File: geometry.txi

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (475 lines) | stat: -rw-r--r-- 13,561 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
@c Copyright (C) 2007-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <https://www.gnu.org/licenses/>.

@node Geometry
@chapter Geometry

Much of the geometry code in Octave is based on the Qhull
library@footnote{@nospell{Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T.},
@cite{The Quickhull Algorithm for Convex Hulls}, @nospell{ACM} Trans.@: on
Mathematical Software, 22(4):469--483, Dec 1996, @url{http://www.qhull.org}}.
Some of the documentation for Qhull, particularly for the options that
can be passed to @code{delaunay}, @code{voronoi} and @code{convhull},
etc., is relevant to Octave users.

@menu
* Delaunay Triangulation::
* Voronoi Diagrams::
* Convex Hull::
* Interpolation on Scattered Data::
* Vector Rotation Matrices::
@end menu

@node Delaunay Triangulation
@section Delaunay Triangulation

The Delaunay triangulation is constructed from a set of
circum-circles.  These circum-circles are chosen so that there are at
least three of the points in the set to triangulation on the
circumference of the circum-circle.  None of the points in the set of
points falls within any of the circum-circles.

In general there are only three points on the circumference of any
circum-circle.  However, in some cases, and in particular for the
case of a regular grid, 4 or more points can be on a single
circum-circle.  In this case the Delaunay triangulation is not unique.

@DOCSTRING(delaunay)

For 3-D inputs @code{delaunay} returns a set of tetrahedra that satisfy the
Delaunay circum-circle criteria.  Similarly, @code{delaunayn} returns the
N-dimensional simplex satisfying the Delaunay circum-circle criteria.
The N-dimensional extension of a triangulation is called a tessellation.

@DOCSTRING(delaunayn)

An example of a Delaunay triangulation of a set of points is

@example
@group
rand ("state", 1);
x = rand (1, 10);
y = rand (1, 10);
T = delaunay (x, y);
X = [ x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1)) ];
Y = [ y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1)) ];
axis ([0, 1, 0, 1]);
plot (X, Y, "b", x, y, "r*");
@end group
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:delaunay}.

@float Figure,fig:delaunay
@center @image{delaunay,4in}
@caption{Delaunay triangulation of a random set of points}
@end float
@end ifnotinfo

@menu
* Plotting the Triangulation::
* Identifying Points in Triangulation::
@end menu

@node Plotting the Triangulation
@subsection Plotting the Triangulation

Octave has the functions @code{triplot}, @code{trimesh}, and @code{trisurf}
to plot the Delaunay triangulation of a 2-dimensional set of points.
@code{tetramesh} will plot the triangulation of a 3-dimensional set of points.

@DOCSTRING(triplot)

@DOCSTRING(trimesh)

@DOCSTRING(trisurf)

@DOCSTRING(tetramesh)

The difference between @code{triplot}, and @code{trimesh} or @code{trisurf},
is that the former only plots the 2-dimensional triangulation itself, whereas
the second two plot the value of a function @code{f (@var{x}, @var{y})}.  An
example of the use of the @code{triplot} function is

@example
@group
rand ("state", 2)
x = rand (20, 1);
y = rand (20, 1);
tri = delaunay (x, y);
triplot (tri, x, y);
@end group
@end example

@noindent
which plots the Delaunay triangulation of a set of random points in
2-dimensions.
@ifnotinfo
The output of the above can be seen in @ref{fig:triplot}.

@float Figure,fig:triplot
@center @image{triplot,4in}
@caption{Delaunay triangulation of a random set of points}
@end float
@end ifnotinfo

@node Identifying Points in Triangulation
@subsection Identifying Points in Triangulation

It is often necessary to identify whether a particular point in the
N-dimensional space is within the Delaunay tessellation of a set of
points in this N-dimensional space, and if so which N-simplex contains
the point and which point in the tessellation is closest to the desired
point.  The function @code{tsearch} performs this function in a triangulation,
and the functions @code{tsearchn} and @code{dsearchn} in an N-dimensional
tessellation.

To identify whether a particular point represented by a vector @var{p}
falls within one of the simplices of an N-simplex, we can write the
Cartesian coordinates of the point in a parametric form with respect to
the N-simplex.  This parametric form is called the Barycentric
Coordinates of the point.  If the points defining the N-simplex are given
by @var{N} + 1 vectors @code{@var{t}(@var{i},:)}, then the Barycentric
coordinates defining the point @var{p} are given by

@example
@var{p} = @var{beta} * @var{t}
@end example

@noindent
where @var{beta} contains @var{N} + 1 values that together as a vector
represent the Barycentric coordinates of the point @var{p}.  To ensure a unique
solution for the values of @var{beta} an additional criteria of

@example
sum (@var{beta}) == 1
@end example

@noindent
is imposed, and we can therefore write the above as

@example
@group
@var{p} - @var{t}(end, :) = @var{beta}(1:end-1) * (@var{t}(1:end-1, :)
                - ones (@var{N}, 1) * @var{t}(end, :)
@end group
@end example

@noindent
Solving for @var{beta} we can then write

@example
@group
@var{beta}(1:end-1) = (@var{p} - @var{t}(end, :)) /
                (@var{t}(1:end-1, :) - ones (@var{N}, 1) * @var{t}(end, :))
@var{beta}(end) = sum (@var{beta}(1:end-1))
@end group
@end example

@noindent
which gives the formula for the conversion of the Cartesian coordinates
of the point @var{p} to the Barycentric coordinates @var{beta}.  An
important property of the Barycentric coordinates is that for all points
in the N-simplex

@example
0 <= @var{beta}(@var{i}) <= 1
@end example

@noindent
Therefore, the test in @code{tsearch} and @code{tsearchn} essentially
only needs to express each point in terms of the Barycentric coordinates
of each of the simplices of the N-simplex and test the values of
@var{beta}.  This is exactly the implementation used in
@code{tsearchn}.  @code{tsearch} is optimized for 2-dimensions and the
Barycentric coordinates are not explicitly formed.

@DOCSTRING(tsearch)

@DOCSTRING(tsearchn)

An example of the use of @code{tsearch} can be seen with the simple
triangulation

@example
@group
@var{x} = [-1; -1; 1; 1];
@var{y} = [-1; 1; -1; 1];
@var{tri} = [1, 2, 3; 2, 3, 4];
@end group
@end example

@noindent
consisting of two triangles defined by @var{tri}.  We can then identify
which triangle a point falls in like

@example
@group
tsearch (@var{x}, @var{y}, @var{tri}, -0.5, -0.5)
@result{} 1
tsearch (@var{x}, @var{y}, @var{tri}, 0.5, 0.5)
@result{} 2
@end group
@end example

@noindent
and we can confirm that a point doesn't lie within one of the triangles like

@example
@group
tsearch (@var{x}, @var{y}, @var{tri}, 2, 2)
@result{} NaN
@end group
@end example

The @code{dsearchn} function finds the closest point in a tessellation to the
desired point.  The desired point does not necessarily have to be in the
tessellation, and even if it the returned point of the tessellation does not
have to be one of the vertices of the N-simplex within which the desired point
is found.

@DOCSTRING(dsearchn)

An example of the use of @code{dsearchn}, using the above values of @var{x},
@var{y} and @var{tri} is

@example
@group
dsearchn ([@var{x}, @var{y}], @var{tri}, [-2, -2])
@result{} 1
@end group
@end example

If you wish the points that are outside the tessellation to be flagged,
then @code{dsearchn} can be used as

@example
@group
dsearchn ([@var{x}, @var{y}], @var{tri}, [-2, -2], NaN)
@result{} NaN
dsearchn ([@var{x}, @var{y}], @var{tri}, [-0.5, -0.5], NaN)
@result{} 1
@end group
@end example

@noindent
where the point outside the tessellation are then flagged with @code{NaN}.

@node Voronoi Diagrams
@section Voronoi Diagrams

A Voronoi diagram or Voronoi tessellation of a set of points @var{s} in
an N-dimensional space, is the tessellation of the N-dimensional space
such that all points in @code{@var{v}(@var{p})}, a partitions of the
tessellation where @var{p} is a member of @var{s}, are closer to @var{p}
than any other point in @var{s}.  The Voronoi diagram is related to the
Delaunay triangulation of a set of points, in that the vertices of the
Voronoi tessellation are the centers of the circum-circles of the
simplices of the Delaunay tessellation.

@DOCSTRING(voronoi)

@DOCSTRING(voronoin)

An example of the use of @code{voronoi} is

@example
@group
rand ("state",9);
x = rand (10,1);
y = rand (10,1);
tri = delaunay (x, y);
[vx, vy] = voronoi (x, y, tri);
triplot (tri, x, y, "b");
hold on;
plot (vx, vy, "r");
@end group
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:voronoi}.  Note that the
circum-circle of one of the triangles has been added to this figure, to
make the relationship between the Delaunay tessellation and the Voronoi
diagram clearer.

@float Figure,fig:voronoi
@center @image{voronoi,4in}
@caption{Delaunay triangulation (blue lines) and Voronoi diagram (red lines)
of a random set of points}
@end float
@end ifnotinfo

Additional information about the size of the facets of a Voronoi
diagram, and which points of a set of points is in a polygon can be had
with the @code{polyarea} and @code{inpolygon} functions respectively.

@DOCSTRING(polyarea)

An example of the use of @code{polyarea} might be

@example
@group
rand ("state", 2);
x = rand (10, 1);
y = rand (10, 1);
[c, f] = voronoin ([x, y]);
af = zeros (size (f));
for i = 1 : length (f)
  af(i) = polyarea (c (f @{i, :@}, 1), c (f @{i, :@}, 2));
endfor
@end group
@end example

Facets of the Voronoi diagram with a vertex at infinity have infinity
area.  A simplified version of @code{polyarea} for rectangles is
available with @code{rectint}

@DOCSTRING(rectint)

@DOCSTRING(inpolygon)

An example of the use of @code{inpolygon} might be

@example
@group
randn ("state", 2);
x = randn (100, 1);
y = randn (100, 1);
vx = cos (pi * [-1 : 0.1: 1]);
vy = sin (pi * [-1 : 0.1 : 1]);
in = inpolygon (x, y, vx, vy);
plot (vx, vy, x(in), y(in), "r+", x(!in), y(!in), "bo");
axis ([-2, 2, -2, 2]);
@end group
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:inpolygon}.

@float Figure,fig:inpolygon
@center @image{inpolygon,4in}
@caption{Demonstration of the @code{inpolygon} function to determine the
points inside a polygon}
@end float
@end ifnotinfo

@node Convex Hull
@section Convex Hull

The convex hull of a set of points is the minimum convex envelope
containing all of the points.  Octave has the functions @code{convhull}
and @code{convhulln} to calculate the convex hull of 2-dimensional and
N-dimensional sets of points.

@DOCSTRING(convhull)

@DOCSTRING(convhulln)

An example of the use of @code{convhull} is

@example
@group
x = -3:0.05:3;
y = abs (sin (x));
k = convhull (x, y);
plot (x(k), y(k), "r-", x, y, "b+");
axis ([-3.05, 3.05, -0.05, 1.05]);
@end group
@end example

@ifnotinfo
@noindent
The output of the above can be seen in @ref{fig:convhull}.

@float Figure,fig:convhull
@center @image{convhull,4in}
@caption{The convex hull of a simple set of points}
@end float
@end ifnotinfo

@node Interpolation on Scattered Data
@section Interpolation on Scattered Data

An important use of the Delaunay tessellation is that it can be used to
interpolate from scattered data to an arbitrary set of points.  To do
this the N-simplex of the known set of points is calculated with
@code{delaunay} or @code{delaunayn}.  Then the simplices in to which the
desired points are found are identified.  Finally the vertices of the simplices
are used to interpolate to the desired points.  The functions that perform this
interpolation are @code{griddata}, @code{griddata3} and @code{griddatan}.

@DOCSTRING(griddata)

@DOCSTRING(griddata3)

@DOCSTRING(griddatan)

An example of the use of the @code{griddata} function is

@example
@group
rand ("state", 1);
x = 2*rand (1000,1) - 1;
y = 2*rand (size (x)) - 1;
z = sin (2*(x.^2+y.^2));
[xx,yy] = meshgrid (linspace (-1,1,32));
zz = griddata (x, y, z, xx, yy);
mesh (xx, yy, zz);
@end group
@end example

@noindent
that interpolates from a random scattering of points, to a uniform grid.
@ifnotinfo
The output of the above can be seen in @ref{fig:griddata}.

@float Figure,fig:griddata
@center @image{griddata,4in}
@caption{Interpolation from a scattered data to a regular grid}
@end float
@end ifnotinfo

@node Vector Rotation Matrices
@section Vector Rotation Matrices

Also included in Octave's geometry functions are primitive functions to enable
vector rotations in 3-dimensional space.  Separate functions are provided for
rotation about each of the principle axes, @var{x}, @var{y}, and @var{z}.
According to Euler's rotation theorem, any arbitrary rotation, @var{R}, of any
vector, @var{p}, can be expressed as a product of the three principle
rotations:

@tex
$p' = R \cdot p = R_z \cdot R_y \cdot R_x \cdot p$
@end tex
@ifnottex

@example
p' = Rp = Rz*Ry*Rx*p
@end example
@end ifnottex

@DOCSTRING(rotx)

@DOCSTRING(roty)

@DOCSTRING(rotz)