1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <https://www.gnu.org/licenses/>.
@node Data Types
@chapter Data Types
@cindex data types
All versions of Octave include a number of built-in data types,
including real and complex scalars and matrices, character strings,
a data structure type, and an array that can contain all data types.
It is also possible to define new specialized data types by writing a
small amount of C++ code. On some systems, new data types can be loaded
dynamically while Octave is running, so it is not necessary to recompile
all of Octave just to add a new type. @xref{External Code Interface}, for
more information about Octave's dynamic linking capabilities.
@ref{User-defined Data Types} describes what you must do to define a
new data type for Octave.
@c typeinfo libinterp/octave-value/ov-typeinfo.cc
@anchor{XREFtypeinfo}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{typestr} =} typeinfo (@var{expr})
@deftypefnx {} {@var{cstr} =} typeinfo ()
Return the type of the expression @var{expr}, as a string.
If @var{expr} is omitted, return a cell array of strings containing all the
currently installed data types.
@xseealso{@ref{XREFclass,,class}, @ref{XREFisa,,isa}}
@end deftypefn
@menu
* Built-in Data Types::
* User-defined Data Types::
* Object Sizes::
@end menu
@node Built-in Data Types
@section Built-in Data Types
@cindex data types, built-in
@cindex built-in data types
The standard built-in data types are real and complex scalars and
matrices, ranges, character strings, a data structure type, and cell
arrays. Additional built-in data types may be added in future versions.
If you need a specialized data type that is not currently provided as a
built-in type, you are encouraged to write your own user-defined data
type and contribute it for distribution in a future release of Octave.
The data type of a variable can be determined and changed through the
use of the following functions.
@c class libinterp/octave-value/ov-class.cc
@anchor{XREFclass}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{classname} =} class (@var{obj})
@deftypefnx {} {@var{cls} =} class (@var{s}, @var{classname})
@deftypefnx {} {@var{cls} =} class (@var{s}, @var{classname}, @var{parent1}, @dots{})
Return the class of the object @var{obj}, or create a class with fields from
structure @var{s} and name (string) @var{classname}.
Additional arguments name a list of parent classes from which the new class is
derived.
@xseealso{@ref{XREFtypeinfo,,typeinfo}, @ref{XREFisa,,isa}}
@end deftypefn
@c isa libinterp/octave-value/ov-class.cc
@anchor{XREFisa}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isa (@var{obj}, @var{classname})
Return true if @var{obj} is an object from the class @var{classname}.
@var{classname} may also be one of the following class categories:
@table @asis
@item @qcode{"float"}
Floating point value comprising classes @qcode{"double"} and
@qcode{"single"}.
@item @qcode{"integer"}
Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.
@item @qcode{"numeric"}
Numeric value comprising either a floating point or integer value.
@end table
If @var{classname} is a cell array of string, a logical array of the same
size is returned, containing true for each class to which @var{obj}
belongs to.
@xseealso{@ref{XREFclass,,class}, @ref{XREFtypeinfo,,typeinfo}}
@end deftypefn
@c cast scripts/miscellaneous/cast.m
@anchor{XREFcast}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} cast (@var{x}, "@var{type}")
@deftypefnx {} {@var{y} =} cast (@var{x}, "@var{like}", @var{var})
Convert @var{x} to data type @var{type}.
The input @var{x} may be a scalar, vector, or matrix of a class that is
convertible to the target class (see below).
If a variable @var{var} is specified after @qcode{"like"}, @var{x} is
converted to the same data type and sparsity attribute. If @var{var} is
complex, @var{x} will be complex, too.
@var{var} may be and @var{type} may name any of the following built-in
numeric classes:
@example
@group
"double"
"single"
"logical"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
@end group
@end example
The value @var{x} may be modified to fit within the range of the new type.
Examples:
@example
@group
cast (-5, "uint8")
@result{} 0
cast (300, "int8")
@result{} 127
@end group
@end example
Programming Note: This function relies on the object @var{x} having a
conversion method named @var{type}. User-defined classes may implement only
a subset of the full list of types shown above. In that case, it may be
necessary to call cast twice in order to reach the desired type.
For example, the conversion to double is nearly always implemented, but
the conversion to uint8 might not be. In that case, the following code will
work:
@example
cast (cast (@var{user_defined_val}, "double"), "uint8")
@end example
@xseealso{@ref{XREFtypecast,,typecast}, @ref{XREFint8,,int8}, @ref{XREFuint8,,uint8}, @ref{XREFint16,,int16}, @ref{XREFuint16,,uint16}, @ref{XREFint32,,int32}, @ref{XREFuint32,,uint32}, @ref{XREFint64,,int64}, @ref{XREFuint64,,uint64}, @ref{XREFdouble,,double}, @ref{XREFsingle,,single}, @ref{XREFlogical,,logical}, @ref{XREFchar,,char}, @ref{XREFclass,,class}, @ref{XREFtypeinfo,,typeinfo}}
@end deftypefn
@c typecast libinterp/corefcn/typecast.cc
@anchor{XREFtypecast}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} typecast (@var{x}, "@var{class}")
Return a new array @var{y} resulting from interpreting the data of @var{x}
in memory as data of the numeric class @var{class}.
Both the class of @var{x} and @var{class} must be one of the built-in
numeric classes:
@example
@group
"logical"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
"double"
"single"
"double complex"
"single complex"
@end group
@end example
@noindent
the last two are only used with @var{class}; they indicate that a
complex-valued result is requested. Complex arrays are stored in memory as
consecutive pairs of real numbers. The sizes of integer types are given by
their bit counts. Both logical and char are typically one byte wide;
however, this is not guaranteed by C++. If your system is IEEE@tie{}754
conformant, single and double will be 4 bytes and 8 bytes wide, respectively.
@qcode{"logical"} is not allowed for @var{class}.
If the input is a row vector, the return value is a row vector, otherwise it
is a column vector.
If the bit length of @var{x} is not divisible by that of @var{class}, an
error occurs.
An example of the use of typecast on a little-endian machine is
@example
@group
@var{x} = uint16 ([1, 65535]);
typecast (@var{x}, "uint8")
@result{} [ 1, 0, 255, 255]
@end group
@end example
@xseealso{@ref{XREFcast,,cast}, @ref{XREFbitpack,,bitpack}, @ref{XREFbitunpack,,bitunpack}, @ref{XREFswapbytes,,swapbytes}}
@end deftypefn
@c swapbytes scripts/miscellaneous/swapbytes.m
@anchor{XREFswapbytes}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} swapbytes (@var{x})
Swap the byte order on values, converting from little endian to big endian
and vice versa.
For example:
@example
@group
swapbytes (uint16 (1:4))
@result{} 256 512 768 1024
@end group
@end example
@xseealso{@ref{XREFtypecast,,typecast}, @ref{XREFcast,,cast}}
@end deftypefn
@c bitpack libinterp/corefcn/typecast.cc
@anchor{XREFbitpack}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} bitpack (@var{x}, @var{class})
Return a new array @var{y} resulting from interpreting the logical array
@var{x} as raw bit patterns for data of the numeric class @var{class}.
@var{class} must be one of the built-in numeric classes:
@example
@group
"double"
"single"
"double complex"
"single complex"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
@end group
@end example
The number of elements of @var{x} should be divisible by the bit length of
@var{class}. If it is not, excess bits are discarded. Bits come in
increasing order of significance, i.e., @code{x(1)} is bit 0, @code{x(2)} is
bit 1, etc.
The result is a row vector if @var{x} is a row vector, otherwise it is a
column vector.
@xseealso{@ref{XREFbitunpack,,bitunpack}, @ref{XREFtypecast,,typecast}}
@end deftypefn
@c bitunpack libinterp/corefcn/typecast.cc
@anchor{XREFbitunpack}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} bitunpack (@var{x})
Return a logical array @var{y} corresponding to the raw bit patterns of
@var{x}.
@var{x} must belong to one of the built-in numeric classes:
@example
@group
"double"
"single"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
@end group
@end example
The result is a row vector if @var{x} is a row vector; otherwise, it is a
column vector.
@xseealso{@ref{XREFbitpack,,bitpack}, @ref{XREFtypecast,,typecast}}
@end deftypefn
@menu
* Numeric Objects::
* Missing Data::
* String Objects::
* Data Structure Objects::
* Cell Array Objects::
@end menu
@node Numeric Objects
@subsection Numeric Objects
@cindex numeric constant
@cindex numeric value
Octave's built-in numeric objects include real, complex, and integer
scalars and matrices. All built-in floating point numeric data is
currently stored as double precision numbers. On systems that use
IEEE@tie{}754 floating point format, values in the range of approximately
@tex
$2.2251\times10^{-308}$ to $1.7977\times10^{308}$
@end tex
@ifnottex
2.2251e-308 to 1.7977e+308
@end ifnottex
can be stored, and the relative precision is approximately
@tex
$2.2204\times10^{-16}$.
@end tex
@ifnottex
2.2204e-16.
@end ifnottex
The exact values are given by the variables @code{realmin},
@code{realmax}, and @code{eps}, respectively.
Matrix objects can be of any size, and can be dynamically reshaped and resized.
It is easy to extract individual rows, columns, or submatrices using a variety
of powerful indexing features. @xref{Index Expressions}.
@xref{Numeric Data Types}, for more information.
@node Missing Data
@subsection Missing Data
@cindex missing data
It is possible to represent missing data explicitly in Octave using NA (short
for ``@w{Not} @w{Available}''). This is helpful in distinguishing between a
property of the data (i.e., some of it was not recorded) and calculations on
the data which generated an error (i.e., created NaN values). In short, if you
do not get the result you expect is it your data or your algorithm?
The missing data marker is a special case of the representation of NaN.
Because of that, it can only be used with data represented by floating point
numbers---no integer, logical, or char values.
In general, use NA and the test @code{isna}, to describe the dataset or to
reduce the dataset to only valid entries. Numerical calculations with NA will
generally "poison" the results and conclude with an output NA. However, this
can not be guaranteed on all platforms and NA may be replaced by NaN.
Example 1 : Describing the dataset
@example
@group
data = [1, NA, 3];
percent_missing = 100 * sum (isna (data(:))) / numel (data);
printf ('%2.0f%% of the dataset is missing\n', percent_missing);
@print{} 33% of the dataset is missing
@end group
@end example
Example 2 : Restrict calculations to valid data
@example
@group
raw_data = [1, NA, 3];
printf ('mean of raw data is %.1f\n', mean (raw_data));
@print{} mean of raw data is NA
valid_data = raw_data (! isna (raw_data));
printf ('mean of valid data is %.1f\n', mean (valid_data));
@print{} mean of valid data is 2.0
@end group
@end example
@c NA libinterp/corefcn/data.cc
@anchor{XREFNA}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} NA
@deftypefnx {} {@var{val} =} NA (@var{n})
@deftypefnx {} {@var{val} =} NA (@var{n}, @var{m})
@deftypefnx {} {@var{val} =} NA (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {@var{val} =} NA (@dots{}, "like", @var{var})
@deftypefnx {} {@var{val} =} NA (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the special constant NA (Not Available) used to designate missing values.
Note that NA always compares not equal to NA (NA != NA). To find NA values,
use the @code{isna} function.
When called with no arguments, return a scalar with the value @samp{NA}.
When called with a single argument, return a square matrix with the
dimension specified.
When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
If a variable @var{var} is specified after @qcode{"like"}, the output @var{val}
will have the same data type, complexity, and sparsity as @var{var}.
The optional argument @var{class} specifies the return type and may be
either @qcode{"double"} or @qcode{"single"}.
Programming Note: The missing data marker NA is a special case of the
representation of NaN. Numerical calculations with NA will generally "poison"
the results and conclude with an output of NA. However, this can not be
guaranteed on all platforms and NA may be replaced by NaN.
@xref{Missing Data}.
@xseealso{@ref{XREFisna,,isna}}
@end deftypefn
@c isna libinterp/corefcn/mappers.cc
@anchor{XREFisna}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isna (@var{x})
Return a logical array which is true where the elements of @var{x} are
NA (missing) values and false where they are not.
For example:
@example
@group
isna ([13, Inf, NA, NaN])
@result{} [ 0, 0, 1, 0 ]
@end group
@end example
@xseealso{@ref{XREFisnan,,isnan}, @ref{XREFisinf,,isinf}, @ref{XREFisfinite,,isfinite}}
@end deftypefn
@node String Objects
@subsection String Objects
@cindex strings
@cindex character strings
@opindex "
@opindex @code{'}
A character string in Octave consists of a sequence of characters
enclosed in either double-quote or single-quote marks. Internally,
Octave currently stores strings as matrices of characters. All the
indexing operations that work for matrix objects also work for strings.
@xref{Strings}, for more information.
@node Data Structure Objects
@subsection Data Structure Objects
@cindex structures
@cindex data structures
Octave's data structure type can help you to organize related objects of
different types. The current implementation uses an associative array
with indices limited to strings, but the syntax is more like C-style
structures.
@xref{Structures}, for more information.
@node Cell Array Objects
@subsection Cell Array Objects
@cindex cell arrays
A Cell Array in Octave is general array that can hold any number of
different data types.
@xref{Cell Arrays}, for more information.
@node User-defined Data Types
@section User-defined Data Types
@cindex user-defined data types
@cindex data types, user-defined
Someday I hope to expand this to include a complete description of
Octave's mechanism for managing user-defined data types. Until this
feature is documented here, you will have to make do by reading the code
in the @file{ov.h}, @file{ops.h}, and related files from Octave's
@file{src} directory.
@node Object Sizes
@section Object Sizes
The following functions allow you to determine the size of a variable or
expression. These functions are defined for all objects. They return
@minus{}1 when the operation doesn't make sense. For example, Octave's
data structure type doesn't have rows or columns, so the @code{rows} and
@code{columns} functions return @minus{}1 for structure arguments.
@c ndims libinterp/corefcn/data.cc
@anchor{XREFndims}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{n} =} ndims (@var{A})
Return the number of dimensions of @var{A}.
For any array, the result will always be greater than or equal to 2.
Trailing singleton dimensions are not counted, i.e., trailing dimensions @var{d}
greater than 2 for which @code{size (@var{A}, @var{d}) = 1}.
@example
@group
ndims (ones (4, 1, 2, 1))
@result{} 3
@end group
@end example
@xseealso{@ref{XREFsize,,size}}
@end deftypefn
@c columns libinterp/corefcn/data.cc
@anchor{XREFcolumns}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{nc} =} columns (@var{A})
@deftypefnx {} {@var{nc} =} width (@var{A})
Return the number of columns of @var{A}.
This is equivalent to @code{size (@var{A}, 2)}.
Programming Note: @code{width} is an alias for @code{columns} and can be
used interchangeably.
@xseealso{@ref{XREFrows,,rows}, @ref{XREFsize,,size}, @ref{XREFlength,,length}, @ref{XREFnumel,,numel}, @ref{XREFisscalar,,isscalar}, @ref{XREFisvector,,isvector}, @ref{XREFismatrix,,ismatrix}}
@end deftypefn
@c rows libinterp/corefcn/data.cc
@anchor{XREFrows}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{nr} =} rows (@var{A})
@deftypefnx {} {@var{nr} =} height (@var{A})
Return the number of rows of @var{A}.
This is equivalent to @code{size (@var{A}, 1)}.
Programming Note: @code{height} is an alias for @code{rows} and can be
used interchangeably.
@xseealso{@ref{XREFcolumns,,columns}, @ref{XREFsize,,size}, @ref{XREFlength,,length}, @ref{XREFnumel,,numel}, @ref{XREFisscalar,,isscalar}, @ref{XREFisvector,,isvector}, @ref{XREFismatrix,,ismatrix}}
@end deftypefn
@c numel libinterp/corefcn/data.cc
@anchor{XREFnumel}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{n} =} numel (@var{A})
@deftypefnx {} {@var{n} =} numel (@var{A}, @var{idx1}, @var{idx2}, @dots{})
Return the number of elements in the object @var{A}.
Optionally, if indices @var{idx1}, @var{idx2}, @dots{} are supplied,
return the number of elements that would result from the indexing
@example
@var{A}(@var{idx1}, @var{idx2}, @dots{})
@end example
Note that the indices do not have to be scalar numbers. For example,
@example
@group
@var{a} = 1;
@var{b} = ones (2, 3);
numel (@var{a}, @var{b})
@end group
@end example
@noindent
will return 6, as this is the number of ways to index with @var{b}.
Or the index could be the string @qcode{":"} which represents the colon
operator. For example,
@example
@group
@var{A} = ones (5, 3);
numel (@var{A}, 2, ":")
@end group
@end example
@noindent
will return 3 as the second row has three column entries.
This method is also called when an object appears as lvalue with cs-list
indexing, i.e., @code{object@{@dots{}@}} or @code{object(@dots{}).field}.
@xseealso{@ref{XREFsize,,size}, @ref{XREFlength,,length}, @ref{XREFndims,,ndims}}
@end deftypefn
@c length libinterp/corefcn/data.cc
@anchor{XREFlength}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{n} =} length (@var{A})
Return the length of the object @var{A}.
The length is 0 for empty objects, 1 for scalars, and the number of elements
for vectors. For matrix or N-dimensional objects, the length is the number
of elements along the largest dimension
(equivalent to @w{@code{max (size (@var{A}))}}).
@xseealso{@ref{XREFnumel,,numel}, @ref{XREFsize,,size}}
@end deftypefn
@c size libinterp/corefcn/data.cc
@anchor{XREFsize}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{sz} =} size (@var{A})
@deftypefnx {} {@var{dim_sz} =} size (@var{A}, @var{dim})
@deftypefnx {} {@var{dim_sz} =} size (@var{A}, @var{d1}, @var{d2}, @dots{})
@deftypefnx {} {[@var{rows}, @var{cols}, @dots{}, @var{dim_N_sz}] =} size (@dots{})
Return a row vector with the size (number of elements) of each dimension for
the object @var{A}.
When given a second argument, @var{dim}, return the size of the corresponding
dimension. If @var{dim} is a vector, return each of the corresponding
dimensions. Multiple dimensions may also be specified as separate arguments.
With a single output argument, @code{size} returns a row vector. When called
with multiple output arguments, @code{size} returns the size of dimension N
in the Nth argument. The number of rows, dimension 1, is returned in the
first argument, the number of columns, dimension 2, is returned in the
second argument, etc. If there are more dimensions in @var{A} than there are
output arguments, @code{size} returns the total number of elements in the
remaining dimensions in the final output argument. If the requested dimension
@var{dim} is greater than the number of dimensions in @var{A}, @code{size}
returns 1 (not 0).
Example 1: single row vector output
@example
@group
size ([1, 2; 3, 4; 5, 6])
@result{} [ 3, 2 ]
@end group
@end example
Example 2: number of elements in 2nd dimension (columns)
@example
@group
size ([1, 2; 3, 4; 5, 6], 2)
@result{} 2
@end group
@end example
Example 3: number of output arguments == number of dimensions
@example
@group
[nr, nc] = size ([1, 2; 3, 4; 5, 6])
@result{} nr = 3
@result{} nc = 2
@end group
@end example
Example 4: number of output arguments < number of dimensions
@example
@group
[nr, remainder] = size (ones (2, 3, 4, 5))
@result{} nr = 2
@result{} remainder = 60
@end group
@end example
Example 5: number of elements in dimension > number of actual dimensions
@example
@group
sz4 = size (ones (2, 3), 4)
@result{} sz4 = 1
@end group
@end example
@xseealso{@ref{XREFnumel,,numel}, @ref{XREFndims,,ndims}, @ref{XREFlength,,length}, @ref{XREFrows,,rows}, @ref{XREFcolumns,,columns}, @ref{XREFsize_equal,,size_equal}, @ref{XREFcommon_size,,common_size}}
@end deftypefn
@c isempty libinterp/corefcn/data.cc
@anchor{XREFisempty}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isempty (@var{A})
Return true if @var{A} is an empty object (any one of its dimensions is
zero).
@xseealso{@ref{XREFisnull,,isnull}, @ref{XREFisa,,isa}}
@end deftypefn
@c isnull libinterp/octave-value/ov-null-mat.cc
@anchor{XREFisnull}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isnull (@var{x})
Return true if @var{x} is a special null array, string, or single quoted
string.
Indexed assignment with such a null value on the right-hand side should delete
array elements. This function is used in place of @code{isempty} when
overloading the indexed assignment method (@code{subsasgn}) for user-defined
classes. @code{isnull} is used to distinguish between these two cases:
@code{@var{A}(@var{I}) = []}
and
@code{@var{X} = []; @var{A}(@var{I}) = @var{X}}
In the first assignment, the right-hand side is @code{[]} which is a special
null value. As long as the index @var{I} is not empty, this code should
delete elements from @var{A} rather than perform assignment.
In the second assignment, the right-hand side is empty (because @var{X} is
@code{[]}), but it is @strong{not} null. This code should assign the empty
value to elements in @var{A}.
An example from Octave's built-in char class demonstrates the interpreter
behavior when @code{isnull} is used correctly.
@example
@group
str = "Hello World";
nm = "Wally";
str(7:end) = nm # indexed assignment
@result{} str = Hello Wally
str(7:end) = "" # indexed deletion
@result{} str = Hello
@end group
@end example
@xseealso{@ref{XREFisempty,,isempty}, @ref{XREFisindex,,isindex}}
@end deftypefn
@c sizeof libinterp/octave-value/ov.cc
@anchor{XREFsizeof}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{sz} =} sizeof (@var{val})
Return the size of @var{val} in bytes.
@xseealso{@ref{XREFwhos,,whos}}
@end deftypefn
@c size_equal libinterp/corefcn/data.cc
@anchor{XREFsize_equal}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{TF} =} size_equal (@var{A}, @var{B})
@deftypefnx {} {@var{TF} =} size_equal (@var{A}, @var{B}, @dots{})
Return true if the dimensions of all arguments agree.
Trailing singleton dimensions are ignored. When called with a single argument,
or no argument, @code{size_equal} returns true.
@xseealso{@ref{XREFsize,,size}, @ref{XREFnumel,,numel}, @ref{XREFndims,,ndims}, @ref{XREFcommon_size,,common_size}}
@end deftypefn
@c squeeze libinterp/corefcn/data.cc
@anchor{XREFsqueeze}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{B} =} squeeze (@var{A})
Remove singleton dimensions from @var{A} and return the result.
Note that for compatibility with @sc{matlab}, all objects have
a minimum of two dimensions and row vectors are left unchanged.
@xseealso{@ref{XREFreshape,,reshape}}
@end deftypefn
|