1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
|
@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <https://www.gnu.org/licenses/>.
@node Data Containers
@chapter Data Containers
@cindex containers
Octave includes support for three different mechanisms to contain arbitrary
data types in the same variable: Structures, which are C-like, and are indexed
with named fields; containers.Map objects, which store data in key/value pairs;
and cell arrays, where each element of the array can have a different data type
and or shape. Multiple input arguments and return values of functions are
organized as another data container, the comma-separated list.
@menu
* Structures::
* containers.Map::
* Cell Arrays::
* Comma-Separated Lists::
@end menu
@node Structures
@section Structures
@cindex structures
@cindex data structures
Octave includes support for organizing data in structures. The current
implementation uses an associative array with indices limited to
strings, but the syntax is more like C-style structures.
@menu
* Basic Usage and Examples::
* Structure Arrays::
* Creating Structures::
* Manipulating Structures::
* Processing Data in Structures::
@end menu
@node Basic Usage and Examples
@subsection Basic Usage and Examples
Here are some examples of using data structures in Octave.
Elements of structures can be of any value type. For example, the three
expressions
@example
@group
x.a = 1;
x.b = [1, 2; 3, 4];
x.c = "string";
@end group
@end example
@opindex @code{.} structure field access
@noindent
create a structure with three elements. The @samp{.} character separates
the structure name (in the example above @code{x}) from the field name and
indicates to Octave that this variable is a structure. To print the value
of the structure you can type its name, just as for any other variable:
@example
@group
x
@result{} x =
scalar structure containing the fields:
a = 1
b =
1 2
3 4
c = string
@end group
@end example
@noindent
Note that Octave may print the elements in any order.
Structures may be copied just like any other variable:
@example
@group
y = x
@result{} y =
scalar structure containing the fields:
a = 1
b =
1 2
3 4
c = string
@end group
@end example
Since structures are themselves values, structure elements may reference
other structures, as well. The following statement adds the field @code{d}
to the structure @code{x}. The value of field @code{d} is itself a data
structure containing the single field @code{a}, which has a value of 3.
@example
x.d.a = 3;
x.d
@result{} ans =
scalar structure containing the fields:
a = 3
x
@result{} x =
scalar structure containing the fields:
a = 1
b =
1 2
3 4
c = string
d =
scalar structure containing the fields:
a = 3
@end example
Note that when Octave prints the value of a structure that contains
other structures, only a few levels are displayed. For example:
@example
@group
a.b.c.d.e = 1;
a
@result{} a =
scalar structure containing the fields:
b =
scalar structure containing the fields:
c =
scalar structure containing the fields:
d: 1x1 scalar struct
@end group
@end example
@noindent
This prevents long and confusing output from large deeply nested
structures. The number of levels to print for nested structures may be
set with the function @code{struct_levels_to_print}, and the function
@code{print_struct_array_contents} may be used to enable printing of the
contents of structure arrays.
@DOCSTRING(struct_levels_to_print)
@DOCSTRING(print_struct_array_contents)
Functions can return structures. For example, the following function
separates the real and complex parts of a matrix and stores them in two
elements of the same structure variable @code{y}.
@example
@group
function y = f (x)
y.re = real (x);
y.im = imag (x);
endfunction
@end group
@end example
When called with a complex-valued argument, the function @code{f} returns
the data structure containing the real and imaginary parts of the original
function argument.
@example
@group
f (rand (2) + rand (2) * I)
@result{} ans =
scalar structure containing the fields:
re =
0.040239 0.242160
0.238081 0.402523
im =
0.26475 0.14828
0.18436 0.83669
@end group
@end example
Function return lists can include structure elements, and they may be
indexed like any other variable. For example:
@example
[ x.u, x.s(2:3,2:3), x.v ] = svd ([1, 2; 3, 4]);
x
@result{} x =
scalar structure containing the fields:
u =
-0.40455 -0.91451
-0.91451 0.40455
s =
0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597
v =
-0.57605 0.81742
-0.81742 -0.57605
@end example
It is also possible to cycle through all the elements of a structure in
a loop, using a special form of the @code{for} statement
(@pxref{Looping Over Structure Elements}).
@node Structure Arrays
@subsection Structure Arrays
A structure array is a particular instance of a structure, where each of
the fields of the structure is represented by a cell array. Each of
these cell arrays has the same dimensions. Conceptually, a structure
array can also be seen as an array of structures with identical
fields. An example of the creation of a structure array is
@example
@group
x(1).a = "string1";
x(2).a = "string2";
x(1).b = 1;
x(2).b = 2;
@end group
@end example
@noindent
which creates a 1-by-2 structure array with two fields. Another way
to create a structure array is with the @code{struct} function
(@pxref{Creating Structures}). As previously, to print the value of
the structure array, you can type its name:
@example
@group
x
@result{} x =
@{
1x2 struct array containing the fields:
a
b
@}
@end group
@end example
Individual elements of the structure array can be returned by indexing
the variable like @code{@var{x}(1)}, which returns a structure with
two fields:
@example
@group
x(1)
@result{} ans =
@{
a = string1
b = 1
@}
@end group
@end example
Furthermore, the structure array can return a comma-separated list of
field values (@pxref{Comma-Separated Lists}), if indexed by one of its
own field names. For example:
@example
@group
x.a
@result{}
ans = string1
ans = string2
@end group
@end example
Here is another example, using this comma-separated list on the
left-hand side of an assignment:
@example
@group
[x.a] = deal ("new string1", "new string2");
x(1).a
@result{} ans = new string1
x(2).a
@result{} ans = new string2
@end group
@end example
Just as for numerical arrays, it is possible to use vectors as indices
(@pxref{Index Expressions}):
@example
@group
x(3:4) = x(1:2);
[x([1,3]).a] = deal ("other string1", "other string2");
x.a
@result{}
ans = other string1
ans = new string2
ans = other string2
ans = new string2
@end group
@end example
The function @code{size} will return the size of the structure. For
the example above
@example
@group
size (x)
@result{} ans =
1 4
@end group
@end example
Elements can be deleted from a structure array in a similar manner to a
numerical array, by assigning the elements to an empty matrix. For
example
@example
@group
in = struct ("call1", @{x, Inf, "last"@},
"call2", @{x, Inf, "first"@})
@result{} in =
@{
1x3 struct array containing the fields:
call1
call2
@}
in(1) = [];
in.call1
@result{}
ans = Inf
ans = last
@end group
@end example
@node Creating Structures
@subsection Creating Structures
@cindex dynamic naming
Besides the index operator @qcode{"."}, Octave can use dynamic naming
@qcode{"(var)"} or the @code{struct} function to create structures. Dynamic
naming uses the string value of a variable as the field name. For example:
@example
@group
a = "field2";
x.a = 1;
x.(a) = 2;
x
@result{} x =
@{
a = 1
field2 = 2
@}
@end group
@end example
@noindent
Dynamic indexing also allows you to use arbitrary strings, not merely
valid Octave identifiers (note that this does not work on @sc{matlab}):
@example
@group
a = "long field with spaces (and funny char$)";
x.a = 1;
x.(a) = 2;
x
@result{} x =
@{
a = 1
long field with spaces (and funny char$) = 2
@}
@end group
@end example
@noindent
The warning id @code{Octave:language-extension} can be enabled to warn
about this usage. @xref{XREFwarning_ids,,warning_ids}.
More realistically, all of the functions that operate on strings can be used
to build the correct field name before it is entered into the data structure.
@example
@group
names = ["Bill"; "Mary"; "John"];
ages = [37; 26; 31];
for i = 1:rows (names)
database.(names(i,:)) = ages(i);
endfor
database
@result{} database =
@{
Bill = 37
Mary = 26
John = 31
@}
@end group
@end example
The third way to create structures is the @code{struct} command. @code{struct}
takes pairs of arguments, where the first argument in the pair is the fieldname
to include in the structure and the second is a scalar or cell array,
representing the values to include in the structure or structure array. For
example:
@example
@group
struct ("field1", 1, "field2", 2)
@result{} ans =
@{
field1 = 1
field2 = 2
@}
@end group
@end example
If the values passed to @code{struct} are a mix of scalar and cell
arrays, then the scalar arguments are expanded to create a
structure array with a consistent dimension. For example:
@example
@group
s = struct ("field1", @{1, "one"@}, "field2", @{2, "two"@},
"field3", 3);
s.field1
@result{}
ans = 1
ans = one
s.field2
@result{}
ans = 2
ans = two
s.field3
@result{}
ans = 3
ans = 3
@end group
@end example
If you want to create a struct which contains a cell array as an
individual field, you must wrap it in another cell array as shown in
the following example:
@example
@group
struct ("field1", @{@{1, "one"@}@}, "field2", 2)
@result{} ans =
@{
field1 =
@{
[1,1] = 1
[1,2] = one
@}
field2 = 2
@}
@end group
@end example
@DOCSTRING(struct)
The function @code{isstruct} can be used to test if an object is a
structure or a structure array.
@DOCSTRING(isstruct)
@node Manipulating Structures
@subsection Manipulating Structures
Other functions that can manipulate the fields of a structure are given below.
@DOCSTRING(numfields)
@DOCSTRING(fieldnames)
@DOCSTRING(isfield)
@DOCSTRING(setfield)
@DOCSTRING(getfield)
@DOCSTRING(rmfield)
@DOCSTRING(orderfields)
@DOCSTRING(substruct)
@node Processing Data in Structures
@subsection Processing Data in Structures
The simplest way to process data in a structure is within a @code{for}
loop (@pxref{Looping Over Structure Elements}). A similar effect can be
achieved with the @code{structfun} function, where a user defined
function is applied to each field of the structure.
@xref{XREFstructfun,,structfun}.
Alternatively, to process the data in a structure, the structure might
be converted to another type of container before being treated.
@DOCSTRING(struct2cell)
@DOCSTRING(namedargs2cell)
@node containers.Map
@section containers.Map
@cindex Map
@cindex key/value store
@cindex hash table
@c FIXME: Need to fill in documentation on what a Map is, when to use it over
@c other container types, how to perform basic operations with a Map.
@c FIXME: Currently have trouble getting documentation for classdef functions.
@DOCSTRING(containers.Map)
@node Cell Arrays
@section Cell Arrays
@cindex cell arrays
It can be both necessary and convenient to store several variables of
different size or type in one variable. A cell array is a container
class able to do just that. In general cell arrays work just like
@math{N}-dimensional arrays with the exception of the use of @samp{@{}
and @samp{@}} as allocation and indexing operators.
@menu
* Basic Usage of Cell Arrays::
* Creating Cell Arrays::
* Indexing Cell Arrays::
* Cell Arrays of Strings::
* Processing Data in Cell Arrays::
@end menu
@node Basic Usage of Cell Arrays
@subsection Basic Usage of Cell Arrays
@opindex @{
@opindex @}
As an example, the following code creates a cell array containing a
string and a 2-by-2 random matrix
@example
c = @{"a string", rand(2, 2)@};
@end example
@noindent
To access the elements of a cell array, it can be indexed with the @{
and @} operators. Thus, the variable created in the previous example
can be indexed like this:
@example
@group
c@{1@}
@result{} ans = a string
@end group
@end example
@noindent
As with numerical arrays several elements of a cell array can be
extracted by indexing with a vector of indexes
@example
@group
c@{1:2@}
@result{} ans = a string
@result{} ans =
0.593993 0.627732
0.377037 0.033643
@end group
@end example
The indexing operators can also be used to insert or overwrite elements
of a cell array. The following code inserts the scalar 3 on the
third place of the previously created cell array
@example
@group
c@{3@} = 3
@result{} c =
@{
[1,1] = a string
[1,2] =
0.593993 0.627732
0.377037 0.033643
[1,3] = 3
@}
@end group
@end example
Details on indexing cell arrays are explained in @ref{Indexing Cell Arrays}.
In general nested cell arrays are displayed hierarchically as in the
previous example. In some circumstances it makes sense to reference
them by their index, and this can be performed by the @code{celldisp}
function.
@DOCSTRING(celldisp)
To test if an object is a cell array, use the @code{iscell}
function. For example:
@example
@group
iscell (c)
@result{} ans = 1
iscell (3)
@result{} ans = 0
@end group
@end example
@DOCSTRING(iscell)
@node Creating Cell Arrays
@subsection Creating Cell Arrays
The introductory example (@pxref{Basic Usage of Cell Arrays}) showed
how to create a cell array containing currently available variables.
In many situations, however, it is useful to create a cell array and
then fill it with data.
The @code{cell} function returns a cell array of a given size, containing
empty matrices. This function is similar to the @code{zeros}
function for creating new numerical arrays. The following example creates
a 2-by-2 cell array containing empty matrices
@example
@group
c = cell (2,2)
@result{} c =
@{
[1,1] = [](0x0)
[2,1] = [](0x0)
[1,2] = [](0x0)
[2,2] = [](0x0)
@}
@end group
@end example
Just like numerical arrays, cell arrays can be multi-dimensional. The
@code{cell} function accepts any number of positive integers to describe
the size of the returned cell array. It is also possible to set the size
of the cell array through a vector of positive integers. In the
following example two cell arrays of equal size are created, and the size
of the first one is displayed
@example
@group
c1 = cell (3, 4, 5);
c2 = cell ( [3, 4, 5] );
size (c1)
@result{} ans =
3 4 5
@end group
@end example
@noindent
As can be seen, the @ref{XREFsize,,size} function also works
for cell arrays. As do other functions describing the size of an
object, such as @ref{XREFlength,,length}, @ref{XREFnumel,, numel},
@ref{XREFrows,,rows}, and @ref{XREFcolumns,,columns}.
@DOCSTRING(cell)
As an alternative to creating empty cell arrays, and then filling them, it
is possible to convert numerical arrays into cell arrays using the
@code{num2cell}, @code{mat2cell} and @code{cellslices} functions.
@DOCSTRING(num2cell)
@DOCSTRING(mat2cell)
@DOCSTRING(cellslices)
@node Indexing Cell Arrays
@subsection Indexing Cell Arrays
As shown in @pxref{Basic Usage of Cell Arrays} elements can be
extracted from cell arrays using the @samp{@{} and @samp{@}}
operators. If you want to extract or access subarrays which are still
cell arrays, you need to use the @samp{(} and @samp{)} operators. The
following example illustrates the difference:
@example
@group
c = @{"1", "2", "3"; "x", "y", "z"; "4", "5", "6"@};
c@{2,3@}
@result{} ans = z
c(2,3)
@result{} ans =
@{
[1,1] = z
@}
@end group
@end example
@noindent So with @samp{@{@}} you access elements of a cell
array, while with @samp{()} you access a sub array of a cell
array.
Using the @samp{(} and @samp{)} operators, indexing works for cell
arrays like for multi-dimensional arrays. As an example, all the rows
of the first and third column of a cell array can be set to @code{0}
with the following command:
@example
@group
c(:, [1, 3]) = @{0@}
@result{} =
@{
[1,1] = 0
[2,1] = 0
[3,1] = 0
[1,2] = 2
[2,2] = y
[3,2] = 5
[1,3] = 0
[2,3] = 0
[3,3] = 0
@}
@end group
@end example
Note, that the above can also be achieved like this:
@example
c(:, [1, 3]) = 0;
@end example
@noindent Here, the scalar @samp{0} is automatically promoted to
cell array @samp{@{0@}} and then assigned to the subarray of @code{c}.
To give another example for indexing cell arrays with @samp{()}, you
can exchange the first and the second row of a cell array as in the
following command:
@example
@group
c = @{1, 2, 3; 4, 5, 6@};
c([1, 2], :) = c([2, 1], :)
@result{} =
@{
[1,1] = 4
[2,1] = 1
[1,2] = 5
[2,2] = 2
[1,3] = 6
[2,3] = 3
@}
@end group
@end example
Accessing multiple elements of a cell array with the @samp{@{} and
@samp{@}} operators will result in a comma-separated list of all the
requested elements (@pxref{Comma-Separated Lists}). Using the
@samp{@{} and @samp{@}} operators the first two rows in the above
example can be swapped back like this:
@example
@group
[c@{[1,2], :@}] = deal (c@{[2, 1], :@})
@result{} =
@{
[1,1] = 1
[2,1] = 4
[1,2] = 2
[2,2] = 5
[1,3] = 3
[2,3] = 6
@}
@end group
@end example
As for struct arrays and numerical arrays, the empty matrix @samp{[]}
can be used to delete elements from a cell array:
@example
@group
x = @{"1", "2"; "3", "4"@};
x(1, :) = []
@result{} x =
@{
[1,1] = 3
[1,2] = 4
@}
@end group
@end example
The following example shows how to just remove the contents of cell
array elements but not delete the space for them:
@example
@group
x = @{"1", "2"; "3", "4"@};
x(1, :) = @{[]@}
@result{} x =
@{
[1,1] = [](0x0)
[2,1] = 3
[1,2] = [](0x0)
[2,2] = 4
@}
@end group
@end example
The indexing operations operate on the cell array and not on the objects
within the cell array. By contrast, @code{cellindexmat} applies matrix
indexing to the objects within each cell array entry and returns the requested
values.
@DOCSTRING(cellindexmat)
@node Cell Arrays of Strings
@subsection Cell Arrays of Strings
One common use of cell arrays is to store multiple strings in the same
variable. It is also possible to store multiple strings in a
character matrix by letting each row be a string. This, however,
introduces the problem that all strings must be of equal length.
Therefore, it is recommended to use cell arrays to store multiple
strings. For cases, where the character matrix representation is required
for an operation, there are several functions that convert a cell
array of strings to a character array and back. @code{char} and
@code{strvcat} convert cell arrays to a character array
(@pxref{Concatenating Strings}), while the function @code{cellstr}
converts a character array to a cell array of strings:
@example
@group
a = ["hello"; "world"];
c = cellstr (a)
@result{} c =
@{
[1,1] = hello
[2,1] = world
@}
@end group
@end example
@DOCSTRING(cellstr)
One further advantage of using cell arrays to store multiple strings is
that most functions for string manipulations included with Octave
support this representation. As an example, it is possible to compare
one string with many others using the @code{strcmp} function. If one of
the arguments to this function is a string and the other is a cell array
of strings, each element of the cell array will be compared to the string
argument:
@example
@group
c = @{"hello", "world"@};
strcmp ("hello", c)
@result{} ans =
1 0
@end group
@end example
@noindent
The following string functions support cell arrays of strings:
@code{char}, @code{strvcat}, @code{strcat} (@pxref{Concatenating
Strings}), @code{strcmp}, @code{strncmp}, @code{strcmpi},
@code{strncmpi} (@pxref{Searching in Strings}), @code{str2double},
@code{deblank}, @code{strtrim}, @code{strtrunc}, @code{strfind},
@code{strmatch}, , @code{regexp}, @code{regexpi}
(@pxref{String Operations}) and @code{str2double}
(@pxref{Converting Strings}).
The function @code{iscellstr} can be used to test if an object is a
cell array of strings.
@DOCSTRING(iscellstr)
@node Processing Data in Cell Arrays
@subsection Processing Data in Cell Arrays
Data that is stored in a cell array can be processed in several ways
depending on the actual data. The simplest way to process that data
is to iterate through it using one or more @code{for} loops. The same
idea can be implemented more easily through the use of the @code{cellfun}
function that calls a user-specified function on all elements of a cell
array. @xref{XREFcellfun,,cellfun}.
An alternative is to convert the data to a different container, such as
a matrix or a data structure. Depending on the data this is possible
using the @code{cell2mat} and @code{cell2struct} functions.
@DOCSTRING(cell2mat)
@DOCSTRING(cell2struct)
@node Comma-Separated Lists
@section Comma-Separated Lists
@cindex comma-separated lists
@cindex cs-lists
Comma-separated lists @footnote{Comma-separated lists are also sometimes
referred to as @dfn{cs-lists}.} are the basic argument type to all Octave
functions---both for input and return arguments. In the example
@example
max (@var{a}, @var{b})
@end example
@noindent
@samp{@var{a}, @var{b}} is a comma-separated list. Comma-separated lists
can appear on both the right and left hand side of an assignment. For
example
@example
@group
x = [1 0 1 0 0 1 1; 0 0 0 0 0 0 7];
[@var{i}, @var{j}] = find (@var{x}, 2, "last");
@end group
@end example
@noindent
Here, @samp{@var{x}, 2, "last"} is a comma-separated list constituting
the input arguments of @code{find}. @code{find} returns a comma-separated list
of output arguments which is assigned element by element to the comma-separated
list @samp{@var{i}, @var{j}}.
Another example of where comma-separated lists are used is in the creation of a
new array with @code{[]} (@pxref{Matrices}) or the creation of a cell array
with @code{@{@}} (@pxref{Basic Usage of Cell Arrays}). In the expressions
@example
@group
a = [1, 2, 3, 4];
c = @{4, 5, 6, 7@};
@end group
@end example
@noindent
both @samp{1, 2, 3, 4} and @samp{4, 5, 6, 7} are comma-separated lists.
Comma-separated lists cannot be directly manipulated by the
user. However, both structure arrays and cell arrays can be converted
into comma-separated lists, and thus used in place of explicitly
written comma-separated lists. This feature is useful in many ways,
as will be shown in the following subsections.
@menu
* Comma-Separated Lists Generated from Cell Arrays::
* Comma-Separated Lists Generated from Structure Arrays::
@end menu
@node Comma-Separated Lists Generated from Cell Arrays
@subsection Comma-Separated Lists Generated from Cell Arrays
As has been mentioned above (@pxref{Indexing Cell Arrays}), elements
of a cell array can be extracted into a comma-separated list with the
@code{@{} and @code{@}} operators. By surrounding this list with
@code{[} and @code{]}, it can be concatenated into an array. For example:
@example
@group
a = @{1, [2, 3], 4, 5, 6@};
b = [a@{1:4@}]
@result{} b =
1 2 3 4 5
@end group
@end example
Similarly, it is possible to create a new cell array containing cell
elements selected with @code{@{@}}. By surrounding the list with
@samp{@{} and @samp{@}} a new cell array will be created, as the
following example illustrates:
@example
@group
a = @{1, rand(2, 2), "three"@};
b = @{ a@{ [1, 3] @} @}
@result{} b =
@{
[1,1] = 1
[1,2] = three
@}
@end group
@end example
Furthermore, cell elements (accessed by @code{@{@}}) can be passed
directly to a function. The list of elements from the cell array will
be passed as an argument list to a given function as if it is called
with the elements as individual arguments. The two calls to
@code{printf} in the following example are identical but the latter is
simpler and can handle cell arrays of an arbitrary size:
@example
@group
c = @{"GNU", "Octave", "is", "Free", "Software"@};
printf ("%s ", c@{1@}, c@{2@}, c@{3@}, c@{4@}, c@{5@});
@print{} GNU Octave is Free Software
printf ("%s ", c@{:@});
@print{} GNU Octave is Free Software
@end group
@end example
If used on the left-hand side of an assignment, a comma-separated list
generated with @code{@{@}} can be assigned to. An example is
@example
in@{1@} = [10, 20, 30];
in@{2@} = inf;
in@{3@} = "last";
in@{4@} = "first";
out = cell (4, 1);
[out@{1:3@}] = in@{1 : 3@};
[out@{4:6@}] = in@{[1, 2, 4]@})
@result{} out =
@{
[1,1] =
10 20 30
[2,1] = Inf
[3,1] = last
[4,1] =
10 20 30
[5,1] = Inf
[6,1] = first
@}
@end example
@node Comma-Separated Lists Generated from Structure Arrays
@subsection Comma-Separated Lists Generated from Structure Arrays
Structure arrays can equally be used to create comma-separated
lists. This is done by addressing one of the fields of a structure
array. For example:
@example
@group
x = ceil (randn (10, 1));
in = struct ("call1", @{x, 3, "last"@},
"call2", @{x, inf, "first"@});
out = struct ("call1", cell (2, 1), "call2", cell (2, 1));
[out.call1] = find (in.call1);
[out.call2] = find (in.call2);
@end group
@end example
|