1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 2007-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <https://www.gnu.org/licenses/>.
@node External Code Interface
@appendix External Code Interface
@cindex dynamic-linking
@cindex Dynamically Linked Functions
@cindex Octave API
"The sum of human wisdom is not contained in any one language"
--- Ezra Pound
Octave is a fantastic language for solving many problems in science and
engineering. However, it is not the only computer language and there are times
when you may want to use code written in other languages. Good reasons for
doing so include: 1) not re-inventing the wheel; existing function libraries
which have been thoroughly tested and debugged or large scale simulation
codebases are a good example, 2) accessing unique capabilities of a different
language; for example the well-known regular expression functions of Perl (but
don't do that because @code{regexp} already exists in Octave).
Performance should generally @strong{not} be a reason for using compiled
extensions. Although compiled extensions can run faster, particularly if they
replace a loop in Octave code, this is almost never the best path to take.
First, there are many techniques to speed up Octave performance while remaining
within the language. Second, Octave is a high-level language that makes it
easy to perform common mathematical tasks. Giving that up means shifting the
focus from solving the real problem to solving a computer programming problem.
It means returning to low-level constructs such as pointers, memory management,
mathematical overflow/underflow, etc. Because of the low level nature, and the
fact that the compiled code is executed outside of Octave, there is the very
real possibility of crashing the interpreter and losing work.
Before going further, you should first determine if you really need to bother
writing code outside of Octave.
@itemize @bullet
@item
Can I get the same functionality using the Octave scripting language alone?
Even when a function already exists outside the language, it may be better to
simply reproduce the behavior in an m-file rather than attempt to interface to
the outside code.
@item
Is the code thoroughly optimized for Octave?
If performance is an issue you should always start with the in-language
techniques for getting better performance. Chief among these is vectorization
(@pxref{Vectorization and Faster Code Execution}) which not only makes the code
concise and more understandable but improves performance (10X-100X). If loops
must be used, make sure that the allocation of space for variables takes place
outside the loops using an assignment to a matrix of the right size, or zeros.
@item
Does the code make as much use as possible of existing built-in library
routines?
These routines are highly optimized and many do not carry the overhead of being
interpreted.
@item
Does writing a dynamically linked function represent a useful investment of
your time, relative to staying in Octave?
It will take time to learn Octave's interface for external code and there will
inevitably be issues with tools such as compilers.
@end itemize
With that said, Octave offers a versatile interface for including chunks of
compiled code as dynamically linked extensions. These dynamically linked
functions can be called from the interpreter in the same manner as any ordinary
function. The interface is bi-directional and external code can call Octave
functions (like @code{plot}) which otherwise might be very difficult to
develop.
The interface is centered around supporting the languages C++, C, and Fortran.
Octave itself is written in C++ and can call external C++/C code through its
native oct-file interface. The C language is also supported through the
mex-file interface for compatibility with @sc{matlab}. Fortran code is easiest
to reach through the oct-file interface.
Because many other languages provide C or C++ APIs it is relatively simple to
build bridges between Octave and other languages. This is also a way to bridge
to hardware resources which often have device drivers written in C.
@menu
* Oct-Files::
* Mex-Files::
* Standalone Programs::
* Java Interface::
@end menu
@node Oct-Files
@section Oct-Files
@cindex oct-files
@cindex mkoctfile
@cindex oct
@menu
* Getting Started with Oct-Files::
* Matrices and Arrays in Oct-Files::
* Character Strings in Oct-Files::
* Cell Arrays in Oct-Files::
* Structures in Oct-Files::
* Sparse Matrices in Oct-Files::
* Accessing Global Variables in Oct-Files::
* Calling Octave Functions from Oct-Files::
* Calling External Code from Oct-Files::
* Allocating Local Memory in Oct-Files::
* Input Parameter Checking in Oct-Files::
* Exception and Error Handling in Oct-Files::
* Documentation and Testing of Oct-Files::
@c * Application Programming Interface for Oct-Files::
@end menu
@node Getting Started with Oct-Files
@subsection Getting Started with Oct-Files
Oct-files are pieces of C++ code that have been compiled with the Octave API
into a dynamically loadable object. They take their name from the file which
contains the object which has the extension @file{.oct}.
Finding a C++ compiler, using the correct switches, adding the right include
paths for header files, etc.@: is a difficult task. Octave automates this by
providing the @code{mkoctfile} command with which to build oct-files. The
command is available from within Octave or at the shell command line.
@c mkoctfile scripts/miscellaneous/mkoctfile.m
@anchor{XREFmkoctfile}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} mkoctfile [-options] file @dots{}
@deftypefnx {} {[@var{output}, @var{status}] =} mkoctfile (@dots{})
The @code{mkoctfile} function compiles source code written in C, C++, or
Fortran. Depending on the options used with @code{mkoctfile}, the
compiled code can be called within Octave or can be used as a stand-alone
application.
@code{mkoctfile} can be called from the shell prompt or from the Octave
prompt. Calling it from the Octave prompt simply delegates the call to
the shell prompt. Any output is stored in the @var{output} variable and
the exit status in the @var{status} variable. If called with no outputs
and the compilation fails then Octave will emit an error. If the programmer
requests @var{output} or @var{status}, however, Octave will merely issue
a warning and it is the programmer's responsibility to verify the command
was successful.
@code{mkoctfile} accepts the following options, all of which are optional
except for the filename of the code you wish to compile:
@table @samp
@item -I DIR
Add the include directory DIR to compile commands.
@item -D DEF
Add the definition DEF to the compiler call.
@item -l LIB
Add the library LIB to the link command.
@item -L DIR
Add the library directory DIR to the link command.
@item -M
@itemx --depend
Generate dependency files (.d) for C and C++ source files.
@item -R DIR
Add the run-time path to the link command.
@item @nospell{-Wl,@dots{}}
Pass options to the linker like @nospell{"-Wl,-rpath=@dots{}"}.
The quotes are needed since commas are interpreted as command
separators.
@item -W@dots{}
Pass options to the assembler like @nospell{"-Wa,OPTION"}.
@item -c
Compile but do not link.
@item -g
Enable debugging options for compilers.
@item -o FILE
@itemx --output FILE
Output filename. Default extension is @file{.oct} (or @file{.mex} if
@samp{--mex} is specified) unless linking a stand-alone executable.
@item -p VAR
@itemx --print VAR
Print configuration variable VAR@. There are three categories of
variables:
Octave configuration variables that users may override with environment
variables. These are used in commands that @code{mkoctfile} executes.
@example
ALL_CFLAGS INCLUDEDIR
ALL_CXXFLAGS LAPACK_LIBS
ALL_FFLAGS LDFLAGS
ALL_LDFLAGS LD_STATIC_FLAG
BLAS_LIBS LIBDIR
CC LIBOCTAVE
CFLAGS LIBOCTINTERP
CPICFLAG LIBOCTMEX
CPPFLAGS OCTAVE_LINK_OPTS
CXX OCTINCLUDEDIR
CXXFLAGS OCTAVE_LIBS
CXXLD OCTAVE_LINK_DEPS
CXXPICFLAG OCTLIBDIR
DL_LDFLAGS OCT_LINK_DEPS
F77 OCT_LINK_OPTS
F77_INTEGER8_FLAG RDYNAMIC_FLAG
FFLAGS SPECIAL_MATH_LIB
FPICFLAG XTRA_CFLAGS
INCFLAGS XTRA_CXXFLAGS
@end example
Octave configuration variables as above, but currently unused by
@code{mkoctfile}.
@example
@group
AR
DEPEND_EXTRA_SED_PATTERN
DEPEND_FLAGS
FFTW3F_LDFLAGS
FFTW3F_LIBS
FFTW3_LDFLAGS
FFTW3_LIBS
FFTW_LIBS
FLIBS
LIBS
RANLIB
READLINE_LIBS
@end group
@end example
Octave configuration variables that are provided for informational
purposes only. Except for @samp{OCTAVE_HOME} and @samp{OCTAVE_EXEC_HOME},
users may not override these variables.
If @w{@env{OCTAVE_HOME}}@ or @w{@env{OCTAVE_EXEC_HOME}}@ are set in the
environment, then other variables are adjusted accordingly with
@w{@env{OCTAVE_HOME}}@ or @w{@env{OCTAVE_EXEC_HOME}}@ substituted for the
original value of the directory specified by the @option{--prefix} or
@option{--exec-prefix} options that were used when Octave was configured.
@example
@group
API_VERSION LOCALARCHLIBDIR
ARCHLIBDIR LOCALFCNFILEDIR
BINDIR LOCALOCTFILEDIR
CANONICAL_HOST_TYPE LOCALSTARTUPFILEDIR
DATADIR LOCALVERARCHLIBDIR
DATAROOTDIR LOCALVERFCNFILEDIR
DEFAULT_PAGER LOCALVEROCTFILEDIR
EXEC_PREFIX MAN1DIR
EXEEXT MAN1EXT
FCNFILEDIR MANDIR
IMAGEDIR OCTAVE_EXEC_HOME
INCLUDEDIR OCTAVE_HOME
INFODIR OCTDATADIR
INFOFILE OCTDOCDIR
LIBDIR OCTFILEDIR
LIBEXECDIR OCTFONTSDIR
LOCALAPIARCHLIBDIR OCTINCLUDEDIR
LOCALAPIFCNFILEDIR OCTLIBDIR
LOCALAPIOCTFILEDIR STARTUPFILEDIR
LOCALAPIPKGDIR VERSION
@end group
@end example
@item --link-stand-alone
Link a stand-alone executable file.
@item --mex
Assume creation of a MEX file. Set the default output extension to
@file{.mex}. Link to liboctmex instead of liboctinterp and liboctave.
@item -s
@itemx --strip
Strip the output file.
@item -v
@itemx --verbose
Echo commands as they are executed.
@item file
The file to compile or link. Recognized file types are:
@example
@group
.c C source
.cc C++ source
.cp C++ source
.cpp C++ source
.CPP C++ source
.cxx C++ source
.c++ C++ source
.C C++ source
.f Fortran source (fixed form)
.F Fortran source (fixed form)
.f90 Fortran source (free form)
.F90 Fortran source (free form)
.o object file
.a library file
@end group
@end example
@end table
@end deftypefn
Consider the following short example which introduces the basics of writing a
C++ function that can be linked to Octave.
@example
@group
@verbatim
#include <octave/oct.h>
DEFUN_DLD (helloworld, args, nargout,
"Hello World Help String")
{
octave_stdout << "Hello World has "
<< args.length () << " input arguments and "
<< nargout << " output arguments.\n";
// Return empty matrices for any outputs
octave_value_list retval (nargout);
for (int i = 0; i < nargout; i++)
retval(i) = octave_value (Matrix ());
return retval;
}
@end verbatim
@end group
@end example
The first critical line is @code{#include <octave/oct.h>} which makes available
most of the definitions necessary for a C++ oct-file. Note that
@file{octave/oct.h} is a C++ header and cannot be directly @code{#include}'ed
in a C source file, nor any other language.
Included by @file{oct.h} is a definition for the macro
@w{@code{DEFUN_DLD}}@ which creates a dynamically loaded function. This macro
takes four arguments:
@enumerate 1
@item The function name as it will be seen in Octave,
@item The list of arguments to the function of type @code{octave_value_list},
@item The number of output arguments, which can be---and often is---omitted if
not used, and
@item The string to use for the help text of the function.
@end enumerate
The return type of functions defined with @w{@code{DEFUN_DLD}}@ is always
@code{octave_value_list}.
There are a couple of important considerations in the choice of function name.
First, it must be a valid Octave function name and so must be a sequence of
letters, digits, and underscores not starting with a digit. Second, as Octave
uses the function name to define the filename it attempts to find the function
in, the function name in the @w{@code{DEFUN_DLD}}@ macro must match the filename
of the oct-file. Therefore, the above function should be in a file
@file{helloworld.cc}, and would be compiled to an oct-file using the command
@example
mkoctfile helloworld.cc
@end example
This will create a file called @file{helloworld.oct} that is the compiled
version of the function. It should be noted that it is perfectly acceptable to
have more than one @w{@code{DEFUN_DLD}}@ function in a source file. However,
there must either be a symbolic link to the oct-file for each of the functions
defined in the source code with the @w{@code{DEFUN_DLD}}@ macro or the
@code{autoload} (@ref{Function Files}) function should be used.
The rest of the function shows how to find the number of input arguments, how
to print through the Octave pager, and how to return from the function. After
compiling this function as above, an example of its use is
@example
@group
helloworld (1, 2, 3)
@print{} Hello World has 3 input arguments and 0 output arguments.
@end group
@end example
Subsequent sections show how to use specific classes from Octave's core
internals. Base classes like @code{dMatrix} (a matrix of double values) are
found in the directory @file{liboctave/array}. The definitive reference for
how to use a particular class is the header file itself. However, it is often
enough simply to study the examples in the manual in order to be able to use a
class.
@node Matrices and Arrays in Oct-Files
@subsection Matrices and Arrays in Oct-Files
Octave supports a number of different array and matrix classes, the majority of
which are based on the @code{Array} class. The exception are the sparse matrix
types discussed separately below. There are three basic matrix types:
@table @code
@item Matrix
A double precision matrix class defined in @file{dMatrix.h}
@item ComplexMatrix
A complex matrix class defined in @file{CMatrix.h}
@item BoolMatrix
A boolean matrix class defined in @file{boolMatrix.h}
@end table
These are the basic two-dimensional matrix types of Octave. In addition there
are a number of multi-dimensional array types including
@table @code
@item NDArray
A double precision array class defined in @file{dNDArray.h}
@item ComplexNDarray
A complex array class defined in @file{CNDArray.h}
@item boolNDArray
A boolean array class defined in @file{boolNDArray.h}
@item int8NDArray
@itemx int16NDArray
@itemx int32NDArray
@itemx int64NDArray
8, 16, 32, and 64-bit signed array classes defined in
@file{int8NDArray.h}, @file{int16NDArray.h}, etc.
@item uint8NDArray
@itemx uint16NDArray
@itemx uint32NDArray
@itemx uint64NDArray
8, 16, 32, and 64-bit unsigned array classes defined in
@file{uint8NDArray.h}, @file{uint16NDArray.h}, etc.
@end table
There are several basic ways of constructing matrices or multi-dimensional
arrays. Using the class @code{Matrix} as an example one can
@itemize @bullet
@item
Create an empty matrix or array with the empty constructor. For example:
@example
Matrix a;
@end example
This can be used for all matrix and array types.
@item
Define the dimensions of the matrix or array with a dim_vector which has the
same characteristics as the vector returned from @code{size}. For example:
@example
@group
dim_vector dv (2, 3); // 2 rows, 3 columns
Matrix a (dv);
@end group
@end example
This can be used for all matrix and array types.
@item
Define the number of rows and columns in the matrix. For example:
@example
Matrix a (2, 2)
@end example
This constructor can @strong{only} be used with matrix types.
@end itemize
These types all share a number of basic methods and operators. Many bear a
resemblance to functions that exist in the interpreter. A selection of useful
methods include
@deftypefn {Method} {T&} operator () (octave_idx_type)
@deftypefnx {Method} {T&} elem (octave_idx_type)
The @code{()} operator or @code{elem} method allow the values of the matrix or
array to be read or set. These methods take a single argument, which is of
type @code{octave_idx_type}, that is the index into the matrix or array.
Additionally, the matrix type allows two argument versions of the @code{()}
operator and @code{elem} method, giving the row and column index of the value
to get or set.
@end deftypefn
Note that these functions do significant error checking and so in some
circumstances the user might prefer to access the data of the array or matrix
directly through the @code{rwdata} method discussed below.
@deftypefn {Method} {octave_idx_type} numel () const
The total number of elements in the matrix or array.
@end deftypefn
@deftypefn {Method} {size_t} byte_size () const
The number of bytes used to store the matrix or array.
@end deftypefn
@deftypefn {Method} {dim_vector} dims () const
The dimensions of the matrix or array in value of type @code{dim_vector}.
@end deftypefn
@deftypefn {Method} {int} ndims () const
The number of dimensions of the matrix or array. Matrices are always 2-D, but
arrays can be N-dimensional.
@end deftypefn
@deftypefn {Method} {void} resize (const dim_vector&)
@deftypefnx {Method} {void} resize (nrows, ncols)
A method taking either an argument of type @code{dim_vector}, or, in the case
of a matrix, two arguments of type @code{octave_idx_type} defining the number
of rows and columns in the matrix.
@end deftypefn
@deftypefn {Method} {T *} rwdata ()
This method returns a pointer to the underlying data of the matrix or array so
that it can be manipulated directly, either within Octave or by an external
library.
@end deftypefn
Operators such as @code{+}, @code{-}, or @code{*} can be used on the majority
of the matrix and array types. In addition there are a number of methods that
are of interest only for matrices such as @code{transpose}, @code{hermitian},
@code{solve}, etc.
The typical way to extract a matrix or array from the input arguments of
@w{@code{DEFUN_DLD}}@ function is as follows
@example
@group
@verbatim
#include <octave/oct.h>
DEFUN_DLD (addtwomatrices, args, , "Add A to B")
{
if (args.length () != 2)
print_usage ();
NDArray A = args(0).array_value ();
NDArray B = args(1).array_value ();
return octave_value (A + B);
}
@end verbatim
@end group
@end example
To avoid segmentation faults causing Octave to abort, this function explicitly
checks that there are sufficient arguments available before accessing these
arguments. It then obtains two multi-dimensional arrays of type @code{NDArray}
and adds these together. Note that the @code{array_value} method is called
without using the @code{is_matrix_type} method. If an error occurs when
attempting to extract the value, Octave will print a message and throw an
exception. The reason to prefer this coding structure is that the arguments
might be a type which is not an @code{NDArray}, but for which it would make
sense to convert them to one. The @code{array_value} method allows this
conversion to be performed transparently when possible. If you need to catch
errors like this, and perform some kind of cleanup or other operation, you can
catch the @code{octave_execution_error} exception.
@code{A + B}, operating on two @code{NDArray} objects returns an
@code{NDArray}, which is cast to an @code{octave_value} on the return from the
function. An example of the use of this demonstration function is
@example
@group
addtwomatrices (ones (2, 2), eye (2, 2))
@result{} 2 1
1 2
@end group
@end example
A list of the basic @code{Matrix} and @code{Array} types, the methods to
extract these from an @code{octave_value}, and the associated header file is
listed below.
@multitable @columnfractions .3 .4 .3
@headitem Type @tab Function @tab Source Code
@item @code{RowVector} @tab @code{row_vector_value} @tab @file{dRowVector.h}
@item @code{ComplexRowVector} @tab @code{complex_row_vector_value} @tab @file{CRowVector.h}
@item @code{ColumnVector} @tab @code{column_vector_value} @tab @file{dColVector.h}
@item @code{ComplexColumnVector} @tab @code{complex_column_vector_value} @tab @file{CColVector.h}
@item @code{Matrix} @tab @code{matrix_value} @tab @file{dMatrix.h}
@item @code{ComplexMatrix} @tab @code{complex_matrix_value} @tab @file{CMatrix.h}
@item @code{boolMatrix} @tab @code{bool_matrix_value} @tab @file{boolMatrix.h}
@item @code{charMatrix} @tab @code{char_matrix_value} @tab @file{chMatrix.h}
@item @code{NDArray} @tab @code{array_value} @tab @file{dNDArray.h}
@item @code{ComplexNDArray} @tab @code{complex_array_value} @tab @file{CNDArray.h}
@item @code{boolNDArray} @tab @code{bool_array_value} @tab @file{boolNDArray.h}
@item @code{charNDArray} @tab @code{char_array_value} @tab @file{charNDArray.h}
@item @code{int8NDArray} @tab @code{int8_array_value} @tab @file{int8NDArray.h}
@item @code{int16NDArray} @tab @code{int16_array_value} @tab @file{int16NDArray.h}
@item @code{int32NDArray} @tab @code{int32_array_value} @tab @file{int32NDArray.h}
@item @code{int64NDArray} @tab @code{int64_array_value} @tab @file{int64NDArray.h}
@item @code{uint8NDArray} @tab @code{uint8_array_value} @tab @file{uint8NDArray.h}
@item @code{uint16NDArray} @tab @code{uint16_array_value} @tab @file{uint16NDArray.h}
@item @code{uint32NDArray} @tab @code{uint32_array_value} @tab @file{uint32NDArray.h}
@item @code{uint64NDArray} @tab @code{uint64_array_value} @tab @file{uint64NDArray.h}
@end multitable
@node Character Strings in Oct-Files
@subsection Character Strings in Oct-Files
A character string in Octave is just a special @code{Array} class. Consider
the example:
@example
@verbatim
#include <octave/oct.h>
DEFUN_DLD (stringdemo, args, , "String Demo")
{
if (args.length () != 1)
print_usage ();
octave_value_list retval;
charMatrix ch = args(0).char_matrix_value ();
retval(1) = octave_value (ch, '\''); // Single Quote String
octave_idx_type nr = ch.rows ();
for (octave_idx_type i = 0; i < nr / 2; i++)
{
std::string tmp = ch.row_as_string (i);
ch.insert (ch.row_as_string (nr-i-1).c_str (), i, 0);
ch.insert (tmp.c_str (), nr-i-1, 0);
}
retval(0) = octave_value (ch, '"'); // Double Quote String
return retval;
}
@end verbatim
@end example
An example of the use of this function is
@example
@group
s0 = ["First String"; "Second String"];
[s1,s2] = stringdemo (s0)
@result{} s1 = Second String
First String
@result{} s2 = First String
Second String
typeinfo (s2)
@result{} sq_string
typeinfo (s1)
@result{} string
@end group
@end example
One additional complication of strings in Octave is the difference between
single quoted and double quoted strings. To find out if an @code{octave_value}
contains a single or double quoted string use one of the predicate tests shown
below.
@example
@group
if (args(0).is_sq_string ())
octave_stdout << "First argument is a single quoted string\n";
else if (args(0).is_dq_string ())
octave_stdout << "First argument is a double quoted string\n";
@end group
@end example
Note, however, that both types of strings are represented by the
@code{charNDArray} type, and so when assigning to an @code{octave_value}, the
type of string should be specified. For example:
@example
@group
octave_value_list retval;
charNDArray ch;
@dots{}
// Create single quoted string
retval(1) = octave_value (ch); // default constructor is sq_string
OR
retval(1) = octave_value (ch, '\''); // explicitly create sq_string
// Create a double quoted string
retval(0) = octave_value (ch, '"');
@end group
@end example
@node Cell Arrays in Oct-Files
@subsection Cell Arrays in Oct-Files
Octave's cell type is also available from within oct-files. A cell array is
just an @code{Array} of @code{octave_value}s, and thus each element of the cell
array can be treated like any other @code{octave_value}. A simple example is
@example
@verbatim
#include <octave/oct.h>
#include <octave/Cell.h>
DEFUN_DLD (celldemo, args, , "Cell Demo")
{
if (args.length () != 1)
print_usage ();
Cell c = args(0).cell_value ();
octave_value_list retval;
retval.resize (c.numel ()); // faster code by pre-declaring size
for (octave_idx_type i = 0; i < c.numel (); i++)
{
retval(i) = c(i); // using operator syntax
//retval(i) = c.elem (i); // using method syntax
}
return retval;
}
@end verbatim
@end example
Note that cell arrays are used less often in standard oct-files and so the
@file{Cell.h} header file must be explicitly included. The rest of the example
extracts the @code{octave_value}s one by one from the cell array and returns
them as individual output arguments. For example:
@example
@group
[b1, b2, b3] = celldemo (@{1, [1, 2], "test"@})
@result{}
b1 = 1
b2 =
1 2
b3 = test
@end group
@end example
@node Structures in Oct-Files
@subsection Structures in Oct-Files
A structure in Octave is a map between a number of fields represented and their
values. The Standard Template Library @code{map} class is used, with the pair
consisting of a @code{std::string} and an Octave @code{Cell} variable.
A simple example demonstrating the use of structures within oct-files is
@example
@verbatim
#include <octave/oct.h>
#include <octave/ov-struct.h>
DEFUN_DLD (structdemo, args, , "Struct Demo")
{
if (args.length () != 2)
print_usage ();
if (! args(0).isstruct ())
error ("structdemo: ARG1 must be a struct");
octave_scalar_map arg0 = args(0).scalar_map_value ();
//octave_map arg0 = args(0).map_value ();
if (! args(1).is_string ())
error ("structdemo: ARG2 must be a character string");
std::string arg1 = args(1).string_value ();
octave_value tmp = arg0.contents (arg1);
//octave_value tmp = arg0.contents (arg1)(0);
if (! tmp.is_defined ())
error ("structdemo: struct does not have a field named '%s'\n",
arg1.c_str ());
octave_scalar_map st;
st.assign ("selected", tmp);
return octave_value (st);
}
@end verbatim
@end example
An example of its use is
@example
@group
x.a = 1; x.b = "test"; x.c = [1, 2];
structdemo (x, "b")
@result{} selected = test
@end group
@end example
The example above specifically uses the @code{octave_scalar_map} class which is
for representing a single struct. For structure arrays, the @code{octave_map}
class is used instead. The commented code shows how the demo could be modified
to handle a structure array. In that case, the @code{contents} method returns
a @code{Cell} which may have more than one element. Therefore, to obtain the
underlying @code{octave_value} in the single struct example we would write
@example
octave_value tmp = arg0.contents (arg1)(0);
@end example
@noindent
where the trailing @code{(0)} is the @code{()} operator on the @code{Cell}
object. If this were a true structure array with multiple elements we could
iterate over the elements using the @code{()} operator.
Structures are a relatively complex data container and there are more functions
available in @file{oct-map.h} which make coding with them easier than relying
on just @code{contents}.
@node Sparse Matrices in Oct-Files
@subsection Sparse Matrices in Oct-Files
There are three classes of sparse objects that are of interest to the user.
@table @code
@item SparseMatrix
A double precision sparse matrix class
@item SparseComplexMatrix
A complex sparse matrix class
@item SparseBoolMatrix
A boolean sparse matrix class
@end table
All of these classes inherit from the @code{Sparse<T>} template class, and so
all have similar capabilities and usage. The @code{Sparse<T>} class was based
on Octave's @code{Array<T>} class and users familiar with Octave's
@code{Array} classes will be comfortable with the use of the sparse classes.
The sparse classes will not be entirely described in this section, due to their
similarity with the existing @code{Array} classes. However, there are a few
differences due the nature of sparse objects, and these will be described.
First, although it is fundamentally possible to have N-dimensional sparse
objects, the Octave sparse classes do not allow them at this time; All
instances of the sparse classes @strong{must} be 2-dimensional. This means
that @code{SparseMatrix} is actually more similar to Octave's @code{Matrix}
class than it is to the @code{NDArray} class.
@menu
* Array and Sparse Class Differences::
* Creating Sparse Matrices in Oct-Files::
* Using Sparse Matrices in Oct-Files::
@end menu
@node Array and Sparse Class Differences
@subsubsection Array and Sparse Class Differences
The number of elements in a sparse matrix is considered to be the number
of nonzero elements, rather than the product of the dimensions. Therefore,
@example
@group
SparseMatrix sm;
@dots{}
int nnz = sm.nelem ();
@end group
@end example
@noindent
returns the number of nonzero elements (like the interpreter function
@code{nnz}). If the user really requires the number of elements in the matrix,
including the nonzero elements, they should use @code{numel} rather than
@code{nelem}. Note that for very large matrices, where the product of the two
dimensions is larger than the representation of an unsigned int, @code{numel}
can overflow. An example is @code{speye (1e6)} which will create a matrix with
a million rows and columns, but only a million nonzero elements. In this case,
the number of rows multiplied by the number of columns is more than two hundred
times the maximum value that can be represented by an unsigned 32-bit int. The
use of @code{numel} should, therefore, be avoided unless it is known that it
will not overflow.
Extreme care is also required when using the @code{elem} method or the
@code{()} operator which perform essentially the same function. The reason is
that if a sparse object is non-const, then Octave will assume that a request
for a zero element in a sparse matrix is in fact a request to create this
element so it can be filled. Therefore, a piece of code like
@example
@group
SparseMatrix sm;
@dots{}
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
std::cerr << " (" << i << "," << j << "): " << sm(i,j) << "\n";
@end group
@end example
@noindent
is a great way of turning a sparse matrix into a dense one, and a very slow
way at that since it reallocates the sparse object for each zero element in the
matrix.
A simple way of preventing the above from happening is to create a temporary
constant version of the sparse matrix. Note that only the container for the
sparse matrix will be copied, while the actual representation of the data will
be shared between the two versions of the sparse matrix; This is not a costly
operation. The example above, re-written to prevent sparse-to-dense
conversion, is
@example
@group
SparseMatrix sm;
@dots{}
const SparseMatrix tmp (sm);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
std::cerr << " (" << i << "," << j << "): " << tmp(i,j) << "\n";
@end group
@end example
Finally, because the sparse types aren't represented by a contiguous block of
memory, the @nospell{@code{rwdata}} method of @code{Array<T>} is not
available. It is, however, replaced by three separate methods @code{ridx},
@code{cidx}, and @code{data}, that access the raw compressed column format that
Octave sparse matrices are stored in. These methods can be used in a manner
similar to @code{elem} to allow the matrix to be accessed or filled. However,
it is up to the user to respect the sparse matrix compressed column format or
the matrix will become corrupted.
@node Creating Sparse Matrices in Oct-Files
@subsubsection Creating Sparse Matrices in Oct-Files
There are two useful strategies for creating a sparse matrix. The first is to
create three vectors representing the row index, column index, and data values,
and from these create the matrix. The second alternative is to create a sparse
matrix with the appropriate amount of space, and then fill in the values. Both
techniques have their advantages and disadvantages.
Below is an example of creating a small sparse matrix using the first technique
@example
@group
int nz, nr, nc;
nz = 4, nr = 3, nc = 4;
ColumnVector ridx (nz);
ColumnVector cidx (nz);
ColumnVector data (nz);
ridx(0) = 1; cidx(0) = 1; data(0) = 1;
ridx(1) = 2; cidx(1) = 2; data(1) = 2;
ridx(2) = 2; cidx(2) = 4; data(2) = 3;
ridx(3) = 3; cidx(3) = 4; data(3) = 4;
SparseMatrix sm (data, ridx, cidx, nr, nc);
@end group
@end example
@noindent
which creates the matrix given in section @ref{Storage of Sparse Matrices}.
Note that the compressed matrix format is not used at the time of the creation
of the matrix itself, but is used internally.
As discussed in the chapter on Sparse Matrices, the values of the sparse matrix
are stored in increasing column-major ordering. Although the data passed by
the user need not respect this requirement, pre-sorting the data will
significantly speed up creation of the sparse matrix.
The disadvantage of this technique for creating a sparse matrix is that there
is a brief time when two copies of the data exist. For extremely memory
constrained problems this may not be the best technique for creating a sparse
matrix.
The alternative is to first create a sparse matrix with the desired number of
nonzero elements and then later fill those elements in. Sample code:
@example
@group
int nz, nr, nc;
nz = 4, nr = 3, nc = 4;
SparseMatrix sm (nr, nc, nz);
sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;
@end group
@end example
This creates the same matrix as previously. Again, although not strictly
necessary, it is significantly faster if the sparse matrix is created and the
elements are added in column-major ordering. The reason for this is that when
elements are inserted at the end of the current list of known elements then no
element in the matrix needs to be moved to allow the new element to be
inserted; Only the column indices need to be updated.
There are a few further points to note about this method of creating a sparse
matrix. First, it is possible to create a sparse matrix with fewer elements
than are actually inserted in the matrix. Therefore,
@example
@group
int nr, nc;
nr = 3, nc = 4;
SparseMatrix sm (nr, nc, 0);
sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;
@end group
@end example
@noindent
is perfectly valid. However, it is a very bad idea because as each new element
is added to the sparse matrix the matrix needs to request more space and
reallocate memory. This is an expensive operation that will significantly slow
this means of creating a sparse matrix. It is possible to create a sparse
matrix with excess storage, so having @var{nz} greater than 4 in this example
is also valid. The disadvantage is that the matrix occupies more memory than
strictly needed.
Of course, it is not always possible to know the number of nonzero elements
prior to filling a matrix. For this reason the additional unused storage of a
sparse matrix can be removed after its creation with the @code{maybe_compress}
function. In addition to deallocating unused storage, @code{maybe_compress}
can also remove zero elements from the matrix. The removal of zero elements
from the matrix is controlled by setting the argument of the
@code{maybe_compress} function to be @code{true}. However, the cost of
removing the zeros is high because it implies re-sorting the elements. If
possible, it is better for the user to avoid adding the unnecessary zeros in
the first place. An example of the use of @code{maybe_compress} is
@example
@group
int nz, nr, nc;
nz = 6, nr = 3, nc = 4;
SparseMatrix sm1 (nr, nc, nz);
sm1(0,0) = 1; sm1(0,1) = 2; sm1(1,3) = 3; sm1(2,3) = 4;
sm1.maybe_compress (); // No zero elements were added
SparseMatrix sm2 (nr, nc, nz);
sm2(0,0) = 1; sm2(0,1) = 2; sm(0,2) = 0; sm(1,2) = 0;
sm1(1,3) = 3; sm1(2,3) = 4;
sm2.maybe_compress (true); // Zero elements were added
@end group
@end example
The use of the @code{maybe_compress} function should be avoided if possible as
it will slow the creation of the matrix.
A third means of creating a sparse matrix is to work directly with the data in
compressed row format. An example of this advanced technique might be
@example
octave_value arg;
@dots{}
int nz, nr, nc;
nz = 6, nr = 3, nc = 4; // Assume we know the max # nz
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrix_value ();
int ii = 0;
sm.cidx (0) = 0;
for (int j = 1; j < nc; j++)
@{
for (int i = 0; i < nr; i++)
@{
double tmp = m(i,j);
if (tmp != 0.)
@{
sm.data(ii) = tmp;
sm.ridx(ii) = i;
ii++;
@}
@}
sm.cidx(j+1) = ii;
@}
sm.maybe_compress (); // If don't know a priori the final # of nz.
@end example
@noindent
which is probably the most efficient means of creating a sparse matrix.
Finally, it may sometimes arise that the amount of storage initially created is
insufficient to completely store the sparse matrix. Therefore, the method
@code{change_capacity} exists to reallocate the sparse memory. The above
example would then be modified as
@example
octave_value arg;
@dots{}
int nz, nr, nc;
nz = 6, nr = 3, nc = 4; // Guess the number of nz elements
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrix_value ();
int ii = 0;
sm.cidx (0) = 0;
for (int j = 1; j < nc; j++)
@{
for (int i = 0; i < nr; i++)
@{
double tmp = m(i,j);
if (tmp != 0.)
@{
if (ii == nz)
@{
nz += 2; // Add 2 more elements
sm.change_capacity (nz);
@}
sm.data(ii) = tmp;
sm.ridx(ii) = i;
ii++;
@}
@}
sm.cidx(j+1) = ii;
@}
sm.maybe_compress (); // If don't know a priori the final # of nz.
@end example
Note that both increasing and decreasing the number of nonzero elements in a
sparse matrix is expensive as it involves memory reallocation. Also because
parts of the matrix, though not its entirety, exist as old and new copies at
the same time, additional memory is needed. Therefore, if possible avoid
changing capacity.
@node Using Sparse Matrices in Oct-Files
@subsubsection Using Sparse Matrices in Oct-Files
Most of the same operators and functions for sparse matrices that are available
from the Octave interpreter are also available within oct-files. The basic
means of extracting a sparse matrix from an @code{octave_value}, and returning
it as an @code{octave_value}, can be seen in the following example.
@example
@group
octave_value_list retval;
SparseMatrix sm = args(0).sparse_matrix_value ();
SparseComplexMatrix scm = args(1).sparse_complex_matrix_value ();
SparseBoolMatrix sbm = args(2).sparse_bool_matrix_value ();
@dots{}
retval(2) = sbm;
retval(1) = scm;
retval(0) = sm;
@end group
@end example
The conversion to an @code{octave_value} is handled by the sparse
@code{octave_value} constructors, and so no special care is needed.
@node Accessing Global Variables in Oct-Files
@subsection Accessing Global Variables in Oct-Files
Global variables allow variables in the global scope to be accessed. Global
variables can be accessed within oct-files by using the support functions
@w{@code{global_varval}}@ and @w{@code{global_assign}}@ from the current
interpreter's symbol table. Both functions take as first argument a string
representing the variable name to be obtained or assigned. The second
argument of @w{@code{global_assign}}@ is the value to be assigned. An
example of the use of these two functions is
@example
@verbatim
#include <octave/oct.h>
#include <octave/interpreter.h>
DEFMETHOD_DLD (globaldemo, interp, args, , "Global Demo")
{
if (args.length () != 1)
print_usage ();
octave_value retval;
std::string s = args(0).string_value ();
octave::symbol_table& symtab = interp.get_symbol_table ();
octave_value tmp = symtab.global_varval (s);
if (tmp.is_defined ())
retval = tmp;
else
retval = "Global variable not found";
symtab.global_assign ("a", 42.0);
return retval;
}
@end verbatim
@end example
An example of its use is
@example
@group
global a b
b = 10;
globaldemo ("b")
@result{} 10
globaldemo ("c")
@result{} "Global variable not found"
num2str (a)
@result{} 42
@end group
@end example
@node Calling Octave Functions from Oct-Files
@subsection Calling Octave Functions from Oct-Files
There is often a need to be able to call another Octave function from within an
oct-file, and there are many examples of such within Octave itself. For
example, the @code{quad} function is an oct-file that calculates the definite
integral by quadrature over a user-supplied function.
There are also many ways in which a function could be given as input. It might
be passed as one of
@enumerate 1
@item Function Handle
@item Anonymous Function Handle
@item String
@end enumerate
The code below demonstrates all four methods of passing a function to an
oct-file.
@example
@verbatim
#include <octave/oct.h>
#include <octave/parse.h>
DEFMETHOD_DLD (funcdemo, interp, args, nargout, "Function Demo")
{
int nargin = args.length ();
if (nargin < 2)
print_usage ();
octave_value_list newargs;
for (octave_idx_type i = nargin - 1; i > 0; i--)
newargs(i-1) = args(i);
octave_value_list retval;
if (args(0).is_function_handle () || args(0).is_inline_function ()
|| args(0).is_string ())
retval = interp.feval (args(0), newargs, nargout);
else
error ("funcdemo: INPUT must be string, inline, or function handle");
return retval;
}
@end verbatim
@end example
The first input to the demonstration code is a user-supplied function and the
remaining arguments are all passed to the function.
@example
@group
funcdemo (@@sin, 1)
@result{} 0.84147
funcdemo (@@(x) sin (x), 1)
@result{} 0.84147
funcdemo ("sin", 1)
@result{} 0.84147
funcdemo (@@atan2, 1, 1)
@result{} 0.78540
@end group
@end example
When the user function is passed as a string the treatment of the function is
different. In some cases it is necessary to have the user supplied function as
an @code{octave_function} object. In that case the string argument can be used
to create a temporary function as demonstrated below.
@example
@group
std::octave fcn_name = unique_symbol_name ("__fcn__");
std::string fcode = "function y = ";
fcode.append (fcn_name);
fcode.append ("(x) y = ");
fcn = extract_function (args(0), "funcdemo", fcn_name,
fcode, "; endfunction");
@dots{}
if (fcn_name.length ())
clear_function (fcn_name);
@end group
@end example
There are two important things to know in this case. First, the number of
input arguments to the user function is fixed, and in the above example is a
single argument. Second, to avoid leaving the temporary function in the Octave
symbol table it should be cleared after use. Also, by convention all internal
function names begin and end with the character sequence @samp{__}.
@node Calling External Code from Oct-Files
@subsection Calling External Code from Oct-Files
Linking external C code to Octave is relatively simple, as the C functions can
easily be called directly from C++. One possible issue is that the
declarations of the external C functions may need to be explicitly defined as C
functions to the compiler. If the declarations of the external C functions are
in the header @file{foo.h}, then the tactic to ensure that the C++ compiler
treats these declarations as C code is
@example
@group
#ifdef __cplusplus
extern "C"
@{
#endif
#include "foo.h"
#ifdef __cplusplus
@} /* end extern "C" */
#endif
@end group
@end example
When calling functions that are implemented in Fortran code, some peculiarities
have to be taken into account. Symbol names in Fortran are case-insensitive,
and depending on the used Fortran compiler, function names are either exported
with all lowercase or with all uppercase characters. Additionally, some
compilers append none, one or two underscores "@code{_}" at the end of
exported function names. This is called "name-mangling".
Octave supplies macros that allow writing code that automatically handles the
name-mangling for a number of different Fortran compilers. These macros are
@w{@env{F77_FUNC}} and @w{@env{F77_FUNC_}}. The former should be used for
Fortran functions that do not contain any underscores in their name. The
latter should be used for Fortran functions with underscores in their names.
Both macros take two arguments: The first is the Fortran function name in all
lowercase characters. The second is the same Fortran function name in all
uppercase characters.
Additionally to the name-mangling, different compilers are using different
calling conventions for some types. Octave defines the following preprocessor
macros to allow writing code that can be used with different Fortran calling
conventions.
Note that we don't attempt to handle Fortran functions, we always use
subroutine wrappers for them and pass the return value as an extra argument.
Use the following macros to pass character strings from C to Fortran:
@example
@group
F77_CHAR_ARG(x)
F77_CONST_CHAR_ARG(x)
F77_CXX_STRING_ARG(x)
F77_CHAR_ARG_LEN(l)
F77_CHAR_ARG_DECL
F77_CONST_CHAR_ARG_DECL
F77_CHAR_ARG_LEN_DECL
@end group
@end example
Use the following macros to write C-language functions that accept
Fortran-style character strings:
@example
@group
F77_CHAR_ARG_DEF(s, len)
F77_CONST_CHAR_ARG_DEF(s, len)
F77_CHAR_ARG_LEN_DEF(len)
F77_CHAR_ARG_USE(s)
F77_CHAR_ARG_LEN_USE(s, len)
@end group
@end example
Use the following macros for Fortran types in C++ code:
@table @code
@item F77_INT4
Equivalent to Fortran @code{INTEGER*4} type
@item F77_DBLE
Equivalent to Fortran @code{DOUBLE PRECISION} type
@item F77_REAL
Equivalent to Fortran @code{REAL} type
@item F77_CMPLX
Equivalent to Fortran @code{COMPLEX} type
@item F77_DBLE_CMPLX
Equivalent to Fortran @code{DOUBLE COMPLEX} type
@item F77_LOGICAL
Equivalent to Fortran @code{LOGICAL} type
@item F77_RET_T
Return type of a C++ function that acts like a Fortran subroutine.
@end table
Use the following macros to return from C-language functions that are supposed
to act like Fortran subroutines. @w{@env{F77_NORETURN}} is intended to be used
as the last statement of such a function that has been tagged with a
@nospell{@qcode{"noreturn"}} attribute.
@example
@group
F77_RETURN(retval)
F77_NORETURN(retval)
@end group
@end example
The underlying Fortran code should use the @code{XSTOPX} function to replace
the Fortran @code{STOP} function. @code{XSTOPX} uses the Octave exception
handler to treat failing cases in the Fortran code explicitly. Note that
Octave supplies its own replacement @sc{blas} @code{XERBLA} function, which
uses @code{XSTOPX}.
The following example shows the inclusion of a Fortran function in an oct-file,
where the C++ wrapper is
@example
@verbatim
#include <octave/oct.h>
#include <octave/f77-fcn.h>
extern "C"
{
F77_RET_T
F77_FUNC (fortransub, FORTRANSUB)
(const F77_INT&, F77_DBLE*, F77_CHAR_ARG_DECL F77_CHAR_ARG_LEN_DECL);
}
DEFUN_DLD (fortrandemo, args, , "Fortran Demo")
{
if (args.length () != 1)
print_usage ();
NDArray a = args(0).array_value ();
double *av = a.rwdata ();
octave_idx_type na = a.numel ();
OCTAVE_LOCAL_BUFFER (char, ctmp, 128);
F77_FUNC (fortransub, FORTRANSUB)
(na, av, ctmp F77_CHAR_ARG_LEN (128));
return ovl (a, std::string (ctmp));
}
@end verbatim
@end example
@noindent
and the Fortran function is
@example
@verbatim
subroutine fortransub (n, a, s)
implicit none
character*(*) s
real*8 a(*)
integer*4 i, n, ioerr
do i = 1, n
if (a(i) .eq. 0d0) then
call xstopx ('fortransub: divide by zero')
else
a(i) = 1d0 / a(i)
endif
enddo
write (unit = s, fmt = '(a,i3,a,a)', iostat = ioerr)
$ 'There are ', n,
$ ' values in the input vector', char(0)
if (ioerr .ne. 0) then
call xstopx ('fortransub: error writing string')
endif
return
end
@end verbatim
@end example
This example demonstrates most of the features needed to link to an external
Fortran function, including passing arrays and strings, as well as exception
handling. Both the Fortran and C++ files need to be compiled in order for the
example to work.
@example
@group
mkoctfile fortrandemo.cc fortransub.f
[b, s] = fortrandemo (1:3)
@result{}
b = 1.00000 0.50000 0.33333
s = There are 3 values in the input vector
[b, s] = fortrandemo (0:3)
error: fortrandemo: fortransub: divide by zero
@end group
@end example
@node Allocating Local Memory in Oct-Files
@subsection Allocating Local Memory in Oct-Files
Allocating memory within an oct-file might seem easy, as the C++ new/delete
operators can be used. However, in that case great care must be taken to avoid
memory leaks. The preferred manner in which to allocate memory for use locally
is to use the @w{@code{OCTAVE_LOCAL_BUFFER}}@ macro. An example of its use is
@example
OCTAVE_LOCAL_BUFFER (double, tmp, len)
@end example
@noindent
that returns a pointer @code{tmp} of type @code{double *} of length @code{len}.
In this case, Octave itself will worry about reference counting and variable
scope and will properly free memory without programmer intervention.
@node Input Parameter Checking in Oct-Files
@subsection Input Parameter Checking in Oct-Files
Because oct-files are compiled functions they open up the possibility of
crashing Octave through careless function calls or memory faults. It is quite
important that each and every function have a sufficient level of parameter
checking to ensure that Octave behaves well.
The minimum requirement, as previously discussed, is to check the number of
input arguments before using them to avoid referencing a nonexistent argument.
However, in some cases this might not be sufficient as the underlying code
imposes further constraints. For example, an external function call might be
undefined if the input arguments are not integers, or if one of the arguments
is zero, or if the input is complex and a real value was expected. Therefore,
oct-files often need additional input parameter checking.
There are several functions within Octave that can be useful for the purposes
of parameter checking. These include the methods of the @code{octave_value}
class like @code{is_real_matrix}, @code{is_numeric_type}, etc. (see
@file{ov.h}). Often, with a knowledge of the Octave m-file language, you can
guess at what the corresponding C++ routine will. In addition there are some
more specialized input validation functions of which a few are demonstrated
below.
@example
@verbatim
#include <octave/oct.h>
DEFUN_DLD (paramdemo, args, nargout, "Parameter Check Demo")
{
if (args.length () != 1)
print_usage ();
NDArray m = args(0).array_value ();
double min_val = -10.0;
double max_val = 10.0;
octave_stdout << "Properties of input array:\n";
if (m.any_element_is_negative ())
octave_stdout << " includes negative values\n";
if (m.any_element_is_inf_or_nan ())
octave_stdout << " includes Inf or NaN values\n";
if (m.any_element_not_one_or_zero ())
octave_stdout << " includes other values than 1 and 0\n";
if (m.all_elements_are_int_or_inf_or_nan ())
octave_stdout << " includes only int, Inf or NaN values\n";
if (m.all_integers (min_val, max_val))
octave_stdout << " includes only integers in [-10,10]\n";
return octave_value_list ();
}
@end verbatim
@end example
@noindent
An example of its use is:
@example
@group
paramdemo ([1, 2, NaN, Inf])
@result{} Properties of input array:
includes Inf or NaN values
includes other values than 1 and 0
includes only int, Inf or NaN values
@end group
@end example
@node Exception and Error Handling in Oct-Files
@subsection Exception and Error Handling in Oct-Files
Another important feature of Octave is its ability to react to the user typing
@key{Control-C} during extended calculations. This ability is based on the C++
exception handler, where memory allocated by the C++ new/delete methods is
automatically released when the exception is treated. When writing an oct-file
which may run for a long time the programmer must periodically use the macro
@w{@code{OCTAVE_QUIT}}, in order to allow Octave to check and possibly respond
to a user typing @key{Control-C}. For example:
@example
@group
for (octave_idx_type i = 0; i < a.nelem (); i++)
@{
OCTAVE_QUIT;
b.elem (i) = 2. * a.elem (i);
@}
@end group
@end example
The presence of the @w{@code{OCTAVE_QUIT}}@ macro in the inner loop allows
Octave to detect and acknowledge a @key{Control-C} key sequence. Without this
macro, the user must either wait for the oct-file function to return before the
interrupt is processed, or the user must press @key{Control-C} three times
which will force Octave to exit completely.
The @w{@code{OCTAVE_QUIT}}@ macro does impose a very small performance penalty;
For loops that are known to be small it may not make sense to include
@w{@code{OCTAVE_QUIT}}.
When creating an oct-file that uses an external library, the function might
spend a significant portion of its time in the external library. It is not
generally possible to use the @w{@code{OCTAVE_QUIT}}@ macro in this case. The
alternative code in this case is
@example
@group
BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
@dots{} some code that calls a "foreign" function @dots{}
END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
@end group
@end example
The disadvantage of this is that if the foreign code allocates any memory
internally, then this memory might be lost during an interrupt, without being
deallocated. Therefore, ideally Octave itself should allocate any memory that
is needed by the foreign code, with either the @nospell{@code{rwdata}}
method or the @w{@code{OCTAVE_LOCAL_BUFFER}}@ macro.
The Octave @code{unwind_protect} mechanism (@ref{The unwind_protect Statement})
can also be used in oct-files. In conjunction with the exception handling of
Octave, it ensures that certain recovery code is always run even if an
exception occurs. An example of the use of this mechanism is
@example
@verbatim
#include <octave/oct.h>
#include <octave/unwind-prot.h>
void
my_err_handler (const char *fmt, ...)
{
// Do nothing!!
}
void
my_err_with_id_handler (const char *id, const char *fmt, ...)
{
// Do nothing!!
}
DEFUN_DLD (unwinddemo, args, nargout, "Unwind Demo")
{
if (args.length () < 2)
print_usage ();
NDArray a = args(0).array_value ();
NDArray b = args(1).array_value ();
// Create unwind_action objects. At the end of the enclosing scope,
// destructors for these objects will call the given functions with
// the specified arguments.
octave::unwind_action restore_warning_handler
(set_liboctave_warning_handler, current_liboctave_warning_handler);
octave::unwind_action restore_warning_with_id_handler
(set_liboctave_warning_with_id_handler,
current_liboctave_warning_with_id_handler);
set_liboctave_warning_handler (my_err_handler);
set_liboctave_warning_with_id_handler (my_err_with_id_handler);
return octave_value (quotient (a, b));
}
@end verbatim
@end example
As can be seen in the example:
@example
@group
unwinddemo (1, 0)
@result{} Inf
1 / 0
@result{} warning: division by zero
Inf
@end group
@end example
The warning for division by zero (and in fact all warnings) are disabled in the
@code{unwinddemo} function.
@node Documentation and Testing of Oct-Files
@subsection Documentation and Testing of Oct-Files
The documentation for an oct-file is contained in the fourth string parameter
of the @w{@code{DEFUN_DLD}}@ macro. This string can be formatted in the same
manner as the help strings for user functions, however there are some issues
that are particular to the formatting of help strings within oct-files.
The major issue is that the help string will typically be longer than a single
line of text, and so the formatting of long multi-line help strings needs to be
taken into account. There are several possible solutions, but the most common
is illustrated in the following example,
@example
@group
DEFUN_DLD (do_what_i_want, args, nargout,
"-*- texinfo -*-\n\
@@deftypefn @{@} @{@} do_what_i_say (@@var@{n@})\n\
A function that does what the user actually wants rather\n\
than what they requested.\n\
@@end deftypefn")
@{
@dots{}
@}
@end group
@end example
@noindent
where each line of text is terminated by @code{\n\} which is an embedded
newline in the string together with a C++ string continuation character. Note
that the final @code{\} must be the last character on the line.
Octave also includes the ability to embed test and demonstration code for a
function within the code itself (@pxref{Test and Demo Functions}). This can be
used from within oct-files (or in fact any file) with certain provisos. First,
the test and demo functions of Octave look for @code{%!} as the first two
characters of a line to identify test and demonstration code. This is a
requirement for oct-files as well. In addition, the test and demonstration
code must be wrapped in a comment block to avoid it being interpreted by the
compiler. Finally, the Octave test and demonstration code must have access to
the original source code of the oct-file---not just the compiled code---as the
tests are stripped from the compiled code. An example in an oct-file might be
@example
@group
/*
%!assert (sin ([1,2]), [sin(1),sin(2)])
%!error (sin ())
%!error (sin (1,1))
*/
@end group
@end example
@c @node Application Programming Interface for Oct-Files
@c @subsection Application Programming Interface for Oct-Files
@c
@c WRITE ME, using Coda section 1.3 as a starting point.
@node Mex-Files
@section Mex-Files
@cindex mex-files
@cindex mex
Octave includes an interface to allow legacy mex-files to be compiled and used
with Octave. This interface can also be used to share compiled code between
Octave and @sc{matlab} users. However, as mex-files expose @sc{matlab}'s
internal API, and the internal structure of Octave is different, a mex-file can
never have the same performance in Octave as the equivalent oct-file. In
particular, to support the manner in which variables are passed to mex
functions there are a significant number of additional copies of memory blocks
when invoking or returning from a mex-file function. For this reason, it is
recommended that any new code be written with the oct-file interface previously
discussed.
@menu
* Getting Started with Mex-Files::
* Working with Matrices and Arrays in Mex-Files::
* Character Strings in Mex-Files::
* Cell Arrays with Mex-Files::
* Structures with Mex-Files::
* Sparse Matrices with Mex-Files::
* Calling Other Functions in Mex-Files::
@c * Application Programming Interface for Mex-Files::
@end menu
@node Getting Started with Mex-Files
@subsection Getting Started with Mex-Files
The basic command to build a mex-file is either @code{mkoctfile --mex} or
@code{mex}. The first command can be used either from within Octave or from
the command line. To avoid issues with @sc{matlab}'s own @code{mex} command,
the use of the command @code{mex} is limited to within Octave. Compiled
mex-files have the extension @file{.mex}.
@c mex scripts/miscellaneous/mex.m
@anchor{XREFmex}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} mex [-options] file @dots{}
@deftypefnx {} {@code{status} =} mex (@dots{})
Compile source code written in C, C++, or Fortran, to a MEX file.
@var{status} is the return status of the @code{mkoctfile} function.
If the compilation fails, and the output argument is not requested,
an error is raised. If the programmer requests @var{status}, however,
Octave will merely issue a warning and it is the programmer's responsibility
to verify the command was successful.
This is equivalent to @code{mkoctfile --mex [-options] file}.
@xseealso{@ref{XREFmkoctfile,,mkoctfile}, @ref{XREFmexext,,mexext}}
@end deftypefn
@c mexext scripts/miscellaneous/mexext.m
@anchor{XREFmexext}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{ext} =} mexext ()
Return the filename extension used for MEX files.
Programming Note: Octave uses the extension @file{mex} for all MEX files
regardless of the operating system (Linux, Windows, Apple) or the bit-width
(32-bit or 64-bit) of the hardware.
@xseealso{@ref{XREFmex,,mex}}
@end deftypefn
Consider the following short example:
@example
@group
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mexPrintf ("Hello, World!\n");
mexPrintf ("I have %d inputs and %d outputs\n", nrhs, nlhs);
/* Return empty matrices for any outputs */
int i;
for (i = 0; i < nlhs; i++)
plhs[i] = mxCreateDoubleMatrix (0, 0, mxREAL);
}
@end verbatim
@end group
@end example
The first line @code{#include "mex.h"} makes available all of the definitions
necessary for a mex-file. One important difference between Octave and
@sc{matlab} is that the header file @qcode{"matrix.h"} is implicitly included
through the inclusion of @qcode{"mex.h"}. This is necessary to avoid a
conflict with the Octave file @qcode{"Matrix.h"} for operating systems and
compilers that don't distinguish between filenames in upper and lower case.
The entry point into the mex-file is defined by @code{mexFunction}. The
function takes four arguments:
@enumerate 1
@item The number of return arguments (# of left-hand side args).
@item An array of pointers to return arguments.
@item The number of input arguments (# of right-hand side args).
@item An array of pointers to input arguments.
@end enumerate
Note that the function name definition is not explicitly included in
@code{mexFunction} and so there can only be a single @code{mexFunction} entry
point per file. Instead, the name of the function as seen in Octave is
determined by the name of the mex-file itself minus the extension. If the
above function is in the file @file{myhello.c}, it can be compiled with
@example
mkoctfile --mex myhello.c
@end example
@noindent
which creates a file @file{myhello.mex}. The function can then be run from
Octave as
@example
@group
myhello (1,2,3)
@result{} Hello, World!
@result{} I have 3 inputs and 0 outputs
@end group
@end example
It should be noted that the mex-file contains no help string. To document
mex-files, there should exist an m-file in the same directory as the mex-file
itself. Taking the above as an example, there would need to be a file
@file{myhello.m} which might contain the text
@example
%MYHELLO Simple test of the functionality of a mex-file.
@end example
In this case, the function that will be executed within Octave will be given by
the mex-file, while the help string will come from the m-file. This can also
be useful to allow a sample implementation of the mex-file within the Octave
language itself for testing purposes.
Although there cannot be multiple entry points in a single mex-file, one can
use the @code{mexFunctionName} function to determine what name the mex-file was
called with. This can be used to alter the behavior of the mex-file based on
the function name. For example, if
@example
@group
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
const char *nm;
nm = mexFunctionName ();
mexPrintf ("You called function: %s\n", nm);
if (strcmp (nm, "myfunc") == 0)
mexPrintf ("This is the principal function\n", nm);
return;
}
@end verbatim
@end group
@end example
@noindent
is in the file @file{myfunc.c}, and is compiled with
@example
@group
mkoctfile --mex myfunc.c
ln -s myfunc.mex myfunc2.mex
@end group
@end example
@noindent
then as can be seen by
@example
@group
myfunc ()
@result{} You called function: myfunc
This is the principal function
myfunc2 ()
@result{} You called function: myfunc2
@end group
@end example
@noindent
the behavior of the mex-file can be altered depending on the function's name.
Although the user should only include @file{mex.h} in their code, Octave
declares additional functions, typedefs, etc., available to the user to write
mex-files in the headers @file{mexproto.h} and @file{mxarray.h}.
@node Working with Matrices and Arrays in Mex-Files
@subsection Working with Matrices and Arrays in Mex-Files
The basic mex type of all variables is @code{mxArray}. Any object, such as a
matrix, cell array, or structure, is stored in this basic type. @code{mxArray}
serves essentially the same purpose as the @code{octave_value} class in
oct-files in that it acts as a container for all the more specialized types.
The @code{mxArray} structure contains at a minimum, the name of the variable it
represents, its dimensions, its type, and whether the variable is real or
complex. It can also contain a number of additional fields depending on the
type of the @code{mxArray}. There are a number of functions to create
@code{mxArray} structures, including @code{mxCreateDoubleMatrix},
@code{mxCreateCellArray}, @code{mxCreateSparse}, and the generic
@code{mxCreateNumericArray}.
The basic function to access the data in an array is @code{mxGetPr}. Because
the mex interface assumes that real and imaginary parts of a complex array are
stored separately, there is an equivalent function @code{mxGetPi} that gets the
imaginary part. Both of these functions are only for use with double precision
matrices. The generic functions @code{mxGetData} and @code{mxGetImagData}
perform the same operation for all matrix types. For example:
@example
@group
mxArray *m;
mwSize *dims;
UINT32_T *pr;
dims = (mwSize *) mxMalloc (2 * sizeof (mwSize));
dims[0] = 2; dims[1] = 2;
m = mxCreateNumericArray (2, dims, mxUINT32_CLASS, mxREAL);
pr = (UINT32_T *) mxGetData (m);
@end group
@end example
There are also the functions @code{mxSetPr}, etc., that perform the inverse,
and set the data of an array to use the block of memory pointed to by the
argument of @code{mxSetPr}.
Note the type @code{mwSize} used above, and also @code{mwIndex}, are defined as
the native precision of the indexing in Octave on the platform on which the
mex-file is built. This allows both 32- and 64-bit platforms to support
mex-files. @code{mwSize} is used to define array dimensions and the maximum
number or elements, while @code{mwIndex} is used to define indexing into
arrays.
An example that demonstrates how to work with arbitrary real or complex double
precision arrays is given by the file @file{mypow2.c} shown below.
@example
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mwSize n;
mwIndex i;
double *vri, *vro;
if (nrhs != 1 || ! mxIsDouble (prhs[0]))
mexErrMsgTxt ("ARG1 must be a double matrix");
n = mxGetNumberOfElements (prhs[0]);
plhs[0] = mxCreateNumericArray (mxGetNumberOfDimensions (prhs[0]),
mxGetDimensions (prhs[0]),
mxGetClassID (prhs[0]),
mxIsComplex (prhs[0]));
vri = mxGetPr (prhs[0]);
vro = mxGetPr (plhs[0]);
if (mxIsComplex (prhs[0]))
{
double *vii, *vio;
vii = mxGetPi (prhs[0]);
vio = mxGetPi (plhs[0]);
for (i = 0; i < n; i++)
{
vro[i] = vri[i] * vri[i] - vii[i] * vii[i];
vio[i] = 2 * vri[i] * vii[i];
}
}
else
{
for (i = 0; i < n; i++)
vro[i] = vri[i] * vri[i];
}
}
@end verbatim
@end example
@noindent
An example of its use is
@example
@group
b = randn (4,1) + 1i * randn (4,1);
all (b.^2 == mypow2 (b))
@result{} 1
@end group
@end example
The example above uses the functions @code{mxGetDimensions},
@code{mxGetNumberOfElements}, and @code{mxGetNumberOfDimensions} to work with
the dimensions of multi-dimensional arrays. The functions @code{mxGetM}, and
@code{mxGetN} are also available to find the number of rows and columns in a
2-D matrix (@nospell{MxN} matrix).
@node Character Strings in Mex-Files
@subsection Character Strings in Mex-Files
As mex-files do not make the distinction between single and double quoted
strings that Octave does, there is perhaps less complexity in the use of
strings and character matrices. An example of their use that parallels the
demo in @file{stringdemo.cc} is given in the file @file{mystring.c}, as shown
below.
@smallexample
@verbatim
#include <string.h>
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mwSize m, n;
mwIndex i, j;
mxChar *pi, *po;
if (nrhs != 1 || ! mxIsChar (prhs[0])
|| mxGetNumberOfDimensions (prhs[0]) > 2)
mexErrMsgTxt ("ARG1 must be a char matrix");
m = mxGetM (prhs[0]);
n = mxGetN (prhs[0]);
pi = mxGetChars (prhs[0]);
plhs[0] = mxCreateNumericMatrix (m, n, mxCHAR_CLASS, mxREAL);
po = mxGetChars (plhs[0]);
for (j = 0; j < n; j++)
for (i = 0; i < m; i++)
po[j*m + m - 1 - i] = pi[j*m + i];
}
@end verbatim
@end smallexample
@noindent
An example of its expected output is
@example
@group
mystring (["First String"; "Second String"])
@result{} Second String
First String
@end group
@end example
Other functions in the mex interface for handling character strings are
@code{mxCreateString}, @code{mxArrayToString}, and
@code{mxCreateCharMatrixFromStrings}. In a mex-file, a character string is
considered to be a vector rather than a matrix. This is perhaps an arbitrary
distinction as the data in the @code{mxArray} for the matrix is consecutive in
any case.
@node Cell Arrays with Mex-Files
@subsection Cell Arrays with Mex-Files
One can perform exactly the same operations on Cell arrays in mex-files as in
oct-files. An example that duplicates the function of the @file{celldemo.cc}
oct-file in a mex-file is given by @file{mycell.c} as shown below.
@example
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mwSize n;
mwIndex i;
if (nrhs != 1 || ! mxIsCell (prhs[0]))
mexErrMsgTxt ("ARG1 must be a cell");
n = mxGetNumberOfElements (prhs[0]);
n = (n > nlhs ? nlhs : n);
for (i = 0; i < n; i++)
plhs[i] = mxDuplicateArray (mxGetCell (prhs[0], i));
}
@end verbatim
@end example
@noindent
The output is identical to the oct-file version as well.
@example
@group
[b1, b2, b3] = mycell (@{1, [1, 2], "test"@})
@result{}
b1 = 1
b2 =
1 2
b3 = test
@end group
@end example
Note in the example the use of the @code{mxDuplicateArray} function. This is
needed as the @code{mxArray} pointer returned by @code{mxGetCell} might be
deallocated. The inverse function to @code{mxGetCell}, used for setting Cell
values, is @code{mxSetCell} and is defined as
@example
void mxSetCell (mxArray *ptr, int idx, mxArray *val);
@end example
Finally, to create a cell array or matrix, the appropriate functions are
@example
@group
mxArray *mxCreateCellArray (int ndims, const int *dims);
mxArray *mxCreateCellMatrix (int m, int n);
@end group
@end example
@node Structures with Mex-Files
@subsection Structures with Mex-Files
The basic function to create a structure in a mex-file is
@code{mxCreateStructMatrix} which creates a structure array with a two
dimensional matrix, or @code{mxCreateStructArray}.
@example
@group
mxArray *mxCreateStructArray (int ndims, int *dims,
int num_keys,
const char **keys);
mxArray *mxCreateStructMatrix (int rows, int cols,
int num_keys,
const char **keys);
@end group
@end example
Accessing the fields of the structure can then be performed with
@code{mxGetField} and @code{mxSetField} or alternatively with the
@code{mxGetFieldByNumber} and @code{mxSetFieldByNumber} functions.
@example
@group
mxArray *mxGetField (const mxArray *ptr, mwIndex index,
const char *key);
mxArray *mxGetFieldByNumber (const mxArray *ptr,
mwIndex index, int key_num);
void mxSetField (mxArray *ptr, mwIndex index,
const char *key, mxArray *val);
void mxSetFieldByNumber (mxArray *ptr, mwIndex index,
int key_num, mxArray *val);
@end group
@end example
A difference between the oct-file interface to structures and the mex-file
version is that the functions to operate on structures in mex-files directly
include an @code{index} over the elements of the arrays of elements per
@code{field}; Whereas, the oct-file structure includes a Cell Array per field
of the structure.
An example that demonstrates the use of structures in a mex-file can be found
in the file @file{mystruct.c} shown below.
@smallexample
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
int i;
mwIndex j;
mxArray *v;
const char *keys[] = { "this", "that" };
if (nrhs != 1 || ! mxIsStruct (prhs[0]))
mexErrMsgTxt ("ARG1 must be a struct");
for (i = 0; i < mxGetNumberOfFields (prhs[0]); i++)
for (j = 0; j < mxGetNumberOfElements (prhs[0]); j++)
{
mexPrintf ("field %s(%d) = ", mxGetFieldNameByNumber (prhs[0], i), j);
v = mxGetFieldByNumber (prhs[0], j, i);
mexCallMATLAB (0, NULL, 1, &v, "disp");
}
v = mxCreateStructMatrix (2, 2, 2, keys);
mxSetFieldByNumber (v, 0, 0, mxCreateString ("this1"));
mxSetFieldByNumber (v, 0, 1, mxCreateString ("that1"));
mxSetFieldByNumber (v, 1, 0, mxCreateString ("this2"));
mxSetFieldByNumber (v, 1, 1, mxCreateString ("that2"));
mxSetFieldByNumber (v, 2, 0, mxCreateString ("this3"));
mxSetFieldByNumber (v, 2, 1, mxCreateString ("that3"));
mxSetFieldByNumber (v, 3, 0, mxCreateString ("this4"));
mxSetFieldByNumber (v, 3, 1, mxCreateString ("that4"));
if (nlhs)
plhs[0] = v;
}
@end verbatim
@end smallexample
An example of the behavior of this function within Octave is then
@example
@group
a(1).f1 = "f11"; a(1).f2 = "f12";
a(2).f1 = "f21"; a(2).f2 = "f22";
b = mystruct (a);
@result{} field f1(0) = f11
field f1(1) = f21
field f2(0) = f12
field f2(1) = f22
b
@result{} 2x2 struct array containing the fields:
this
that
b(3)
@result{} scalar structure containing the fields:
this = this3
that = that3
@end group
@end example
@node Sparse Matrices with Mex-Files
@subsection Sparse Matrices with Mex-Files
The Octave format for sparse matrices is identical to the mex format in that it
is a compressed column sparse format. Also, in both implementations sparse
matrices are required to be two-dimensional. The only difference of importance
to the programmer is that the real and imaginary parts of the matrix are stored
separately.
The mex-file interface, in addition to using @code{mxGetM}, @code{mxGetN},
@code{mxSetM}, @code{mxSetN}, @code{mxGetPr}, @code{mxGetPi}, @code{mxSetPr},
and @code{mxSetPi}, also supplies the following functions.
@example
@group
mwIndex *mxGetIr (const mxArray *ptr);
mwIndex *mxGetJc (const mxArray *ptr);
mwSize mxGetNzmax (const mxArray *ptr);
void mxSetIr (mxArray *ptr, mwIndex *ir);
void mxSetJc (mxArray *ptr, mwIndex *jc);
void mxSetNzmax (mxArray *ptr, mwSize nzmax);
@end group
@end example
@noindent
@code{mxGetNzmax} gets the maximum number of elements that can be stored in the
sparse matrix. This is not necessarily the number of nonzero elements in the
sparse matrix. @code{mxGetJc} returns an array with one additional value than
the number of columns in the sparse matrix. The difference between consecutive
values of the array returned by @code{mxGetJc} define the number of nonzero
elements in each column of the sparse matrix. Therefore,
@example
@group
mwSize nz, n;
mwIndex *Jc;
mxArray *m;
@dots{}
n = mxGetN (m);
Jc = mxGetJc (m);
nz = Jc[n];
@end group
@end example
@noindent
returns the actual number of nonzero elements stored in the matrix in
@code{nz}. As the arrays returned by @code{mxGetPr} and @code{mxGetPi} only
contain the nonzero values of the matrix, we also need a pointer to the rows of
the nonzero elements, and this is given by @code{mxGetIr}. A complete example
of the use of sparse matrices in mex-files is given by the file
@file{mysparse.c} shown below.
@example
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mwSize m, n, nz;
mxArray *v;
mwIndex i;
double *pr, *pi;
double *pr2, *pi2;
mwIndex *ir, *jc;
mwIndex *ir2, *jc2;
if (nrhs != 1 || ! mxIsSparse (prhs[0]))
mexErrMsgTxt ("ARG1 must be a sparse matrix");
m = mxGetM (prhs[0]);
n = mxGetN (prhs[0]);
nz = mxGetNzmax (prhs[0]);
if (mxIsComplex (prhs[0]))
{
mexPrintf ("Matrix is %d-by-%d complex sparse matrix", m, n);
mexPrintf (" with %d elements\n", nz);
pr = mxGetPr (prhs[0]);
pi = mxGetPi (prhs[0]);
ir = mxGetIr (prhs[0]);
jc = mxGetJc (prhs[0]);
i = n;
while (jc[i] == jc[i-1] && i != 0) i--;
mexPrintf ("last nonzero element (%d, %d) = (%g, %g)\n",
ir[nz-1]+ 1, i, pr[nz-1], pi[nz-1]);
v = mxCreateSparse (m, n, nz, mxCOMPLEX);
pr2 = mxGetPr (v);
pi2 = mxGetPi (v);
ir2 = mxGetIr (v);
jc2 = mxGetJc (v);
for (i = 0; i < nz; i++)
{
pr2[i] = 2 * pr[i];
pi2[i] = 2 * pi[i];
ir2[i] = ir[i];
}
for (i = 0; i < n + 1; i++)
jc2[i] = jc[i];
if (nlhs > 0)
plhs[0] = v;
}
else if (mxIsLogical (prhs[0]))
{
mxLogical *pbr, *pbr2;
mexPrintf ("Matrix is %d-by-%d logical sparse matrix", m, n);
mexPrintf (" with %d elements\n", nz);
pbr = mxGetLogicals (prhs[0]);
ir = mxGetIr (prhs[0]);
jc = mxGetJc (prhs[0]);
i = n;
while (jc[i] == jc[i-1] && i != 0) i--;
mexPrintf ("last nonzero element (%d, %d) = %d\n",
ir[nz-1]+ 1, i, pbr[nz-1]);
v = mxCreateSparseLogicalMatrix (m, n, nz);
pbr2 = mxGetLogicals (v);
ir2 = mxGetIr (v);
jc2 = mxGetJc (v);
for (i = 0; i < nz; i++)
{
pbr2[i] = pbr[i];
ir2[i] = ir[i];
}
for (i = 0; i < n + 1; i++)
jc2[i] = jc[i];
if (nlhs > 0)
plhs[0] = v;
}
else
{
mexPrintf ("Matrix is %d-by-%d real sparse matrix", m, n);
mexPrintf (" with %d elements\n", nz);
pr = mxGetPr (prhs[0]);
ir = mxGetIr (prhs[0]);
jc = mxGetJc (prhs[0]);
i = n;
while (jc[i] == jc[i-1] && i != 0) i--;
mexPrintf ("last nonzero element (%d, %d) = %g\n",
ir[nz-1]+ 1, i, pr[nz-1]);
v = mxCreateSparse (m, n, nz, mxREAL);
pr2 = mxGetPr (v);
ir2 = mxGetIr (v);
jc2 = mxGetJc (v);
for (i = 0; i < nz; i++)
{
pr2[i] = 2 * pr[i];
ir2[i] = ir[i];
}
for (i = 0; i < n + 1; i++)
jc2[i] = jc[i];
if (nlhs > 0)
plhs[0] = v;
}
}
@end verbatim
@end example
A sample usage of @code{mysparse} is
@example
@group
sm = sparse ([1, 0; 0, pi]);
mysparse (sm)
@result{}
Matrix is 2-by-2 real sparse matrix with 2 elements
last nonzero element (2, 2) = 3.14159
@end group
@end example
@node Calling Other Functions in Mex-Files
@subsection Calling Other Functions in Mex-Files
It is possible to call other Octave functions from within a mex-file using
@code{mexCallMATLAB}. An example of the use of @code{mexCallMATLAB} can be see
in the example below.
@smallexample
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
char *str;
mexPrintf ("Starting file myfeval.mex\n");
mexPrintf ("I have %d inputs and %d outputs\n", nrhs, nlhs);
if (nrhs < 1 || ! mxIsChar (prhs[0]))
mexErrMsgTxt ("ARG1 must be a function name");
str = mxArrayToString (prhs[0]);
mexPrintf ("I'm going to call the function %s\n", str);
if (nlhs == 0)
nlhs = 1; // Octave's automatic 'ans' variable
/* Cast prhs just to get rid of 'const' qualifier and stop compile warning */
mexCallMATLAB (nlhs, plhs, nrhs-1, (mxArray**)prhs+1, str);
mxFree (str);
}
@end verbatim
@end smallexample
If this code is in the file @file{myfeval.c}, and is compiled to
@file{myfeval.mex}, then an example of its use is
@example
@group
a = myfeval ("sin", 1)
@result{} Starting file myfeval.mex
I have 2 inputs and 1 outputs
I'm going to call the interpreter function sin
a = 0.84147
@end group
@end example
Note that it is not possible to use function handles within a mex-file.
@c @node Application Programming Interface for Mex-Files
@c @subsection Application Programming Interface for Mex-Files
@c
@c WRITE ME, refer to mex.h and mexproto.h
@node Standalone Programs
@section Standalone Programs
The libraries Octave uses itself can be utilized in standalone applications.
These applications then have access, for example, to the array and matrix
classes, as well as to all of the Octave algorithms. The following C++
program, uses class Matrix from @file{liboctave.a} or @file{liboctave.so}.
@example
@verbatim
#include <iostream>
#include <octave/oct.h>
int
main ()
{
std::cout << "Hello Octave world!\n";
int n = 2;
Matrix a_matrix = Matrix (n, n);
for (octave_idx_type i = 0; i < n; i++)
for (octave_idx_type j = 0; j < n; j++)
a_matrix(i,j) = (i + 1) * 10 + (j + 1);
std::cout << a_matrix;
return 0;
}
@end verbatim
@end example
@noindent
mkoctfile can be used to build a standalone application with a command like
@example
@group
$ mkoctfile --link-stand-alone standalone.cc -o standalone
$ ./standalone
Hello Octave world!
11 12
21 22
$
@end group
@end example
Note that the application @code{standalone} will be dynamically linked against
the Octave libraries and any Octave support libraries. The above allows the
Octave math libraries to be used by an application. It does not, however,
allow the script files, oct-files, or built-in functions of Octave to be used
by the application. To do that, the Octave interpreter needs to be initialized
first. An example of how to do this can then be seen in the code
@example
@verbatim
#include <iostream>
#include <octave/oct.h>
#include <octave/octave.h>
#include <octave/parse.h>
#include <octave/interpreter.h>
int
main ()
{
// Create interpreter.
octave::interpreter interpreter;
try
{
// Inhibit reading history file by calling
//
// interpreter.initialize_history (false);
// Set custom load path here if you wish by calling
//
// interpreter.initialize_load_path (false);
// Perform final initialization of interpreter, including
// executing commands from startup files by calling
//
// interpreter.initialize ();
//
// if (! interpreter.is_initialized ())
// {
// std::cerr << "Octave interpreter initialization failed!"
// << std::endl;
// exit (1);
// }
//
// You may skip this step if you don't need to do anything
// between reading the startup files and telling the interpreter
// that you are ready to execute commands.
// Tell the interpreter that we're ready to execute commands:
int status = interpreter.execute ();
if (status != 0)
{
std::cerr << "creating embedded Octave interpreter failed!"
<< std::endl;
return status;
}
octave_idx_type n = 2;
octave_value_list in;
for (octave_idx_type i = 0; i < n; i++)
in(i) = octave_value (5 * (i + 2));
octave_value_list out = octave::feval ("gcd", in, 1);
if (out.length () > 0)
std::cout << "GCD of ["
<< in(0).int_value ()
<< ", "
<< in(1).int_value ()
<< "] is " << out(0).int_value ()
<< std::endl;
else
std::cout << "invalid\n";
}
catch (const octave::exit_exception& ex)
{
std::cerr << "Octave interpreter exited with status = "
<< ex.exit_status () << std::endl;
}
catch (const octave::execution_exception&)
{
std::cerr << "error encountered in Octave evaluator!" << std::endl;
}
return 0;
}
@end verbatim
@end example
@noindent
which, as before, is compiled and run as a standalone application with
@example
@group
$ mkoctfile --link-stand-alone embedded.cc -o embedded
$ ./embedded
GCD of [10, 15] is 5
$
@end group
@end example
It is worth re-iterating that, if only built-in functions are to be called from
a C++ standalone program then it does not need to initialize the interpreter.
The general rule is that for a built-in function named @code{function_name} in
the interpreter, there will be a C++ function named @code{Ffunction_name} (note
the prepended capital @code{F}) accessible in the C++ API@. The declarations
for all built-in functions are collected in the header file
@code{builtin-defun-decls.h}. This feature should be used with care as the
list of built-in functions can change. No guarantees can be made that a
function that is currently a built-in won't be implemented as a @file{.m} file
or as a dynamically linked function in the future. An example of how to call
built-in functions from C++ can be seen in the code
@example
@verbatim
#include <iostream>
#include <octave/oct.h>
#include <octave/builtin-defun-decls.h>
int
main ()
{
int n = 2;
Matrix a_matrix = Matrix (n, n);
for (octave_idx_type i = 0; i < n; i++)
for (octave_idx_type j = 0; j < n; j++)
a_matrix(i,j) = (i + 1) * 10 + (j + 1);
std::cout << "This is a matrix:" << std::endl
<< a_matrix << std::endl;
octave_value_list in;
in(0) = a_matrix;
octave_value_list out = octave::Fnorm (in, 1);
double norm_of_the_matrix = out(0).double_value ();
std::cout << "This is the norm of the matrix:" << std::endl
<< norm_of_the_matrix << std::endl;
return 0;
}
@end verbatim
@end example
@noindent
which is compiled and run as a standalone application with
@example
@group
$ mkoctfile --link-stand-alone standalonebuiltin.cc -o standalonebuiltin
$ ./standalonebuiltin
This is a matrix:
11 12
21 22
This is the norm of the matrix:
34.4952
$
@end group
@end example
@node Java Interface
@section Java Interface
@cindex using Octave with Java
@cindex Java, using with Octave
@cindex calling Java from Octave
@cindex Java, calling from Octave
@cindex calling Octave from Java
@cindex Octave, calling from Java
The Java Interface is designed for calling Java functions from within Octave.
If you want to do the reverse, and call Octave from within Java, try a library
like @code{joPas} (@url{http://jopas.sourceforge.net}).
@menu
* Making Java Classes Available::
* How to use Java from within Octave::
* Set up the JVM::
* Java Interface Functions::
@end menu
@node Making Java Classes Available
@subsection Making Java Classes Available
@c - index -
@cindex classpath, setting
@cindex classpath, difference between static and dynamic
@cindex static classpath
@cindex dynamic classpath
@cindex @file{javaclasspath.txt}
@cindex @file{classpath.txt}
@cindex classes, making available to Octave
@c - index -
Java finds classes by searching a @var{classpath} which is a list of Java
archive files and/or directories containing class files. In Octave the
@var{classpath} is composed of two parts:
@itemize
@item the @var{static classpath} is initialized once at startup of the JVM, and
@item the @var{dynamic classpath} which can be modified at runtime.
@end itemize
Octave searches the @var{static classpath} first, and then the
@var{dynamic classpath}. Classes appearing in the @var{static classpath}, as
well as in the @var{dynamic classpath}, will therefore be found in the
@var{static classpath} and loaded from this location. Classes which will be
used frequently, or must be available to all users, should be added to the
@var{static classpath}. The @var{static classpath} is populated once from the
contents of a plain text file named @file{javaclasspath.txt} (or
@file{classpath.txt} historically) when the Java Virtual Machine starts. This
file contains one line for each individual classpath to be added to the
@var{static classpath}. These lines can identify directories containing class
files, or Java archives with complete class file hierarchies. Comment lines
starting with a @samp{#} or a @samp{%} character are ignored.
The search rules for the file @file{javaclasspath.txt} (or
@file{classpath.txt}) are:
@itemize
@item
First, Octave tries to locate it in the current directory (where Octave was
started from). If such a file is found, it is read and defines the initial
@var{static classpath}. Thus, it is possible to define a static classpath on a
'per Octave invocation' basis.
@item
Next, Octave searches in the user's home directory. If a file
@file{javaclasspath.txt} exists here, its contents are appended to the static
classpath (if any). Thus, it is possible to build an initial static classpath
on a @nospell{'per user'} basis.
@item
Finally, Octave looks for a @file{javaclasspath.txt} in the m-file directory
where Octave Java functions live. This is where the function
@file{javaclasspath.m} resides, usually something like
@file{@w{@env{OCTAVE_HOME}}/share/octave/@w{@env{OCTAVE_VERSION}}/m/java/}.
You can find this directory by executing the command
@example
which javaclasspath
@end example
If this file exists here, its contents are also appended to the
@var{static classpath}. Note that the archives and class directories defined
in this last step will affect all users.
@end itemize
Classes which are used only by a specific script should be placed in the
@var{dynamic classpath}. This portion of the classpath can be modified at
runtime using the @code{javaaddpath} and @code{javarmpath} functions.
Example:
@example
octave> base_path = "C:/Octave/java_files";
octave> # add two JAR archives to the dynamic classpath
octave> javaaddpath ([base_path, "/someclasses.jar"]);
octave> javaaddpath ([base_path, "/moreclasses.jar"]);
octave> # check the dynamic classpath
octave> p = javaclasspath;
octave> disp (p@{1@});
C:/Octave/java_files/someclasses.jar
octave> disp (p@{2@});
C:/Octave/java_files/moreclasses.jar
octave> # remove the first element from the classpath
octave> javarmpath ([base_path, "/someclasses.jar"]);
octave> p = javaclasspath;
octave> disp (p@{1@});
C:/Octave/java_files/moreclasses.jar
octave> # provoke an error
octave> disp (p@{2@});
error: A(I): Index exceeds matrix dimension.
@end example
Another way to add files to the @var{dynamic classpath} exclusively for your
user account is to use the file @file{.octaverc} which is stored in your home
directory. All Octave commands in this file are executed each time you start a
new instance of Octave. The following example adds the directory @file{octave}
to Octave's search path and the archive @file{myclasses.jar} in this directory
to the Java search path.
@example
@group
# contents of .octaverc:
addpath ("~/octave");
javaaddpath ("~/octave/myclasses.jar");
@end group
@end example
@c ------------------------------------------------------------------------
@node How to use Java from within Octave
@subsection How to use Java from within Octave
The function @ref{XREFjavaObject,javaObject,javaObject} creates Java objects.
In fact it invokes the public constructor of the class with the given name
and with the given parameters.
The following example shows how to invoke the constructors
@code{BigDecimal(double)} and @code{BigDecimal(String)} of the builtin Java
class @code{java.math.BigDecimal}.
@example
@group
javaObject ("java.math.BigDecimal", 1.001 );
javaObject ("java.math.BigDecimal", "1.001");
@end group
@end example
Note that parameters of the Octave type @code{double} are implicitly converted
into the Java type @code{double} and the Octave type (array of) @code{char} is
converted into the java type @code{String}. A Java object created by
@ref{XREFjavaObject,javaObject,javaObject} is never automatically converted
into an Octave type but remains a Java object. It can be assigned to an
Octave variable.
@example
@group
a = 1.001;
b = javaObject ("java.math.BigDecimal", a);
@end group
@end example
Using @ref{XREFisjava,isjava,isjava}, it is possible to check whether a
variable is a Java object and its class can be determined as well. In
addition to the previous example:
@example
@group
isjava (a)
@result{} ans = 0
class (a)
@result{} ans = double
isjava (b)
@result{} ans = 1
class (b)
@result{} ans = java.math.BigDecimal
@end group
@end example
The example above can be carried out using only Java objects:
@example
@group
a = javaObject ("java.lang.Double", 1.001);
b = javaObject ("java.math.BigDecimal", a);
isjava (a)
@result{} ans = 1
class (a)
@result{} ans = java.lang.Double
isjava (b)
@result{} ans = 1
class (b)
@result{} ans = java.math.BigDecimal
@end group
@end example
One can see, that even a @code{java.lang.Double} is not converted to an Octave
@code{double}, when created by @ref{XREFjavaObject,javaObject,javaObject}.
But ambiguities might arise, if the Java classes @code{java.lang.Double} or
@code{double} are parameters of a method (or a constructor). In this case
they can be converted into one another, depending on the context.
Via @ref{XREFjavaObject,javaObject,javaObject} one may create all kinds of
Java objects but arrays. The latter are created through
@ref{XREFjavaArray,javaArray,javaArray}.
It is possible to invoke public member methods on Java objects in Java syntax:
@example
@group
a.toString
@result{} ans = 1.001
b.toString
@result{} ans = 1.000999999999999889865...
@end group
@end example
The second result may be surprising, but simply comes from the fact, that
@code{1.001} cannot exactly be represented as @code{double}, due to rounding.
Note that unlike in Java, in Octave methods without arguments can be invoked
with and without parentheses @code{()}.
Currently it is not possible to invoke static methods with a Java like syntax
from within Octave. Instead, one has to use the function
@ref{XREFjavaMethod,javaMethod,javaMethod} as in the following example:
@example
@group
java.math.BigDecimal.valueOf(1.001); # does not work
javaMethod ("valueOf", "java.math.BigDecimal", 1.001); # workaround
@end group
@end example
As mentioned before, method and constructor parameters are converted
automatically between Octave and Java types, if appropriate. For functions
this is also true with return values, whereas for constructors this is not.
It is also possible to access public fields of Java objects from within Octave
using Java syntax, with the limitation of static fields:
@example
@group
java.math.BigDecimal.ONE; # does not work
java_get ("java.math.BigDecimal", "ONE"); # workaround
@end group
@end example
Accordingly, with @ref{XREFjava_set,java_set,java_set} the value of a field
can be set. Note that only public Java fields are accessible from within
Octave.
The following example indicates that in Octave empty brackets @code{[]}
represent Java's @code{null} value and how Java exceptions are represented.
@example
@group
javaObject ("java.math.BigDecimal", []);
@result{} error: [java] java.lang.NullPointerException
@end group
@end example
It is not recommended to represent Java's @code{null} value by empty brackets
@code{[]}, because @code{null} has no type whereas @code{[]} has type
@code{double}.
In Octave it is possible to provide limited Java reflection by listing the
public fields and methods of a Java object, both static or not.
@example
@group
fieldnames (<Java object>)
methods (<Java object>)
@end group
@end example
Finally, an examples is shown how to access the stack trace from within
Octave, where the function @ref{XREFdebug_java,debug_java,debug_java} is used
to set and to get the current debug state. In debug mode, the Java error and
the stack trace are displayed.
@example
@group
debug_java (true) # use "false" to omit display of stack trace
debug_java ()
@result{} ans = 1
javaObject ("java.math.BigDecimal", "1") ...
.divide (javaObject ("java.math.BigDecimal", "0"))
@end group
@end example
@node Set up the JVM
@subsection Set up the JVM
@cindex memory, limitations on JVM
@cindex select JVM version
In order to execute Java code Octave creates a Java Virtual Machine (JVM). By
default the version of the JVM is used that was detected during configuration
on Unix-like systems or that is pointed to from the registry keys at
@file{HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JRE} or
@file{HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime Environment} on
Windows. The default path to the JVM can be overridden by setting the
environment variable @w{@env{JAVA_HOME}}@ to the path where the JVM is
installed. On Windows that might be, for example,
@file{C:\Program Files\Java\jre-10.0.2}. Make sure that you select a directory
that contains the JVM with a @nospell{bit-ness} that matches Octave's.
The JVM is only loaded once per Octave session. Thus, to change the used
version of the JVM, you might have to re-start Octave. To check which version
of the JVM is currently being used, run @code{version -java}.
The JVM allocates a fixed amount of initial memory and may expand this pool up
to a fixed maximum memory limit. The default values depend on the Java version
(@pxref{XREFjavamem,,javamem}). The memory pool is shared by all Java objects
running in the JVM@. This strict memory limit is intended mainly to avoid
runaway applications inside web browsers or in enterprise servers which can
consume all memory and crash the system. When the maximum memory limit is hit,
Java code will throw exceptions so that applications will fail or behave
unexpectedly.
You can specify options for the creation of the JVM inside a file named
@file{java.opts}. This is a text file where enter you enter lines containing
@option{-X} and @option{-D} options that are then passed to the JVM during
initialization.
The directory where the Java options file is located is specified by the
environment variable @w{@env{OCTAVE_JAVA_DIR}}. If unset the directory where
@file{javaclasspath.m} resides is used instead (typically
@file{@w{@env{OCTAVE_HOME}}/share/octave/@w{@env{OCTAVE_VERSION}}/m/java/}).
You can find this directory by executing
@example
which javaclasspath
@end example
The @option{-X} options allow you to increase the maximum amount of memory
available to the JVM@. The following example allows up to 256 Megabytes to be
used by adding the following line to the @file{java.opts} file:
@example
-Xmx256m
@end example
The maximum possible amount of memory depends on your system. On a Windows
system with 2 Gigabytes main memory you should be able to set this maximum to
about 1 Gigabyte.
If your application requires a large amount of memory from the beginning, you
can also specify the initial amount of memory allocated to the JVM@. Adding
the following line to the @file{java.opts} file starts the JVM with 64
Megabytes of initial memory:
@example
-Xms64m
@end example
For more details on the available @option{-X} options of your Java Virtual
Machine issue the command @samp{java -X} at the operating system command prompt
and consult the Java documentation.
The @option{-D} options can be used to define system properties which can then
be used by Java classes inside Octave. System properties can be retrieved by
using the @code{getProperty()} methods of the @code{java.lang.System} class.
The following example line defines the property @var{MyProperty} and assigns it
the string @code{12.34}.
@example
-DMyProperty=12.34
@end example
The value of this property can then be retrieved as a string by a Java object
or in Octave:
@example
@group
octave> javaMethod ("getProperty", "java.lang.System", "MyProperty");
ans = 12.34
@end group
@end example
@node Java Interface Functions
@subsection Java Interface Functions
The following functions are the core of the Java Interface. They provide a way
to create a Java object, get and set its data fields, and call Java methods
which return results to Octave.
@cindex object, creating a Java object
@cindex instance, creating a Java instance
@c javaObject libinterp/octave-value/ov-java.cc
@anchor{XREFjavaObject}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{jobj} =} javaObject (@var{classname})
@deftypefnx {} {@var{jobj} =} javaObject (@var{classname}, @var{arg1}, @dots{})
Create a Java object of class @var{classsname}, by calling the class
constructor with the arguments @var{arg1}, @enddots{}
The first example below creates an uninitialized object, while the second
example supplies an initial argument to the constructor.
@example
@group
x = javaObject ("java.lang.StringBuffer")
x = javaObject ("java.lang.StringBuffer", "Initial string")
@end group
@end example
@xseealso{@ref{XREFjavaMethod,,javaMethod}, @ref{XREFjavaArray,,javaArray}}
@end deftypefn
@cindex array, creating a Java array
@c javaArray scripts/java/javaArray.m
@anchor{XREFjavaArray}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{jary} =} javaArray (@var{classname}, @var{sz})
@deftypefnx {} {@var{jary} =} javaArray (@var{classname}, @var{m}, @var{n}, @dots{})
Create a Java array of size @var{sz} with elements of class @var{classname}.
@var{classname} may be a Java object representing a class or a string
containing the fully qualified class name. The size of the object may
also be specified with individual integer arguments @var{m}, @var{n}, etc.
The generated array is uninitialized. All elements are set to null if
@var{classname} is a reference type, or to a default value (usually 0) if
@var{classname} is a primitive type.
Sample code:
@example
@group
jary = javaArray ("java.lang.String", 2, 2);
jary(1,1) = "Hello";
@end group
@end example
@xseealso{@ref{XREFjavaObject,,javaObject}}
@end deftypefn
There are many different variable types in Octave, but only ones created
through @code{javaObject} can use Java functions. Before using Java with an
unknown object the type can be checked with @code{isjava}.
@c isjava libinterp/octave-value/ov-java.cc
@anchor{XREFisjava}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isjava (@var{x})
Return true if @var{x} is a Java object.
@xseealso{@ref{XREFclass,,class}, @ref{XREFtypeinfo,,typeinfo}, @ref{XREFisa,,isa}, @ref{XREFjavaObject,,javaObject}}
@end deftypefn
Once an object has been created it is natural to find out what fields the
object has, and to read (get) and write (set) them.
@cindex fields, displaying available fields of a Java object
In Octave the @code{fieldnames} function for structures has been overloaded
to return the fields of a Java object. For example:
@example
@group
dobj = javaObject ("java.lang.Double", pi);
fieldnames (dobj)
@result{}
@{
[1,1] = public static final double java.lang.Double.POSITIVE_INFINITY
[1,2] = public static final double java.lang.Double.NEGATIVE_INFINITY
[1,3] = public static final double java.lang.Double.NaN
[1,4] = public static final double java.lang.Double.MAX_VALUE
[1,5] = public static final double java.lang.Double.MIN_NORMAL
[1,6] = public static final double java.lang.Double.MIN_VALUE
[1,7] = public static final int java.lang.Double.MAX_EXPONENT
[1,8] = public static final int java.lang.Double.MIN_EXPONENT
[1,9] = public static final int java.lang.Double.SIZE
[1,10] = public static final java.lang.Class java.lang.Double.TYPE
@}
@end group
@end example
@cindex field, returning value of Java object field
The analogy of objects with structures is carried over into reading and writing
object fields. To read a field the object is indexed with the @samp{.}
operator from structures. This is the preferred method for reading fields, but
Octave also provides a function interface to read fields with @code{java_get}.
An example of both styles is shown below.
@example
@group
dobj = javaObject ("java.lang.Double", pi);
dobj.MAX_VALUE
@result{} 1.7977e+308
java_get ("java.lang.Float", "MAX_VALUE")
@result{} 3.4028e+38
@end group
@end example
@c java_get scripts/java/java_get.m
@anchor{XREFjava_get}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} java_get (@var{obj}, @var{name})
Get the value of the field @var{name} of the Java object @var{obj}.
For static fields, @var{obj} can be a string representing the fully
qualified name of the corresponding class.
When @var{obj} is a regular Java object, structure-like indexing can be
used as a shortcut syntax. For instance, the following two statements are
equivalent
@example
@group
java_get (x, "field1")
x.field1
@end group
@end example
@xseealso{@ref{XREFjava_set,,java_set}, @ref{XREFjavaMethod,,javaMethod}, @ref{XREFjavaObject,,javaObject}}
@end deftypefn
@cindex field, setting value of Java object field
@c java_set scripts/java/java_set.m
@anchor{XREFjava_set}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{obj} =} java_set (@var{obj}, @var{name}, @var{val})
Set the value of the field @var{name} of the Java object @var{obj} to
@var{val}.
For static fields, @var{obj} can be a string representing the fully
qualified named of the corresponding Java class.
When @var{obj} is a regular Java object, structure-like indexing can be
used as a shortcut syntax. For instance, the following two statements are
equivalent
@example
@group
java_set (x, "field1", val)
x.field1 = val
@end group
@end example
@xseealso{@ref{XREFjava_get,,java_get}, @ref{XREFjavaMethod,,javaMethod}, @ref{XREFjavaObject,,javaObject}}
@end deftypefn
@cindex methods, displaying available methods of a Java object
To see what functions can be called with an object use @code{methods}. For
example, using the previously created @var{dobj}:
@example
@group
methods (dobj)
@result{}
Methods for class java.lang.Double:
boolean equals(java.lang.Object)
java.lang.String toString(double)
java.lang.String toString()
@dots{}
@end group
@end example
To call a method of an object the same structure indexing operator @samp{.} is
used. Octave also provides a functional interface to calling the methods of an
object through @code{javaMethod}. An example showing both styles is shown
below.
@example
@group
dobj = javaObject ("java.lang.Double", pi);
dobj.equals (3)
@result{} 0
javaMethod ("equals", dobj, pi)
@result{} 1
@end group
@end example
@cindex method, invoking a method of a Java object
@c javaMethod libinterp/octave-value/ov-java.cc
@anchor{XREFjavaMethod}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{ret} =} javaMethod (@var{methodname}, @var{obj})
@deftypefnx {} {@var{ret} =} javaMethod (@var{methodname}, @var{obj}, @var{arg1}, @dots{})
Invoke the method @var{methodname} on the Java object @var{obj} with the
arguments @var{arg1}, @enddots{}
For static methods, @var{obj} can be a string representing the fully
qualified name of the corresponding class.
When @var{obj} is a regular Java object, structure-like indexing can be
used as a shortcut syntax. For instance, the two following statements are
equivalent
@example
@group
ret = javaMethod ("method1", x, 1.0, "a string")
ret = x.method1 (1.0, "a string")
@end group
@end example
@code{javaMethod} returns the result of the method invocation.
@xseealso{@ref{XREFmethods,,methods}, @ref{XREFjavaObject,,javaObject}}
@end deftypefn
The following three functions are used to display and modify the class path
used by the Java Virtual Machine. This is entirely separate from Octave's
@env{PATH} variable and is used by the JVM to find the correct code to execute.
@cindex classpath, displaying
@cindex classpath, dynamic
@cindex dynamic classpath
@cindex classpath, static
@cindex static classpath
@c javaclasspath scripts/java/javaclasspath.m
@anchor{XREFjavaclasspath}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} javaclasspath ()
@deftypefnx {} {@var{dpath} =} javaclasspath ()
@deftypefnx {} {[@var{dpath}, @var{spath}] =} javaclasspath ()
@deftypefnx {} {@var{clspath} =} javaclasspath (@var{what})
Return the class path of the Java virtual machine in the form of a cell
array of strings.
If called with no inputs:
@itemize
@item If no output is requested, the dynamic and static classpaths are
printed to the standard output.
@item If one output value @var{dpath} is requested, the result is the
dynamic classpath.
@item If two output values@var{dpath} and @var{spath} are requested, the
first variable will contain the dynamic classpath and the second will
contain the static classpath.
@end itemize
If called with a single input parameter @var{what}:
@table @asis
@item @qcode{"-dynamic"}
Return the dynamic classpath.
@item @qcode{"-static"}
Return the static classpath.
@item @qcode{"-all"}
Return both the static and dynamic classpath in a single cellstr.
@end table
@xseealso{@ref{XREFjavaaddpath,,javaaddpath}, @ref{XREFjavarmpath,,javarmpath}}
@end deftypefn
@findex javaaddpath
@cindex classpath, adding new path
@cindex path, adding to classpath
@cindex classpath, dynamic
@cindex dynamic classpath, adding new path
@c javaaddpath scripts/java/javaaddpath.m
@anchor{XREFjavaaddpath}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} javaaddpath (@var{clspath})
@deftypefnx {} {} javaaddpath (@var{clspath1}, @dots{})
@deftypefnx {} {} javaaddpath (@{@var{clspath1}, @dots{}@})
@deftypefnx {} {} javaaddpath (@dots{}, "-end")
Add @var{clspath} to the beginning of the dynamic class path of the
Java virtual machine.
@var{clspath} may either be a directory where @file{.class} files are
found, or a @file{.jar} file containing Java classes. Multiple paths may
be added at once by specifying additional arguments, or by using a cell
array of strings.
If the final argument is @qcode{"-end"}, append the new element to the
end of the current classpath.
@xseealso{@ref{XREFjavarmpath,,javarmpath}, @ref{XREFjavaclasspath,,javaclasspath}}
@end deftypefn
@cindex classpath, removing path
@cindex path, removing from classpath
@c javarmpath scripts/java/javarmpath.m
@anchor{XREFjavarmpath}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} javarmpath (@var{clspath})
@deftypefnx {} {} javarmpath (@var{clspath1}, @dots{})
@deftypefnx {} {} javarmpath (@{@var{clspath1}, @dots{}@})
Remove @var{clspath} from the dynamic class path of the Java virtual
machine.
@var{clspath} may either be a directory where @file{.class} files are found,
or a @file{.jar} file containing Java classes. Multiple paths may be
removed at once by specifying additional arguments, or by using a cell array
of strings.
@xseealso{@ref{XREFjavaaddpath,,javaaddpath}, @ref{XREFjavaclasspath,,javaclasspath}}
@end deftypefn
The following functions provide information and control over the interface
between Octave and the Java Virtual Machine.
@c javachk scripts/java/javachk.m
@anchor{XREFjavachk}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{msg} =} javachk (@var{feature})
@deftypefnx {} {@var{msg} =} javachk (@var{feature}, @var{caller})
Check for the presence of the Java @var{feature} in the current session.
Return an error structure if @var{feature} is not available, not enabled,
or not recognized.
Possible recognized features are:
@table @asis
@item @nospell{@qcode{"awt"}}
Abstract Window Toolkit for GUIs.
@item @qcode{"desktop"}
Interactive desktop is running.
@item @qcode{"jvm"}
Java Virtual Machine.
@item @qcode{"swing"}
Swing components for lightweight GUIs.
@end table
If @var{feature} is not supported, a scalar struct with field
@qcode{"message"} and @qcode{"identifier"} is returned. The field
@qcode{"message"} contains an error message mentioning @var{feature} as
well as the optional user-specified @var{caller}. This structure is
suitable for passing in to the @code{error} function.
If @var{feature} is supported and available, an empty struct array is
returned with fields @qcode{"message"} and @qcode{"identifier"}.
@code{javachk} determines if specific Java features are available in an
Octave session. This function is provided for scripts which may alter
their behavior based on the availability of Java or specific Java runtime
features.
Compatibility Note: The feature @qcode{"desktop"} is never available since
Octave has no Java-based desktop.
@xseealso{@ref{XREFusejava,,usejava}, @ref{XREFerror,,error}}
@end deftypefn
@c usejava scripts/java/usejava.m
@anchor{XREFusejava}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} usejava (@var{feature})
Return true if the Java element @var{feature} is available.
Possible features are:
@table @asis
@item @nospell{@qcode{"awt"}}
Abstract Window Toolkit for GUIs.
@item @qcode{"desktop"}
Interactive desktop is running.
@item @qcode{"jvm"}
Java Virtual Machine.
@item @qcode{"swing"}
Swing components for lightweight GUIs.
@end table
@code{usejava} determines if specific Java features are available in an
Octave session. This function is provided for scripts which may alter
their behavior based on the availability of Java. The feature
@qcode{"desktop"} always returns @code{false} as Octave has no Java-based
desktop. Other features may be available if Octave was compiled with the
Java Interface and Java is installed.
@xseealso{@ref{XREFjavachk,,javachk}}
@end deftypefn
@cindex memory, displaying Java memory status
@c javamem scripts/java/javamem.m
@anchor{XREFjavamem}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} javamem ()
@deftypefnx {} {@var{jmem} =} javamem ()
Show the current memory usage of the Java virtual machine (JVM) and run the
garbage collector.
When no return argument is given the info is printed to the screen.
Otherwise, the output cell array @var{jmem} contains Maximum, Total, and
Free memory (in bytes).
All Java-based routines are run in the JVM's shared memory pool, a
dedicated and separate part of memory claimed by the JVM from your
computer's total memory (which comprises physical RAM and virtual memory /
swap space on hard disk).
The maximum allowable memory usage can be configured using the file
@file{java.opts}. The directory where this file resides is determined by
the environment variable @w{@env{OCTAVE_JAVA_DIR}}. If unset, the directory
where @file{javaaddpath.m} resides is used instead (typically
@file{@w{@env{OCTAVE_HOME}}/share/octave/@w{@env{OCTAVE_VERSION}}/m/java/}).
@file{java.opts} is a plain text file with one option per line. The default
initial memory size and default maximum memory size (which are both system
dependent) can be overridden like so:
@nospell{-Xms64m}
@nospell{-Xmx512m}
(in megabytes in this example).
You can adapt these values to your own requirements if your system has
limited available physical memory or if you get Java memory errors.
@qcode{"Total memory"} is what the operating system has currently assigned
to the JVM and depends on actual and active memory usage.
@qcode{"Free memory"} is self-explanatory. During operation of Java-based
Octave functions the amount of Total and Free memory will vary, due to
Java's own cleaning up and your operating system's memory management.
@end deftypefn
@c java_matrix_autoconversion libinterp/octave-value/ov-java.cc
@anchor{XREFjava_matrix_autoconversion}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} java_matrix_autoconversion ()
@deftypefnx {} {@var{old_val} =} java_matrix_autoconversion (@var{new_val})
@deftypefnx {} {@var{old_val} =} java_matrix_autoconversion (@var{new_val}, "local")
Query or set the internal variable that controls whether Java arrays are
automatically converted to Octave matrices.
The default value is false.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@xseealso{@ref{XREFjava_unsigned_autoconversion,,java_unsigned_autoconversion}, @ref{XREFdebug_java,,debug_java}}
@end deftypefn
@c java_unsigned_autoconversion libinterp/octave-value/ov-java.cc
@anchor{XREFjava_unsigned_autoconversion}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} java_unsigned_autoconversion ()
@deftypefnx {} {@var{old_val} =} java_unsigned_autoconversion (@var{new_val})
@deftypefnx {} {@var{old_val} =} java_unsigned_autoconversion (@var{new_val}, "local")
Query or set the internal variable that controls how integer classes are
converted when @code{java_matrix_autoconversion} is enabled.
When enabled, Java arrays of class Byte or Integer are converted to matrices
of class uint8 or uint32 respectively. The default value is true.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@xseealso{@ref{XREFjava_matrix_autoconversion,,java_matrix_autoconversion}, @ref{XREFdebug_java,,debug_java}}
@end deftypefn
@c debug_java libinterp/octave-value/ov-java.cc
@anchor{XREFdebug_java}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} debug_java ()
@deftypefnx {} {@var{old_val} =} debug_java (@var{new_val})
@deftypefnx {} {@var{old_val} =} debug_java (@var{new_val}, "local")
Query or set the internal variable that determines whether extra debugging
information regarding the initialization of the JVM and any Java exceptions
is printed.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@xseealso{@ref{XREFjava_matrix_autoconversion,,java_matrix_autoconversion}, @ref{XREFjava_unsigned_autoconversion,,java_unsigned_autoconversion}}
@end deftypefn
|