1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <https://www.gnu.org/licenses/>.
@node Arithmetic
@chapter Arithmetic
Unless otherwise noted, all of the functions described in this chapter
will work for real and complex scalar, vector, or matrix arguments. Functions
described as @dfn{mapping functions} apply the given operation individually to
each element when given a matrix argument. For example:
@example
@group
sin ([1, 2; 3, 4])
@result{} 0.84147 0.90930
0.14112 -0.75680
@end group
@end example
@menu
* Exponents and Logarithms::
* Complex Arithmetic::
* Trigonometry::
* Sums and Products::
* Utility Functions::
* Special Functions::
* Rational Approximations::
* Coordinate Transformations::
* Mathematical Constants::
@end menu
@node Exponents and Logarithms
@section Exponents and Logarithms
@DOCSTRING(exp)
@DOCSTRING(expm1)
@DOCSTRING(log)
@DOCSTRING(reallog)
@DOCSTRING(log1p)
@DOCSTRING(log10)
@DOCSTRING(log2)
@DOCSTRING(pow2)
@DOCSTRING(nextpow2)
@DOCSTRING(realpow)
@DOCSTRING(sqrt)
@DOCSTRING(realsqrt)
@DOCSTRING(cbrt)
@DOCSTRING(nthroot)
@node Complex Arithmetic
@section Complex Arithmetic
In the descriptions of the following functions,
@tex
$z$ is the complex number $x + iy$, where $i$ is defined as
$\sqrt{-1}$.
@end tex
@ifnottex
@var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is
defined as @code{sqrt (-1)}.
@end ifnottex
@DOCSTRING(abs)
@DOCSTRING(arg)
@DOCSTRING(conj)
@DOCSTRING(cplxpair)
@DOCSTRING(imag)
@DOCSTRING(real)
@node Trigonometry
@section Trigonometry
Octave provides the following trigonometric functions where angles are
specified in radians. To convert from degrees to radians multiply by
@tex
$\pi/180$
@end tex
@ifnottex
@code{pi/180}
@end ifnottex
or use the @code{deg2rad} function. For example, @code{sin (30 * pi/180)}
returns the sine of 30 degrees. As an alternative, Octave provides a number of
trigonometric functions which work directly on an argument specified in
degrees. These functions are named after the base trigonometric function with
a @samp{d} suffix. As an example, @code{sin} expects an angle in radians while
@code{sind} expects an angle in degrees.
Octave uses the C library trigonometric functions. It is expected that these
functions are defined by the ISO/IEC 9899 Standard. This Standard is available
at: @url{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf}.
Section F.9.1 deals with the trigonometric functions. The behavior of most of
the functions is relatively straightforward. However, there are some
exceptions to the standard behavior. Many of the exceptions involve the
behavior for -0. The most complex case is atan2. Octave exactly implements
the behavior given in the Standard. Including
@tex
$atan2(\pm0, -0)$ returns $\pm \pi$.
@end tex
@ifnottex
@code{atan2(+- 0, 0)} returns @code{+- pi}.
@end ifnottex
It should be noted that @sc{matlab} uses different definitions which apparently
do not distinguish -0.
@DOCSTRING(deg2rad)
@DOCSTRING(rad2deg)
@DOCSTRING(sin)
@DOCSTRING(cos)
@DOCSTRING(tan)
@DOCSTRING(sec)
@DOCSTRING(csc)
@DOCSTRING(cot)
@DOCSTRING(asin)
@DOCSTRING(acos)
@DOCSTRING(atan)
@DOCSTRING(asec)
@DOCSTRING(acsc)
@DOCSTRING(acot)
@DOCSTRING(sinh)
@DOCSTRING(cosh)
@DOCSTRING(tanh)
@DOCSTRING(sech)
@DOCSTRING(csch)
@DOCSTRING(coth)
@DOCSTRING(asinh)
@DOCSTRING(acosh)
@DOCSTRING(atanh)
@DOCSTRING(asech)
@DOCSTRING(acsch)
@DOCSTRING(acoth)
@DOCSTRING(atan2)
Octave provides the following trigonometric functions where angles are
specified in degrees. These functions produce true zeros at the appropriate
intervals rather than the small round-off error that occurs when using
radians. For example:
@example
@group
cosd (90)
@result{} 0
cos (pi/2)
@result{} 6.1230e-17
@end group
@end example
@DOCSTRING(sind)
@DOCSTRING(cosd)
@DOCSTRING(tand)
@DOCSTRING(secd)
@DOCSTRING(cscd)
@DOCSTRING(cotd)
@DOCSTRING(asind)
@DOCSTRING(acosd)
@DOCSTRING(atand)
@DOCSTRING(atan2d)
@DOCSTRING(asecd)
@DOCSTRING(acscd)
@DOCSTRING(acotd)
Finally, there are two trigonometric functions that calculate special
arguments with increased accuracy.
@DOCSTRING(sinpi)
@DOCSTRING(cospi)
@node Sums and Products
@section Sums and Products
@DOCSTRING(sum)
@DOCSTRING(prod)
@DOCSTRING(cumsum)
@DOCSTRING(cumprod)
@DOCSTRING(sumsq)
@node Utility Functions
@section Utility Functions
@DOCSTRING(ceil)
@DOCSTRING(fix)
@DOCSTRING(floor)
@DOCSTRING(round)
@DOCSTRING(roundb)
@DOCSTRING(max)
@DOCSTRING(min)
@DOCSTRING(cummax)
@DOCSTRING(cummin)
@DOCSTRING(hypot)
@DOCSTRING(gradient)
@DOCSTRING(dot)
@DOCSTRING(cross)
@DOCSTRING(divergence)
@DOCSTRING(curl)
@DOCSTRING(del2)
@DOCSTRING(factorial)
@DOCSTRING(factor)
@DOCSTRING(gcd)
@DOCSTRING(lcm)
@DOCSTRING(rem)
@DOCSTRING(mod)
@DOCSTRING(primes)
@DOCSTRING(list_primes)
@DOCSTRING(sign)
@DOCSTRING(signbit)
@node Special Functions
@section Special Functions
@DOCSTRING(airy)
@DOCSTRING(besselj)
@DOCSTRING(bessely)
@DOCSTRING(besseli)
@DOCSTRING(besselk)
@DOCSTRING(besselh)
@DOCSTRING(beta)
@DOCSTRING(betainc)
@DOCSTRING(betaincinv)
@DOCSTRING(betaln)
@DOCSTRING(bincoeff)
@DOCSTRING(commutation_matrix)
@DOCSTRING(cosint)
@DOCSTRING(duplication_matrix)
@DOCSTRING(dawson)
@DOCSTRING(ellipj)
@DOCSTRING(ellipke)
@DOCSTRING(erf)
@DOCSTRING(erfc)
@DOCSTRING(erfcx)
@DOCSTRING(erfi)
@DOCSTRING(erfinv)
@DOCSTRING(erfcinv)
@DOCSTRING(expint)
@DOCSTRING(gamma)
@DOCSTRING(gammainc)
@DOCSTRING(gammaincinv)
@DOCSTRING(legendre)
@anchor{XREFgammaln}
@DOCSTRING(lgamma)
@DOCSTRING(psi)
@DOCSTRING(sinint)
@node Rational Approximations
@section Rational Approximations
@DOCSTRING(rat)
@DOCSTRING(rats)
@node Coordinate Transformations
@section Coordinate Transformations
@DOCSTRING(cart2pol)
@DOCSTRING(pol2cart)
@DOCSTRING(cart2sph)
@DOCSTRING(sph2cart)
@node Mathematical Constants
@section Mathematical Constants
@DOCSTRING(e)
@DOCSTRING(pi)
@DOCSTRING(I)
@DOCSTRING(Inf)
@DOCSTRING(NaN)
@DOCSTRING(eps)
@DOCSTRING(realmax)
@DOCSTRING(realmin)
|