1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 2007-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <https://www.gnu.org/licenses/>.
@node Interpolation
@chapter Interpolation
@menu
* One-dimensional Interpolation::
* Multi-dimensional Interpolation::
@end menu
@node One-dimensional Interpolation
@section One-dimensional Interpolation
Octave supports several methods for one-dimensional interpolation, most
of which are described in this section. @ref{Polynomial Interpolation}
and @ref{Interpolation on Scattered Data} describe additional methods.
@c interp1 scripts/general/interp1.m
@anchor{XREFinterp1}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{yi} =} interp1 (@var{x}, @var{y}, @var{xi})
@deftypefnx {} {@var{yi} =} interp1 (@var{y}, @var{xi})
@deftypefnx {} {@var{yi} =} interp1 (@dots{}, @var{method})
@deftypefnx {} {@var{yi} =} interp1 (@dots{}, @var{extrap})
@deftypefnx {} {@var{yi} =} interp1 (@dots{}, "left")
@deftypefnx {} {@var{yi} =} interp1 (@dots{}, "right")
@deftypefnx {} {@var{pp} =} interp1 (@dots{}, "pp")
One-dimensional interpolation.
Interpolate input data to determine the value of @var{yi} at the points
@var{xi}. If not specified, @var{x} is taken to be the indices of @var{y}
(@code{1:length (@var{y})}). If @var{y} is a matrix or an N-dimensional
array, the interpolation is performed on each column of @var{y}.
The interpolation @var{method} is one of:
@table @asis
@item @qcode{"nearest"}
Return the nearest neighbor.
@item @qcode{"previous"}
Return the previous neighbor.
@item @qcode{"next"}
Return the next neighbor.
@item @qcode{"linear"} (default)
Linear interpolation from nearest neighbors.
@item @qcode{"pchip"}
Piecewise cubic Hermite interpolating polynomial---shape-preserving
interpolation with smooth first derivative.
@item @qcode{"cubic"}
Cubic interpolation (same as @qcode{"pchip"}).
@item @qcode{"spline"}
Cubic spline interpolation---smooth first and second derivatives
throughout the curve.
@end table
Adding '*' to the start of any method above forces @code{interp1}
to assume that @var{x} is uniformly spaced, and only @code{@var{x}(1)}
and @code{@var{x}(2)} are referenced. This is usually faster,
and is never slower. The default method is @qcode{"linear"}.
If @var{extrap} is the string @qcode{"extrap"}, then extrapolate values
beyond the endpoints using the current @var{method}. If @var{extrap} is a
number, then replace values beyond the endpoints with that number. When
unspecified, @var{extrap} defaults to @code{NA}.
If the string argument @qcode{"pp"} is specified, then @var{xi} should not
be supplied and @code{interp1} returns a piecewise polynomial object. This
object can later be used with @code{ppval} to evaluate the interpolation.
There is an equivalence, such that @code{ppval (interp1 (@var{x},
@var{y}, @var{method}, @qcode{"pp"}), @var{xi}) == interp1 (@var{x},
@var{y}, @var{xi}, @var{method}, @qcode{"extrap"})}.
Duplicate points in @var{x} specify a discontinuous interpolant. There
may be at most 2 consecutive points with the same value.
If @var{x} is increasing, the default discontinuous interpolant is
right-continuous. If @var{x} is decreasing, the default discontinuous
interpolant is left-continuous.
The continuity condition of the interpolant may be specified by using
the options @qcode{"left"} or @qcode{"right"} to select a left-continuous
or right-continuous interpolant, respectively.
Discontinuous interpolation is only allowed for @qcode{"nearest"} and
@qcode{"linear"} methods; in all other cases, the @var{x}-values must be
unique.
An example of the use of @code{interp1} is
@example
@group
xf = [0:0.05:10];
yf = sin (2*pi*xf/5);
xp = [0:10];
yp = sin (2*pi*xp/5);
lin = interp1 (xp, yp, xf);
near = interp1 (xp, yp, xf, "nearest");
pch = interp1 (xp, yp, xf, "pchip");
spl = interp1 (xp, yp, xf, "spline");
plot (xf,yf,"r", xf,near,"g", xf,lin,"b", xf,pch,"c", xf,spl,"m",
xp,yp,"r*");
legend ("original", "nearest", "linear", "pchip", "spline");
@end group
@end example
@xseealso{@ref{XREFpchip,,pchip}, @ref{XREFspline,,spline}, @ref{XREFinterpft,,interpft}, @ref{XREFinterp2,,interp2}, @ref{XREFinterp3,,interp3}, @ref{XREFinterpn,,interpn}}
@end deftypefn
There are some important differences between the various interpolation
methods. The @qcode{"spline"} method enforces that both the first and second
derivatives of the interpolated values have a continuous derivative,
whereas the other methods do not. This means that the results of the
@qcode{"spline"} method are generally smoother. If the function to be
interpolated is in fact smooth, then @qcode{"spline"} will give excellent
results. However, if the function to be evaluated is in some manner
discontinuous, then @qcode{"pchip"} interpolation might give better results.
This can be demonstrated by the code
@example
@group
t = -2:2;
dt = 1;
ti =-2:0.025:2;
dti = 0.025;
y = sign (t);
ys = interp1 (t,y,ti,"spline");
yp = interp1 (t,y,ti,"pchip");
ddys = diff (diff (ys)./dti) ./ dti;
ddyp = diff (diff (yp)./dti) ./ dti;
figure (1);
plot (ti,ys,"r-", ti,yp,"g-");
legend ("spline", "pchip", 4);
figure (2);
plot (ti,ddys,"r+", ti,ddyp,"g*");
legend ("spline", "pchip");
@end group
@end example
@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:interpderiv1} and
@ref{fig:interpderiv2}.
@float Figure,fig:interpderiv1
@center @image{interpderiv1,4in}
@caption{Comparison of @qcode{"pchip"} and @qcode{"spline"} interpolation methods for a
step function}
@end float
@float Figure,fig:interpderiv2
@center @image{interpderiv2,4in}
@caption{Comparison of the second derivative of the @qcode{"pchip"} and @qcode{"spline"}
interpolation methods for a step function}
@end float
@end ifnotinfo
Fourier interpolation, is a resampling technique where a signal is
converted to the frequency domain, padded with zeros and then
reconverted to the time domain.
@c interpft scripts/general/interpft.m
@anchor{XREFinterpft}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} interpft (@var{x}, @var{n})
@deftypefnx {} {@var{y} =} interpft (@var{x}, @var{n}, @var{dim})
Fourier interpolation.
If @var{x} is a vector then @var{x} is resampled with @var{n} points. The
data in @var{x} is assumed to be equispaced. If @var{x} is a matrix or an
N-dimensional array, the interpolation is performed on each column of
@var{x}.
If @var{dim} is specified, then interpolate along the dimension @var{dim}.
@code{interpft} assumes that the interpolated function is periodic, and so
assumptions are made about the endpoints of the interpolation.
@xseealso{@ref{XREFinterp1,,interp1}}
@end deftypefn
There are two significant limitations on Fourier interpolation. First,
the function signal is assumed to be periodic, and so non-periodic
signals will be poorly represented at the edges. Second, both the
signal and its interpolation are required to be sampled at equispaced
points. An example of the use of @code{interpft} is
@example
@group
t = 0 : 0.3 : pi; dt = t(2)-t(1);
n = length (t); k = 100;
ti = t(1) + [0 : k-1]*dt*n/k;
y = sin (4*t + 0.3) .* cos (3*t - 0.1);
yp = sin (4*ti + 0.3) .* cos (3*ti - 0.1);
plot (ti, yp, "g", ti, interp1 (t, y, ti, "spline"), "b", ...
ti, interpft (y, k), "c", t, y, "r+");
legend ("sin(4t+0.3)cos(3t-0.1)", "spline", "interpft", "data");
@end group
@end example
@noindent
@ifinfo
which demonstrates the poor behavior of Fourier interpolation for non-periodic
functions.
@end ifinfo
@ifnotinfo
which demonstrates the poor behavior of Fourier interpolation for non-periodic
functions, as can be seen in @ref{fig:interpft}.
@float Figure,fig:interpft
@center @image{interpft,4in}
@caption{Comparison of @code{interp1} and @code{interpft} for non-periodic data}
@end float
@end ifnotinfo
In addition, the support functions @code{spline} and @code{lookup} that
underlie the @code{interp1} function can be called directly.
@c spline scripts/polynomial/spline.m
@anchor{XREFspline}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{pp} =} spline (@var{x}, @var{y})
@deftypefnx {} {@var{yi} =} spline (@var{x}, @var{y}, @var{xi})
Return the cubic spline interpolant of points @var{x} and @var{y}.
When called with two arguments, return the piecewise polynomial @var{pp}
that may be used with @code{ppval} to evaluate the polynomial at specific
points.
When called with a third input argument, @code{spline} evaluates the spline
at the points @var{xi}. The third calling form
@code{spline (@var{x}, @var{y}, @var{xi})} is equivalent to
@code{ppval (spline (@var{x}, @var{y}), @var{xi})}.
The variable @var{x} must be a vector of length @var{n}.
@var{y} can be either a vector or array. If @var{y} is a vector it must
have a length of either @var{n} or @code{@var{n} + 2}. If the length of
@var{y} is @var{n}, then the @qcode{"not-a-knot"} end condition is used.
If the length of @var{y} is @code{@var{n} + 2}, then the first and last
values of the vector @var{y} are the values of the first derivative of the
cubic spline at the endpoints.
If @var{y} is an array, then the size of @var{y} must have the form
@tex
$$[s_1, s_2, \cdots, s_k, n]$$
@end tex
@ifnottex
@code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]}
@end ifnottex
or
@tex
$$[s_1, s_2, \cdots, s_k, n + 2].$$
@end tex
@ifnottex
@code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n} + 2]}.
@end ifnottex
The array is reshaped internally to a matrix where the leading
dimension is given by
@tex
$$s_1 s_2 \cdots s_k$$
@end tex
@ifnottex
@code{@var{s1} * @var{s2} * @dots{} * @var{sk}}
@end ifnottex
and each row of this matrix is then treated separately. Note that this is
exactly the opposite of @code{interp1} but is done for @sc{matlab}
compatibility.
@xseealso{@ref{XREFpchip,,pchip}, @ref{XREFppval,,ppval}, @ref{XREFmkpp,,mkpp}, @ref{XREFunmkpp,,unmkpp}}
@end deftypefn
@node Multi-dimensional Interpolation
@section Multi-dimensional Interpolation
There are three multi-dimensional interpolation functions in Octave, with
similar capabilities. Methods using Delaunay tessellation are described
in @ref{Interpolation on Scattered Data}.
@c interp2 scripts/general/interp2.m
@anchor{XREFinterp2}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{zi} =} interp2 (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
@deftypefnx {} {@var{zi} =} interp2 (@var{z}, @var{xi}, @var{yi})
@deftypefnx {} {@var{zi} =} interp2 (@var{z}, @var{n})
@deftypefnx {} {@var{zi} =} interp2 (@var{z})
@deftypefnx {} {@var{zi} =} interp2 (@dots{}, @var{method})
@deftypefnx {} {@var{zi} =} interp2 (@dots{}, @var{method}, @var{extrap})
Two-dimensional interpolation.
Interpolate numeric reference data @var{x}, @var{y}, @var{z} to determine
@var{zi} at the coordinates @var{xi}, @var{yi}. The reference data
@var{x}, @var{y} can be matrices, as returned by @code{meshgrid}, in which
case the sizes of @var{x}, @var{y}, and @var{z} must be equal. If @var{x},
@var{y} are vectors describing a grid then
@w{@code{length (@var{x}) == columns (@var{z})}}@ and
@w{@code{length (@var{y}) == rows (@var{z})}}. In either case the input
data must be strictly monotonic.
If called without @var{x}, @var{y}, and just a single reference data matrix
@var{z}, the 2-D region
@code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})} is assumed.
This saves memory if the grid is regular and the distance between points is
not important.
If called with a single reference data matrix @var{z} and a refinement
value @var{n}, then perform interpolation over a grid where each original
interval has been recursively subdivided @var{n} times. This results in
@code{2^@var{n}-1} additional points for every interval in the original
grid. If @var{n} is omitted a value of 1 is used. As an example, the
interval [0,1] with @code{@var{n}==2} results in a refined interval with
points at [0, 1/4, 1/2, 3/4, 1].
The interpolation @var{method} is one of:
@table @asis
@item @qcode{"nearest"}
Return the nearest neighbor.
@item @qcode{"linear"} (default)
Linear interpolation from nearest neighbors.
@item @qcode{"pchip"}
Piecewise cubic Hermite interpolating polynomial---shape-preserving
interpolation with smooth first derivative.
@item @qcode{"cubic"}
Cubic interpolation using a convolution kernel function---third order
method with smooth first derivative.
@item @qcode{"spline"}
Cubic spline interpolation---smooth first and second derivatives
throughout the curve.
@end table
@var{extrap} is a scalar number. It replaces values beyond the endpoints
with @var{extrap}. Note that if @var{extrap} is used, @var{method} must
be specified as well. If @var{extrap} is omitted and the @var{method} is
@qcode{"spline"}, then the extrapolated values of the @qcode{"spline"} are
used. Otherwise the default @var{extrap} value for any other @var{method}
is @qcode{"NA"}.
@xseealso{@ref{XREFinterp1,,interp1}, @ref{XREFinterp3,,interp3}, @ref{XREFinterpn,,interpn}, @ref{XREFmeshgrid,,meshgrid}}
@end deftypefn
@c interp3 scripts/general/interp3.m
@anchor{XREFinterp3}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{vi} =} interp3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
@deftypefnx {} {@var{vi} =} interp3 (@var{v}, @var{xi}, @var{yi}, @var{zi})
@deftypefnx {} {@var{vi} =} interp3 (@var{v}, @var{n})
@deftypefnx {} {@var{vi} =} interp3 (@var{v})
@deftypefnx {} {@var{vi} =} interp3 (@dots{}, @var{method})
@deftypefnx {} {@var{vi} =} interp3 (@dots{}, @var{method}, @var{extrapval})
Three-dimensional interpolation.
Interpolate numeric reference data @var{x}, @var{y}, @var{z}, @var{v} to
determine @var{vi} at the coordinates @var{xi}, @var{yi}, @var{zi}. The
reference data @var{x}, @var{y}, @var{z} can be matrices, as returned by
@code{meshgrid}, in which case the sizes of @var{x}, @var{y}, @var{z}, and
@var{v} must be equal. If @var{x}, @var{y}, @var{z} are vectors describing
a cubic grid then @code{length (@var{x}) == columns (@var{v})},
@code{length (@var{y}) == rows (@var{v})}, and
@code{length (@var{z}) == size (@var{v}, 3)}. In either case the input
data must be strictly monotonic.
If called without @var{x}, @var{y}, @var{z}, and just a single reference
data matrix @var{v}, the 3-D region
@code{@var{x} = 1:columns (@var{v}), @var{y} = 1:rows (@var{v}),
@var{z} = 1:size (@var{v}, 3)} is assumed.
This saves memory if the grid is regular and the distance between points is
not important.
If called with a single reference data matrix @var{v} and a refinement
value @var{n}, then perform interpolation over a 3-D grid where each
original interval has been recursively subdivided @var{n} times. This
results in @code{2^@var{n}-1} additional points for every interval in the
original grid. If @var{n} is omitted a value of 1 is used. As an
example, the interval [0,1] with @code{@var{n}==2} results in a refined
interval with points at [0, 1/4, 1/2, 3/4, 1].
The interpolation @var{method} is one of:
@table @asis
@item @qcode{"nearest"}
Return the nearest neighbor.
@item @qcode{"linear"} (default)
Linear interpolation from nearest neighbors.
@item @qcode{"cubic"}
Piecewise cubic Hermite interpolating polynomial---shape-preserving
interpolation with smooth first derivative (not implemented yet).
@item @qcode{"spline"}
Cubic spline interpolation---smooth first and second derivatives
throughout the curve.
@end table
@var{extrapval} is a scalar number. It replaces values beyond the endpoints
with @var{extrapval}. Note that if @var{extrapval} is used, @var{method}
must be specified as well. If @var{extrapval} is omitted and the
@var{method} is @qcode{"spline"}, then the extrapolated values of the
@qcode{"spline"} are used. Otherwise the default @var{extrapval} value for
any other @var{method} is @qcode{"NA"}.
@xseealso{@ref{XREFinterp1,,interp1}, @ref{XREFinterp2,,interp2}, @ref{XREFinterpn,,interpn}, @ref{XREFmeshgrid,,meshgrid}}
@end deftypefn
@c interpn scripts/general/interpn.m
@anchor{XREFinterpn}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{})
@deftypefnx {} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{})
@deftypefnx {} {@var{vi} =} interpn (@var{v}, @var{m})
@deftypefnx {} {@var{vi} =} interpn (@var{v})
@deftypefnx {} {@var{vi} =} interpn (@dots{}, @var{method})
@deftypefnx {} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval})
Perform @var{n}-dimensional interpolation, where @var{n} is at least two.
Each element of the @var{n}-dimensional numeric array @var{v} represents a
value at a location given by the parameters @var{x1}, @var{x2}, @dots{},
@var{xn}. The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either
@var{n}-dimensional arrays of the same size as the array @var{v} in
the @qcode{"ndgrid"} format or vectors.
The parameters @var{y1}, @var{y2}, @dots{}, @var{yn} represent the points at
which the array @var{vi} is interpolated. They can be vectors of the same
length and orientation in which case they are interpreted as coordinates of
scattered points. If they are vectors of differing orientation or length,
they are used to form a grid in @qcode{"ndgrid"} format. They can also be
@var{n}-dimensional arrays of equal size.
If @var{x1}, @dots{}, @var{xn} are omitted, they are assumed to be
@code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then
the interpolation adds a point half way between each of the interpolation
points. This process is performed @var{m} times. If only @var{v} is
specified, then @var{m} is assumed to be @code{1}.
The interpolation @var{method} is one of:
@table @asis
@item @qcode{"nearest"}
Return the nearest neighbor.
@item @qcode{"linear"} (default)
Linear interpolation from nearest neighbors.
@item @qcode{"pchip"}
Piecewise cubic Hermite interpolating polynomial---shape-preserving
interpolation with smooth first derivative (not implemented yet).
@item @qcode{"cubic"}
Cubic interpolation (same as @qcode{"pchip"} [not implemented yet]).
@item @qcode{"spline"}
Cubic spline interpolation---smooth first and second derivatives
throughout the curve.
@end table
The default method is @qcode{"linear"}.
@var{extrapval} is a scalar number. It replaces values beyond the endpoints
with @var{extrapval}. Note that if @var{extrapval} is used, @var{method}
must be specified as well. If @var{extrapval} is omitted and the
@var{method} is @qcode{"spline"}, then the extrapolated values of the
@qcode{"spline"} are used. Otherwise the default @var{extrapval} value for
any other @var{method} is @code{NA}.
@xseealso{@ref{XREFinterp1,,interp1}, @ref{XREFinterp2,,interp2}, @ref{XREFinterp3,,interp3}, @ref{XREFspline,,spline}, @ref{XREFndgrid,,ndgrid}}
@end deftypefn
A significant difference between @code{interpn} and the other two
multi-dimensional interpolation functions is the fashion in which the
dimensions are treated. For @code{interp2} and @code{interp3}, the y-axis is
considered to be the columns of the matrix, whereas the x-axis corresponds to
the rows of the array. As Octave indexes arrays in column major order, the
first dimension of any array is the columns, and so @code{interpn} effectively
reverses the 'x' and 'y' dimensions. Consider the example,
@example
@group
x = y = z = -1:1;
f = @@(x,y,z) x.^2 - y - z.^2;
[xx, yy, zz] = meshgrid (x, y, z);
v = f (xx,yy,zz);
xi = yi = zi = -1:0.1:1;
[xxi, yyi, zzi] = meshgrid (xi, yi, zi);
vi = interp3 (x, y, z, v, xxi, yyi, zzi, "spline");
[xxi, yyi, zzi] = ndgrid (xi, yi, zi);
vi2 = interpn (x, y, z, v, xxi, yyi, zzi, "spline");
mesh (zi, yi, squeeze (vi2(1,:,:)));
@end group
@end example
@noindent
where @code{vi} and @code{vi2} are identical. The reversal of the
dimensions is treated in the @code{meshgrid} and @code{ndgrid} functions
respectively.
@ifnotinfo
The result of this code can be seen in @ref{fig:interpn}.
@float Figure,fig:interpn
@center @image{interpn,4in}
@caption{Demonstration of the use of @code{interpn}}
@end float
@end ifnotinfo
|