NESTEDLHS builds a Nested Latin Hypercube Sampling (NLHS)
%
% CALL: X = stk_sampling_nestedlhs (N, DIM)
%
% builds a NLHS, with length(N) levels, N(k) points at the k-th level,
% and a dimension DIM. X has sum(N) rows and (DIM + 1) columns, the last
% column begin the levels.
% A design is nested when all points observed at the (k+1)-th level are
% also observed at the k-th level.
% A nested design is a Latin Hypercube Sampling (LHS), if every
% sub-design corresponding to a specified level is a LHS.
% Remark: N(k) must divide N(k + 1).
%
% CALL: X = stk_sampling_nestedlhs (N, DIM, BOX)
%
% does the same thing in the DIM-dimensional hyperrectangle specified by the
% argument BOX, which is a 2 x DIM matrix where BOX(1, j) and BOX(2, j) are
% the lower- and upper-bound of the interval on the j^th coordinate.
% Default value for BOX: [0; 1]^DIM.
% If BOX is provided, DIM = size(BOX, 2).
% Warning: size(X, 2) == (DIM + 1)
%
% CALL: X = stk_sampling_nestedlhs (N, DIM, BOX, NITER)
%
% allows to change the number of independent random LHS that are used at
% each level to complete the design.
% Default value for NITER: 1000.
% Put NITER to 1 to generate a random NLHS.
%
% CALL: X = stk_sampling_nestedlhs (N, DIM, BOX, NITER, LEVELS)
%
% does the same thing, but the levels are indexed by the vector LEVELS.
% The length of LEVELS must be greater or equal than the length of N.
% Default value for LEVELS: 1:length(N).
%
% EXAMPLE
%
% n = [48, 12, 6, 2]; dim = 2;
% bnd = stk_hrect([-5, 1; 7, 2]);
% levels = [100; 50; 33; 25; 20;];
% x = stk_sampling_nestedlhs(n, dim, bnd, [], levels);
%
% REFERENCE
%
% [1] Peter Z. G. Qian, "Nested latin hypercube designs", Biometrika,
% 96(4):957-970, 2009.
%
% See also: stk_sampling_nesteddesign, stk_sampling_randomlhs
% Copyright Notice
%
% Copyright (C) 2017 LNE
% Copyright (C) 2017 CentraleSupelec
%
% Authors: Remi Stroh <remi.stroh@lne.fr>
% Copying Permission Statement
%
% This file is part of
%
% STK: a Small (Matlab/Octave) Toolbox for Kriging
% (http://sourceforge.net/projects/kriging)
%
% STK is free software: you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free
% Software Foundation, either version 3 of the License, or (at your
% option) any later version.
%
% STK is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
% License for more details.
%
% You should have received a copy of the GNU General Public License
% along with STK. If not, see <http://www.gnu.org/licenses/>.
function nested_LHS = stk_sampling_nestedlhs(n, dim, box, niter, levels)
if nargin > 5,
stk_error ('Too many input arguments.', 'TooManyInputArgs');
end
if nargin < 1,
stk_error ('Not enough input arguments.', 'NotEnoughInputArgs');
end
%% Read input arguments
% number of points
n = n(:); % assert vector
if any(n <= 0)
stk_error('Number of points at each level must be strictly positive.',...
'InvalidArgument');
end
nLev = length(n);
% Read argument dim
if (nargin > 2) && (~ isempty (box))
dim = size (box, 2);
elseif (nargin < 2) || (isempty (dim))
dim = 1; % Default dimension
end
% Read argument box
if (nargin < 3) || isempty (box)
box = stk_hrect (dim);
else
% Check that box is a box
if ~ isa (box, 'stk_hrect')
box = stk_hrect (box);
end
end
% niter, number of interation
if (nargin < 4) || isempty(niter)
niter = 1000;
end
% Read argument levels
level_name = 'Level'; % Column name of the column level
if (nargin < 5) || isempty (levels)
levels = (1:nLev)';
else
% Find the colnames of the levels
if isa(levels, 'stk_dataframe')
% If isa data frame with a non-empty colname, return the first
% non-empty colnames
empty_colnames = ~cellfun(@isempty, levels.colnames);
if any(empty_colnames)
level_name = levels.colnames{find(empty_colnames, 1)};
end
end
% Assert vector
levels = double(levels(:));
% Assert unique values of levels
if ~isequal(unique(levels), sort(levels))
stk_error('Levels are not unique.', 'InvalidArgument')
end
% Check number of proposed levels
if length(levels) < nLev
stk_error('You do not have enough levels, or the array ''n'' is too long.',...
'InvalidArgument');
end
levels = levels(1:nLev);
end
%% Quotient between each level
quotient = floor(n(1:(nLev - 1))./n(2:nLev));
remainder = n(1:(nLev - 1)) - quotient.*n(2:nLev);
if any( remainder ~= 0 )
%assert n(2)|n(1); n(3)|n(2); n(4)|n(3); etc, ...
stk_error(['This method supposes that the number of points',...
' at level t + 1 divides the number of points at level t.'],...
'InvalidArgument');
end
%% Build the nested design
% Nested Latin hypercube designs
% BY PETER Z. G. QIAN, 2009
best_LHS = NaN(n(1), dim);
X_prev = NaN(0, dim); % at the beginning there is not any point
n = [n; 0]; % no point are asked at the level nLev + 1
quotient = [1; quotient]; % no multiplication at the first level
% Two functions to find points of a level
row_highLevels = @(M, k, numb)(numb(M) - ( (numb(k) - 1):-1:0));
row_currentLevel = @(M, k, numb)(numb(M) - ( (numb(k) - 1):-1:numb(k + 1)) );
for k_lev = nLev:-1:1; %begin by the end
list_nb = (1:n(k_lev))'; % list of all values we must get after this loop
n_new_k = n(k_lev) - n(k_lev + 1); % number of new value to add
list_nb_new_k = NaN(n_new_k, dim);
for id = 1:dim
list_nb_new_k(:, id) = list_nb(~ismember(list_nb, X_prev(:, id)), 1);
% Find every element in the complete list of number, which are not
% chosen in the previous level
end
best_score = -Inf;
for k_try = 1:niter
X_new_kl = NaN(n_new_k, dim); %the matrix to add
[ignd, random_index] = sort(rand(n_new_k, dim), 1); %#ok<ASGLU> CG#07
for i = 1:dim
X_new_kl(:, i) = list_nb_new_k(random_index(:, i), i);
end
LHS_cand_kl = NaN(n(k_lev), dim);
LHS_cand_kl(row_highLevels(k_lev, k_lev + 1, n), :) = X_prev;
LHS_cand_kl(row_currentLevel(k_lev, k_lev, n) , :) = X_new_kl;
% add new results (only observed at this level, and not any higher)
% to previous results (corresponding to point observed at higher levels,
% and so, at this level too)
% Random moves
LHS_cand_kl = LHS_cand_kl - rand(n(k_lev), dim);
% Extend on a larger space for next loop
LHS_cand_kl = ceil(quotient(k_lev)*LHS_cand_kl);
if n(k_lev) > 1 && niter > 1
score = stk_mindist(LHS_cand_kl);
else % particular case where n(kl) == 1 (no distance)
score = 0;
end
if score > best_score
% Save the best design in the lhs.
best_score = score;
best_LHS = LHS_cand_kl;
end
end % end k_try
% For the next loop, get the points of the previous levels
X_prev = best_LHS;
end
% Remove the 0 from the end
n = n(1:nLev);
% Random move + scaling in [0; 1]
best_LHS = (best_LHS - rand(n(1), dim))/n(1);
% Rescale in box
best_LHS = stk_rescale(best_LHS, [], box);
%% Create a nested design
nested_LHS = NaN(sum(n), dim + 1);
% The total number of points in the LHS design
nCumNb = [0; cumsum(n)];
% Add points + the corresponding level
for knL = 1:nLev
nested_LHS((nCumNb(knL) + 1):(nCumNb(knL + 1)), :) = [
best_LHS(row_highLevels(1, knL, n), :), repmat(levels(knL), n(knL), 1)];
end
% Add columns names
colnames = cell(1, dim + 1);
if ~isempty(box.colnames)
colnames(1, 1:dim) = box.colnames;
end
colnames{1, dim + 1} = level_name;
% Return a nested LHS
nested_LHS = stk_dataframe(nested_LHS, colnames);
end
% Check error for incorrect number of input arguments
%!shared x, n, dim, box, niter, levels
%! n = [48; 12; 4; 2]; dim = 2; box = [0, 0; 4, 4]; niter = 10;
%! levels = [10.1; 15.2; -9.3; 2.4; 17.5];
%!error x = stk_sampling_nestedlhs ();
%!test x = stk_sampling_nestedlhs (n);
%!test x = stk_sampling_nestedlhs (n, dim);
%!test x = stk_sampling_nestedlhs (n, dim, box);
%!test x = stk_sampling_nestedlhs (n, dim, box, niter);
%!test x = stk_sampling_nestedlhs (n, dim, box, niter, levels);
%!error x = stk_sampling_nestedlhs (n, dim, box, niter, levels, pi);
% Check type of ouputs => assert is Nested LHS
%!assert ( isequal(size(x), [sum(n), dim + 1]) );
%!assert ( isa(x, 'stk_dataframe') );
%! cn = [0; cumsum(n)];
%! for lev = 1:length(n),
%! y = x( (cn(lev) + 1):(cn(lev + 1)), 1:dim );
%! assert (isequal (size (y), [n(lev) dim]));
%! assert (stk_is_lhs (y, n(lev), dim, box));
%! if lev > 1
%! assert ( isequal(z((end - n(lev) + 1):end, :), y) );
%! end
%! z = y;
%! end
% Check column names
%!assert (isequal (x.colnames{dim + 1}, 'Level'));
%! levels = stk_dataframe(levels, {'t'});
%! box = stk_hrect(box, {'x1', 'x2', 'x3', 'x4'});
%!test x = stk_sampling_nestedlhs (n, [], box, [], levels);
%!assert (isequal(x.colnames, {'x1', 'x2', 'x3', 'x4', 't'}) );
|