File: matrix.texi

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (3094 lines) | stat: -rw-r--r-- 93,776 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <https://www.gnu.org/licenses/>.

@node Matrix Manipulation
@chapter Matrix Manipulation

There are a number of functions available for checking to see if the
elements of a matrix meet some condition, and for rearranging the
elements of a matrix.  For example, Octave can easily tell you if all
the elements of a matrix are finite, or are less than some specified
value.  Octave can also rotate the elements, extract the upper- or
lower-triangular parts, or sort the columns of a matrix.

@menu
* Finding Elements and Checking Conditions::
* Rearranging Matrices::
* Special Utility Matrices::
* Famous Matrices::
@end menu

@node Finding Elements and Checking Conditions
@section Finding Elements and Checking Conditions

The functions @code{any} and @code{all} are useful for determining
whether any or all of the elements of a matrix satisfy some condition.
The @code{find} function is also useful in determining which elements of
a matrix meet a specified condition.

@c any libinterp/corefcn/data.cc
@anchor{XREFany}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{tf} =} any (@var{x})
@deftypefnx {} {@var{tf} =} any (@var{x}, @var{dim})
For a vector argument, return true (logical 1) if any element of the vector
is nonzero.

For a matrix argument, return a row vector of logical ones and zeros with each
element indicating whether any of the elements of the corresponding column of
the matrix are nonzero.  For example:

@example
@group
any (eye (2, 4))
 @result{} [ 1, 1, 0, 0 ]
@end group
@end example

If the optional argument @var{dim} is supplied, work along dimension @var{dim}.
For example:

@example
@group
any (eye (2, 4), 2)
 @result{} [ 1; 1 ]
@end group
@end example
@xseealso{@ref{XREFall,,all}}
@end deftypefn


@c all libinterp/corefcn/data.cc
@anchor{XREFall}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{tf} =} all (@var{x})
@deftypefnx {} {@var{tf} =} all (@var{x}, @var{dim})
For a vector argument, return true (logical 1) if all elements of the vector
are nonzero.

For a matrix argument, return a row vector of logical ones and zeros with each
element indicating whether all of the elements of the corresponding column of
the matrix are nonzero.  For example:

@example
@group
all ([2, 3; 1, 0])
    @result{} [ 1, 0 ]
@end group
@end example

If the optional argument @var{dim} is supplied, work along dimension @var{dim}.
@xseealso{@ref{XREFany,,any}}
@end deftypefn


Since the comparison operators (@pxref{Comparison Ops}) return matrices
of ones and zeros, it is easy to test a matrix for many things, not just
whether the elements are nonzero.  For example,

@example
@group
all (all (rand (5) < 0.9))
     @result{} 0
@end group
@end example

@noindent
tests a random 5 by 5 matrix to see if all of its elements are less
than 0.9.

Note that in conditional contexts (like the test clause of @code{if} and
@code{while} statements) Octave treats the test as if you had typed
@code{all (all (condition))}.

@c xor scripts/general/xor.m
@anchor{XREFxor}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{z} =} xor (@var{x}, @var{y})
@deftypefnx {} {@var{z} =} xor (@var{x1}, @var{x2}, @dots{})
Return the @dfn{exclusive or} of @var{x} and @var{y}.

For boolean expressions @var{x} and @var{y},
@code{xor (@var{x}, @var{y})} is true if and only if one of @var{x} or
@var{y} is true.  Otherwise, if @var{x} and @var{y} are both true or both
false, @code{xor} returns false.

The truth table for the xor operation is

@multitable @columnfractions 0.41 .044 .06 .042 0.42
@item @tab @var{x} @tab @var{y} @tab @var{z} @tab
@item @tab - @tab - @tab - @tab
@item @tab 0 @tab 0 @tab 0 @tab
@item @tab 1 @tab 0 @tab 1 @tab
@item @tab 0 @tab 1 @tab 1 @tab
@item @tab 1 @tab 1 @tab 0 @tab
@end multitable

If more than two arguments are given the xor operation is applied
cumulatively from left to right:

@example
(@dots{}((x1 XOR x2) XOR x3) XOR @dots{})
@end example

@xseealso{@ref{XREFand,,and}, @ref{XREFor,,or}, @ref{XREFnot,,not}}
@end deftypefn


@c diff libinterp/corefcn/data.cc
@anchor{XREFdiff}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{y} =} diff (@var{x})
@deftypefnx {} {@var{y} =} diff (@var{x}, @var{k})
@deftypefnx {} {@var{y} =} diff (@var{x}, @var{k}, @var{dim})
If @var{x} is a vector of length @math{n}, @w{@code{diff (@var{x})}}@ is the
vector of first differences
@tex
 $x_2 - x_1, \ldots{}, x_n - x_{n-1}$.
@end tex
@ifnottex
 @var{x}(2) - @var{x}(1), @dots{}, @var{x}(n) - @var{x}(n-1).
@end ifnottex

If @var{x} is a matrix, @w{@code{diff (@var{x})}}@ is the matrix of column
differences along the first non-singleton dimension.

The second argument is optional.  If supplied,
@w{@code{diff (@var{x}, @var{k})}}, where @var{k} is a non-negative integer,
returns the @var{k}-th differences.  It is possible that @var{k} is larger than
the first non-singleton dimension of the matrix.  In this case, @code{diff}
continues to take the differences along the next non-singleton dimension.

The dimension along which to take the difference can be explicitly stated with
the optional variable @var{dim}.  In this case the @var{k}-th order differences
are calculated along this dimension.  In the case where @var{k} exceeds
@w{@code{size (@var{x}, @var{dim})}}@ an empty matrix is returned.
@xseealso{@ref{XREFsort,,sort}, @ref{XREFmerge,,merge}}
@end deftypefn


@c isinf libinterp/corefcn/mappers.cc
@anchor{XREFisinf}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{tf} =} isinf (@var{x})
Return a logical array which is true where the elements of @var{x} are
infinite and false where they are not.

For example:

@example
@group
isinf ([13, Inf, NA, NaN])
      @result{} [ 0, 1, 0, 0 ]
@end group
@end example
@xseealso{@ref{XREFisfinite,,isfinite}, @ref{XREFisnan,,isnan}, @ref{XREFisna,,isna}}
@end deftypefn


@c isnan libinterp/corefcn/mappers.cc
@anchor{XREFisnan}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{tf} =} isnan (@var{x})
Return a logical array which is true where the elements of @var{x} are
NaN values and false where they are not.

NA values are also considered NaN values.  For example:

@example
@group
isnan ([13, Inf, NA, NaN])
      @result{} [ 0, 0, 1, 1 ]
@end group
@end example
@xseealso{@ref{XREFisna,,isna}, @ref{XREFisinf,,isinf}, @ref{XREFisfinite,,isfinite}}
@end deftypefn


@c isfinite libinterp/corefcn/mappers.cc
@anchor{XREFisfinite}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{tf} =} isfinite (@var{x})
Return a logical array which is true where the elements of @var{x} are
finite values and false where they are not.

For example:

@example
@group
isfinite ([13, Inf, NA, NaN])
     @result{} [ 1, 0, 0, 0 ]
@end group
@end example
@xseealso{@ref{XREFisinf,,isinf}, @ref{XREFisnan,,isnan}, @ref{XREFisna,,isna}}
@end deftypefn


@c common_size scripts/general/common_size.m
@anchor{XREFcommon_size}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {[@var{err}, @var{yi}, @dots{}] =} common_size (@var{xi}, @dots{})
Determine if all input arguments are either scalar or of common size.

If true, @var{err} is zero, and @var{yi} is a matrix of the common size
with all entries equal to @var{xi} if this is a scalar or @var{xi}
otherwise.  If the inputs cannot be brought to a common size, @var{err} is
1, and @var{yi} is @var{xi}.  For example:

@example
@group
[err, a, b] = common_size ([1 2; 3 4], 5)
     @result{} err = 0
     @result{} a = [ 1, 2; 3, 4 ]
     @result{} b = [ 5, 5; 5, 5 ]
@end group
@end example

@noindent
This is useful for implementing functions where arguments can either be
scalars or of common size.
@xseealso{@ref{XREFsize,,size}, @ref{XREFsize_equal,,size_equal}, @ref{XREFnumel,,numel}, @ref{XREFndims,,ndims}}
@end deftypefn


@c find libinterp/corefcn/find.cc
@anchor{XREFfind}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{idx} =} find (@var{x})
@deftypefnx {} {@var{idx} =} find (@var{x}, @var{n})
@deftypefnx {} {@var{idx} =} find (@var{x}, @var{n}, @var{direction})
@deftypefnx {} {[i, j] =} find (@dots{})
@deftypefnx {} {[i, j, v] =} find (@dots{})
Return a vector of indices of nonzero elements of a matrix, as a row if
@var{x} is a row vector or as a column otherwise.

To obtain a single index for each matrix element, Octave pretends that the
columns of a matrix form one long vector (like Fortran arrays are stored).
For example:

@example
@group
find (eye (2))
  @result{} [ 1; 4 ]
@end group
@end example

If two inputs are given, @var{n} indicates the maximum number of elements to
find from the beginning of the matrix or vector.

If three inputs are given, @var{direction} should be one of
@qcode{"first"} or @qcode{"last"}, requesting only the first or last
@var{n} indices, respectively.  However, the indices are always returned in
ascending order.

If two outputs are requested, @code{find} returns the row and column
indices of nonzero elements of a matrix.  For example:

@example
@group
[i, j] = find (2 * eye (2))
    @result{} i = [ 1; 2 ]
    @result{} j = [ 1; 2 ]
@end group
@end example

If three outputs are requested, @code{find} also returns a vector
containing the nonzero values.  For example:

@example
@group
[i, j, v] = find (3 * eye (2))
       @result{} i = [ 1; 2 ]
       @result{} j = [ 1; 2 ]
       @result{} v = [ 3; 3 ]
@end group
@end example

If @var{x} is a multi-dimensional array of size m x n x p x @dots{}, @var{j}
contains the column locations as if @var{x} was flattened into a
two-dimensional matrix of size m x (n + p + @dots{}).

Note that this function is particularly useful for sparse matrices, as
it extracts the nonzero elements as vectors, which can then be used to
create the original matrix.  For example:

@example
@group
sz = size (a);
[i, j, v] = find (a);
b = sparse (i, j, v, sz(1), sz(2));
@end group
@end example
@xseealso{@ref{XREFnonzeros,,nonzeros}}
@end deftypefn


@c lookup libinterp/corefcn/lookup.cc
@anchor{XREFlookup}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{idx} =} lookup (@var{table}, @var{y})
@deftypefnx {} {@var{idx} =} lookup (@var{table}, @var{y}, @var{opt})
Lookup values in a @strong{sorted} table.

This function is usually used as a prelude to interpolation.

If table is increasing, of length N and @code{idx = lookup (table, y)}, then
@code{table(idx(i)) <= y(i) < table(idx(i+1))} for all @code{y(i)} within the
table.  If @code{y(i) < table(1)} then @code{idx(i)} is 0.  If
@code{y(i) >= table(end)} or @code{isnan (y(i))} then @code{idx(i)} is N.

If the table is decreasing, then the tests are reversed.  For non-strictly
monotonic tables, empty intervals are always skipped.  The result is undefined
if @var{table} is not monotonic, or if @var{table} contains a NaN.

The complexity of the lookup is O(M*log(N)) where M is the size of @var{y}.
In the special case when @var{y} is also sorted, the complexity is
O(min (M*log(N), M+N)).

@var{table} and @var{y} can also be cell arrays of strings (or @var{y} can be a
single string).  In this case, string lookup is performed using lexicographical
comparison.

If @var{opts} is specified, it must be a string with letters indicating
additional options.

@table @code
@item m
Match.  @code{table(idx(i)) == y(i)} if @code{y(i)} occurs in table;
otherwise, @code{idx(i)} is zero.

@item b
Boolean.  @code{idx(i)} is a logical 1 or 0, indicating whether @code{y(i)}
is contained in table or not.

@item l
Left.  For numeric lookups the leftmost subinterval shall be extended to
minus infinity (i.e., all indices at least 1).

@item r
Right.  For numeric lookups the rightmost subinterval shall be extended to
infinity (i.e., all indices at most N-1).
@end table

@strong{Note}: If @var{table} is not sorted the results from @code{lookup}
will be unpredictable.
@end deftypefn


If you wish to check if a variable exists at all, instead of properties
its elements may have, consult @ref{Status of Variables}.

@node Rearranging Matrices
@section Rearranging Matrices

@c fliplr scripts/general/fliplr.m
@anchor{XREFfliplr}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{B} =} fliplr (@var{A})
Flip array left to right.

Return a copy of @var{A} with the order of the columns reversed.  In other
words, @var{A} is flipped left-to-right about a vertical axis.  For example:

@example
@group
fliplr ([1, 2; 3, 4])
     @result{}  2  1
         4  3
@end group
@end example

@xseealso{@ref{XREFflipud,,flipud}, @ref{XREFflip,,flip}, @ref{XREFrot90,,rot90}, @ref{XREFrotdim,,rotdim}}
@end deftypefn


@c flipud scripts/general/flipud.m
@anchor{XREFflipud}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{B} =} flipud (@var{A})
Flip array upside down.

Return a copy of @var{A} with the order of the rows reversed.  In other
words, @var{A} is flipped upside-down about a horizontal axis.  For example:

@example
@group
flipud ([1, 2; 3, 4])
     @result{}  3  4
         1  2
@end group
@end example

@xseealso{@ref{XREFfliplr,,fliplr}, @ref{XREFflip,,flip}, @ref{XREFrot90,,rot90}, @ref{XREFrotdim,,rotdim}}
@end deftypefn


@c flip scripts/general/flip.m
@anchor{XREFflip}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{B} =} flip (@var{A})
@deftypefnx {} {@var{B} =} flip (@var{A}, @var{dim})
Return a copy of array @var{A} flipped across dimension @var{dim}.

If @var{dim} is unspecified it defaults to the first non-singleton
dimension.

Examples:

@example
## row vector
flip ([1  2  3  4])
      @result{}  4  3  2  1

## column vector
flip ([1; 2; 3; 4])
      @result{}  4
          3
          2
          1

## 2-D matrix along dimension 1
flip ([1 2; 3 4])
      @result{}  3  4
          1  2

## 2-D matrix along dimension 2
flip ([1 2; 3 4], 2)
      @result{}  2  1
          4  3
@end example

@xseealso{@ref{XREFfliplr,,fliplr}, @ref{XREFflipud,,flipud}, @ref{XREFrot90,,rot90}, @ref{XREFrotdim,,rotdim}, @ref{XREFpermute,,permute}, @ref{XREFtranspose,,transpose}}
@end deftypefn


@c rot90 scripts/general/rot90.m
@anchor{XREFrot90}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{B} =} rot90 (@var{A})
@deftypefnx {} {@var{B} =} rot90 (@var{A}, @var{k})
Rotate array by 90 degree increments.

Return a copy of @var{A} with the elements rotated counterclockwise in
90-degree increments.

The second argument is optional, and specifies how many 90-degree rotations
are to be applied (the default value is 1).  Negative values of @var{k}
rotate the matrix in a clockwise direction.
For example,

@example
@group
rot90 ([1, 2; 3, 4], -1)
    @result{}  3  1
        4  2
@end group
@end example

@noindent
rotates the given matrix clockwise by 90 degrees.  The following are all
equivalent statements:

@example
@group
rot90 ([1, 2; 3, 4], -1)
rot90 ([1, 2; 3, 4], 3)
rot90 ([1, 2; 3, 4], 7)
@end group
@end example

The rotation is always performed on the plane of the first two dimensions,
i.e., rows and columns.  To perform a rotation on any other plane, use
@code{rotdim}.

@xseealso{@ref{XREFrotdim,,rotdim}, @ref{XREFfliplr,,fliplr}, @ref{XREFflipud,,flipud}, @ref{XREFflip,,flip}}
@end deftypefn


@c rotdim scripts/general/rotdim.m
@anchor{XREFrotdim}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{B} =} rotdim (@var{A})
@deftypefnx {} {@var{B} =} rotdim (@var{A}, @var{n})
@deftypefnx {} {@var{B} =} rotdim (@var{A}, @var{n}, @var{plane})
Return a copy of @var{A} with the elements rotated counterclockwise in
90-degree increments.

The second argument @var{n} is optional, and specifies how many 90-degree
rotations are to be applied (the default value is 1).  Negative values of
@var{n} rotate the matrix in a clockwise direction.

The third argument is also optional and defines the plane of the rotation.
If present, @var{plane} is a two element vector containing two different
valid dimensions of the matrix.  When @var{plane} is not given the first two
non-singleton dimensions are used.

For example,

@example
@group
rotdim ([1, 2; 3, 4], -1, [1, 2])
     @result{}  3  1
         4  2
@end group
@end example

@noindent
rotates the given matrix clockwise by 90 degrees.  The following are all
equivalent statements:

@example
@group
rotdim ([1, 2; 3, 4], -1, [1, 2])
rotdim ([1, 2; 3, 4], 3, [1, 2])
rotdim ([1, 2; 3, 4], 7, [1, 2])
@end group
@end example
@xseealso{@ref{XREFrot90,,rot90}, @ref{XREFfliplr,,fliplr}, @ref{XREFflipud,,flipud}, @ref{XREFflip,,flip}}
@end deftypefn


@c cat libinterp/corefcn/data.cc
@anchor{XREFcat}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{A} =} cat (@var{dim}, @var{array1}, @var{array2}, @dots{}, @var{arrayN})
Return the concatenation of N-D array objects, @var{array1}, @var{array2},
@dots{}, @var{arrayN} along dimension @var{dim}.

@example
@group
A = ones (2, 2);
B = zeros (2, 2);
cat (2, A, B)
  @result{} 1 1 0 0
     1 1 0 0
@end group
@end example

Alternatively, we can concatenate @var{A} and @var{B} along the second
dimension in the following way:

@example
@group
[A, B]
@end group
@end example

@var{dim} can be larger than the dimensions of the N-D array objects and the
result will thus have @var{dim} dimensions as the following example shows:

@example
@group
cat (4, ones (2, 2), zeros (2, 2))
  @result{} ans(:,:,1,1) =

       1 1
       1 1

     ans(:,:,1,2) =

       0 0
       0 0
@end group
@end example
@xseealso{@ref{XREFhorzcat,,horzcat}, @ref{XREFvertcat,,vertcat}}
@end deftypefn


@c horzcat libinterp/corefcn/data.cc
@anchor{XREFhorzcat}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{A} =} horzcat (@var{array1}, @var{array2}, @dots{}, @var{arrayN})
Return the horizontal concatenation of N-D array objects, @var{array1},
@var{array2}, @dots{}, @var{arrayN} along dimension 2.

Arrays may also be concatenated horizontally using the syntax for creating
new matrices.  For example:

@example
@var{A} = [ @var{array1}, @var{array2}, @dots{} ]
@end example

This syntax is slightly more efficient because the Octave parser can
concatenate the arrays without the overhead of a function call.
@xseealso{@ref{XREFcat,,cat}, @ref{XREFvertcat,,vertcat}}
@end deftypefn


@c vertcat libinterp/corefcn/data.cc
@anchor{XREFvertcat}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{A} =} vertcat (@var{array1}, @var{array2}, @dots{}, @var{arrayN})
Return the vertical concatenation of N-D array objects, @var{array1},
@var{array2}, @dots{}, @var{arrayN} along dimension 1.

Arrays may also be concatenated vertically using the syntax for creating
new matrices.  For example:

@example
@var{A} = [ @var{array1}; @var{array2}; @dots{} ]
@end example

This syntax is slightly more efficient because the Octave parser can
concatenate the arrays without the overhead of a function call.
@xseealso{@ref{XREFcat,,cat}, @ref{XREFhorzcat,,horzcat}}
@end deftypefn


@c permute libinterp/corefcn/data.cc
@anchor{XREFpermute}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{B} =} permute (@var{A}, @var{perm})
Return the generalized transpose for an N-D array object @var{A}.

The permutation vector @var{perm} must contain the elements
@w{@code{1:ndims (A)}}@ (in any order, but each element must appear only
once).  The @var{N}th dimension of @var{A} gets remapped to dimension
@code{@var{PERM}(@var{N})}.  For example:

@example
@group
@var{x} = zeros ([2, 3, 5, 7]);
size (@var{x})
   @result{}  2   3   5   7

size (permute (@var{x}, [2, 1, 3, 4]))
   @result{}  3   2   5   7

size (permute (@var{x}, [1, 3, 4, 2]))
   @result{}  2   5   7   3

## The identity permutation
size (permute (@var{x}, [1, 2, 3, 4]))
   @result{}  2   3   5   7
@end group
@end example
@xseealso{@ref{XREFipermute,,ipermute}}
@end deftypefn


@c ipermute libinterp/corefcn/data.cc
@anchor{XREFipermute}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{A} =} ipermute (@var{B}, @var{iperm})
The inverse of the @code{permute} function.

The expression

@example
ipermute (permute (A, perm), perm)
@end example

@noindent
returns the original array @var{A}.
@xseealso{@ref{XREFpermute,,permute}}
@end deftypefn


@c reshape libinterp/corefcn/data.cc
@anchor{XREFreshape}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{B} =} reshape (@var{A}, @var{m}, @var{n}, @dots{})
@deftypefnx {} {@var{B} =} reshape (@var{A}, [@var{m} @var{n} @dots{}])
@deftypefnx {} {@var{B} =} reshape (@var{A}, @dots{}, [], @dots{})
@deftypefnx {} {@var{B} =} reshape (@var{A}, @var{size})
Return a matrix with the specified dimensions (@var{m}, @var{n}, @dots{})
whose elements are taken from the matrix @var{A}.

The elements of the matrix are accessed in column-major order (like Fortran
arrays are stored).

The following code demonstrates reshaping a 1x4 row vector into a 2x2 square
matrix.

@example
@group
reshape ([1, 2, 3, 4], 2, 2)
      @result{}  1  3
          2  4
@end group
@end example

@noindent
Note that the total number of elements in the original matrix
(@code{prod (size (@var{A}))}) must match the total number of elements
in the new matrix (@code{prod ([@var{m} @var{n} @dots{}])}).

A single dimension of the return matrix may be left unspecified and Octave
will determine its size automatically.  An empty matrix ([]) is used to flag
the unspecified dimension.
@xseealso{@ref{XREFresize,,resize}, @ref{XREFvec,,vec}, @ref{XREFpostpad,,postpad}, @ref{XREFcat,,cat}, @ref{XREFsqueeze,,squeeze}}
@end deftypefn


@c resize libinterp/corefcn/data.cc
@anchor{XREFresize}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{B} =} resize (@var{A}, @var{m})
@deftypefnx {} {@var{B} =} resize (@var{A}, @var{m}, @var{n}, @dots{})
@deftypefnx {} {@var{B} =} resize (@var{A}, [@var{m} @var{n} @dots{}])
Resize @var{A} cutting off elements as necessary.

In the result, element with certain indices is equal to the corresponding
element of @var{A} if the indices are within the bounds of @var{A}; otherwise,
the element is set to zero.

In other words, the statement

@example
B = resize (A, dv)
@end example

@noindent
is equivalent to the following code:

@example
@group
B = zeros (dv, class (A));
sz = min (dv, size (A));
for i = 1:length (sz)
  idx@{i@} = 1:sz(i);
endfor
B(idx@{:@}) = A(idx@{:@});
@end group
@end example

@noindent
but is performed more efficiently.

If only @var{m} is supplied, and it is a scalar, the dimension of the result is
@var{m}-by-@var{m}.  If @var{m}, @var{n}, @dots{} are all scalars, then the
dimensions of the result are @var{m}-by-@var{n}-by-@enddots{}  If given a vector
as input, then the dimensions of the result are given by the elements of that
vector.

An object can be resized to more dimensions than it has; in such case the
missing dimensions are assumed to be 1.  Resizing an object to fewer dimensions
is not possible.
@xseealso{@ref{XREFreshape,,reshape}, @ref{XREFpostpad,,postpad}, @ref{XREFprepad,,prepad}, @ref{XREFcat,,cat}}
@end deftypefn


@c circshift scripts/general/circshift.m
@anchor{XREFcircshift}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{y} =} circshift (@var{x}, @var{n})
@deftypefnx {} {@var{y} =} circshift (@var{x}, @var{n}, @var{dim})
Circularly shift the values of the array @var{x}.

@var{n} must be a vector of integers no longer than the number of dimensions
in @var{x}.  The values of @var{n} can be either positive or negative, which
determines the direction in which the values of @var{x} are shifted.  If an
element of @var{n} is zero, then the corresponding dimension of @var{x} will
not be shifted.  If @var{n} is a scalar and no @var{dim} is specified then
the shift is applied to the first non-singular dimension.

If a scalar @var{dim} is given then operate along the specified dimension.
In this case @var{n} must be a scalar as well.

Examples:

@example
x = [1, 2, 3;
     4, 5, 6;
     7, 8, 9];
## positive shift on rows (1st non-singular dim)
circshift (x, 1)
  @result{}
       7   8   9
       1   2   3
       4   5   6
## negative shift on rows (1st non-singular dim)
circshift (x, -2)
  @result{}
       7   8   9
       1   2   3
       4   5   6
## no shift of rows, shift columns by 1 (2nd dimension)
circshift (x, [0,1])
  @result{}
       3   1   2
       6   4   5
       9   7   8
## shift columns (2nd dimension)
circshift (x, 1, 2)
  @result{}
       3   1   2
       6   4   5
       9   7   8
@end example
@xseealso{@ref{XREFpermute,,permute}, @ref{XREFipermute,,ipermute}, @ref{XREFshiftdim,,shiftdim}}
@end deftypefn


@c shiftdim scripts/general/shiftdim.m
@anchor{XREFshiftdim}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{y} =} shiftdim (@var{x}, @var{n})
@deftypefnx {} {[@var{y}, @var{ns}] =} shiftdim (@var{x})
Shift the dimensions of @var{x} by @var{n}, where @var{n} must be
an integer scalar.

When @var{n} is positive, the dimensions of @var{x} are shifted to the left,
with the leading dimensions circulated to the end.  If @var{n} is negative,
then the dimensions of @var{x} are shifted to the right, with @var{n}
leading singleton dimensions added.

Called with a single argument, @code{shiftdim}, removes the leading
singleton dimensions, returning the number of dimensions removed in the
second output argument @var{ns}.

For example:

@example
@group
x = ones (1, 2, 3);
size (shiftdim (x, -1))
  @result{}   1   1   2   3
size (shiftdim (x, 1))
  @result{}   2   3
[b, ns] = shiftdim (x)
  @result{} b =
        1   1   1
        1   1   1
  @result{} ns = 1
@end group
@end example
@xseealso{@ref{XREFreshape,,reshape}, @ref{XREFpermute,,permute}, @ref{XREFipermute,,ipermute}, @ref{XREFcircshift,,circshift}, @ref{XREFsqueeze,,squeeze}}
@end deftypefn


@c sort libinterp/corefcn/data.cc
@anchor{XREFsort}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{s}, @var{i}] =} sort (@var{x})
@deftypefnx {} {[@var{s}, @var{i}] =} sort (@var{x}, @var{dim})
@deftypefnx {} {[@var{s}, @var{i}] =} sort (@var{x}, @var{mode})
@deftypefnx {} {[@var{s}, @var{i}] =} sort (@var{x}, @var{dim}, @var{mode})
Return a copy of @var{x} with the elements arranged in increasing order.

For matrices, @code{sort} orders the elements within columns

For example:

@example
@group
sort ([1, 2; 2, 3; 3, 1])
   @result{}  1  1
       2  2
       3  3
@end group
@end example

If the optional argument @var{dim} is given, then the matrix is sorted
along the dimension defined by @var{dim}.  The optional argument @var{mode}
defines the order in which the values will be sorted.  Valid values of
@var{mode} are @qcode{"ascend"} or @qcode{"descend"}.

The @code{sort} function may also be used to produce a matrix
containing the original row indices of the elements in the sorted
matrix.  For example:

@example
@group
[s, i] = sort ([1, 2; 2, 3; 3, 1])
  @result{} s = 1  1
         2  2
         3  3
  @result{} i = 1  3
         2  1
         3  2
@end group
@end example

For equal elements, the indices are such that equal elements are listed
in the order in which they appeared in the original list.

Sorting of complex entries is done first by magnitude
(@w{@code{abs (@var{z})}})@ and for any ties by phase angle
(@w{@code{angle (z)}}).  For example:

@example
@group
sort ([1+i; 1; 1-i])
    @result{} 1 + 0i
       1 - 1i
       1 + 1i
@end group
@end example

NaN values are treated as being greater than any other value and are sorted
to the end of the list.

The @code{sort} function may also be used to sort strings and cell arrays
of strings, in which case ASCII dictionary order (uppercase 'A' precedes
lowercase 'a') of the strings is used.

The algorithm used in @code{sort} is optimized for the sorting of partially
ordered lists.
@xseealso{@ref{XREFsortrows,,sortrows}, @ref{XREFissorted,,issorted}}
@end deftypefn


@c sortrows scripts/general/sortrows.m
@anchor{XREFsortrows}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{s}, @var{i}] =} sortrows (@var{A})
@deftypefnx {} {[@var{s}, @var{i}] =} sortrows (@var{A}, @var{c})
Sort the rows of the matrix @var{A} according to the order of the columns
specified in @var{c}.

By default (@var{c} omitted, or a particular column unspecified in @var{c})
an ascending sort order is used.  However, if elements of @var{c} are
negative then the corresponding column is sorted in descending order.  If
the elements of @var{A} are strings then a lexicographical sort is used.

Example: sort by column 2 in descending order, then 3 in ascending order

@example
@group
x = [ 7, 1, 4;
      8, 3, 5;
      9, 3, 6 ];
sortrows (x, [-2, 3])
   @result{} 8  3  5
      9  3  6
      7  1  4
@end group
@end example

@xseealso{@ref{XREFsort,,sort}}
@end deftypefn


@c issorted libinterp/corefcn/data.cc
@anchor{XREFissorted}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{tf} =} issorted (@var{A})
@deftypefnx {} {@var{tf} =} issorted (@var{A}, @var{mode})
@deftypefnx {} {@var{tf} =} issorted (@var{A}, "rows", @var{mode})
Return true if the vector @var{A} is sorted according to @var{mode}, which
may be either @qcode{"ascend"}, @qcode{"descend"}, @qcode{"either"}, or
@qcode{"monotonic"} (@qcode{"either"} and @qcode{"monotonic"} are
equivalent).

By default, @var{mode} is @qcode{"ascend"}.  NaNs are treated in the same
manner as @code{sort}.

If the optional argument @qcode{"rows"} is supplied, check whether the matrix
is sorted by rows as output by the function @code{sortrows} (with no options).

This function does not support sparse matrices.
@xseealso{@ref{XREFsort,,sort}, @ref{XREFsortrows,,sortrows}}
@end deftypefn


@c nth_element libinterp/corefcn/data.cc
@anchor{XREFnth_element}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{nel} =} nth_element (@var{x}, @var{n})
@deftypefnx {} {@var{nel} =} nth_element (@var{x}, @var{n}, @var{dim})
Select the n-th smallest element of a vector, using the ordering defined by
@code{sort}.

The result is equivalent to @code{sort(@var{x})(@var{n})}.

@var{n} can also be a contiguous range, either ascending @code{l:u}
or descending @code{u:-1:l}, in which case a range of elements is returned.

If @var{x} is an array, @code{nth_element} operates along the dimension
defined by @var{dim}, or the first non-singleton dimension if @var{dim} is
not given.

Programming Note: nth_element encapsulates the C++ standard library
algorithms nth_element and partial_sort.  On average, the complexity of the
operation is O(M*log(K)), where @w{@code{M = size (@var{x}, @var{dim})}}@ and
@w{@code{K = length (@var{n})}}.  This function is intended for cases where
the ratio K/M is small; otherwise, it may be better to use @code{sort}.
@xseealso{@ref{XREFsort,,sort}, @ref{XREFmin,,min}, @ref{XREFmax,,max}}
@end deftypefn


@c tril libinterp/corefcn/tril.cc
@anchor{XREFtril}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{A_LO} =} tril (@var{A})
@deftypefnx {} {@var{A_LO} =} tril (@var{A}, @var{k})
@deftypefnx {} {@var{A_LO} =} tril (@var{A}, @var{k}, @var{pack})
Return a new matrix formed by extracting the lower triangular part of the
matrix @var{A}, and setting all other elements to zero.

The optional second argument specifies how many diagonals above or below the
main diagonal should also be set to zero.  The default value of @var{k} is
zero which includes the main diagonal as part of the result.  If the value of
@var{k} is a nonzero integer then the selection of elements starts at an offset
of @var{k} diagonals above the main diagonal for positive @var{k} or below the
main diagonal for negative @var{k}.  The absolute value of @var{k} may not be
greater than the number of subdiagonals or superdiagonals.

Example 1 : exclude main diagonal

@example
@group
tril (ones (3), -1)
     @result{}  0  0  0
         1  0  0
         1  1  0
@end group
@end example

@noindent

Example 2 : include first superdiagonal

@example
@group
tril (ones (3), 1)
     @result{}  1  1  0
         1  1  1
         1  1  1
@end group
@end example

If the optional third argument @qcode{"pack"} is given then the extracted
elements are not inserted into a matrix, but instead stacked column-wise one
above another, and returned as a column vector.
@xseealso{@ref{XREFtriu,,triu}, @ref{XREFistril,,istril}, @ref{XREFdiag,,diag}}
@end deftypefn


@c triu libinterp/corefcn/tril.cc
@anchor{XREFtriu}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{A_UP} =} triu (@var{A})
@deftypefnx {} {@var{A_UP} =} triu (@var{A}, @var{k})
@deftypefnx {} {@var{A_UP} =} triu (@var{A}, @var{k}, @var{pack})
Return a new matrix formed by extracting the upper triangular part of the
matrix @var{A}, and setting all other elements to zero.

The optional second argument specifies how many diagonals above or below the
main diagonal should also be set to zero.  The default value of @var{k} is
zero which includes the main diagonal as part of the result.  If the value of
@var{k} is a nonzero integer then the selection of elements starts at an offset
of @var{k} diagonals above the main diagonal for positive @var{k} or below the
main diagonal for negative @var{k}.  The absolute value of @var{k} may not be
greater than the number of subdiagonals or superdiagonals.

Example 1 : exclude main diagonal

@example
@group
triu (ones (3), 1)
     @result{}  0  1  1
         0  0  1
         0  0  0
@end group
@end example

@noindent

Example 2 : include first subdiagonal

@example
@group
triu (ones (3), -1)
     @result{}  1  1  1
         1  1  1
         0  1  1
@end group
@end example

If the optional third argument @qcode{"pack"} is given then the extracted
elements are not inserted into a matrix, but instead stacked column-wise one
above another, and returned as a column vector.
@xseealso{@ref{XREFtril,,tril}, @ref{XREFistriu,,istriu}, @ref{XREFdiag,,diag}}
@end deftypefn


@c vec libinterp/corefcn/data.cc
@anchor{XREFvec}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{v} =} vec (@var{x})
@deftypefnx {} {@var{v} =} vec (@var{x}, @var{dim})
Return the vector obtained by stacking the columns of the matrix @var{x}
one above the other.

Without @var{dim} this is equivalent to @code{@var{x}(:)}.

If @var{dim} is supplied, the dimensions of @var{v} are set to @var{dim}
with all elements along the last dimension.  This is equivalent to
@code{shiftdim (@var{x}(:), 1-@var{dim})}.
@xseealso{@ref{XREFvech,,vech}, @ref{XREFresize,,resize}, @ref{XREFcat,,cat}}
@end deftypefn


@c vech scripts/linear-algebra/vech.m
@anchor{XREFvech}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{v} =} vech (@var{x})
Return the vector obtained by eliminating all superdiagonal elements of
the square matrix @var{x} and stacking the result one column above the
other.

This has uses in matrix calculus where the underlying matrix is symmetric
and it would be pointless to keep values above the main diagonal.
@xseealso{@ref{XREFvec,,vec}}
@end deftypefn


@c prepad scripts/general/prepad.m
@anchor{XREFprepad}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{B} =} prepad (@var{A}, @var{l})
@deftypefnx {} {@var{B} =} prepad (@var{A}, @var{l}, @var{c})
@deftypefnx {} {@var{B} =} prepad (@var{A}, @var{l}, @var{c}, @var{dim})
Prepend the scalar value @var{c} to the vector @var{A} until it is of length
@var{l}.  If @var{c} is not given, a value of 0 is used.

If @code{length (@var{A}) > @var{l}}, elements from the beginning of @var{A}
are removed until a vector of length @var{l} is obtained.

If @var{A} is a matrix, elements are prepended or removed from each row.

If the optional argument @var{dim} is given, operate along this dimension.

If @var{dim} is larger than the dimensions of @var{A}, the result will have
@var{dim} dimensions.
@xseealso{@ref{XREFpostpad,,postpad}, @ref{XREFcat,,cat}, @ref{XREFresize,,resize}}
@end deftypefn


@c postpad scripts/general/postpad.m
@anchor{XREFpostpad}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{B} =} postpad (@var{A}, @var{l})
@deftypefnx {} {@var{B} =} postpad (@var{A}, @var{l}, @var{c})
@deftypefnx {} {@var{B} =} postpad (@var{A}, @var{l}, @var{c}, @var{dim})
Append the scalar value @var{c} to the vector @var{A} until it is of length
@var{l}.  If @var{c} is not given, a value of 0 is used.

If @code{length (@var{A}) > @var{l}}, elements from the end of @var{A} are
removed until a vector of length @var{l} is obtained.

If @var{A} is a matrix, elements are appended or removed from each row.

If the optional argument @var{dim} is given, operate along this dimension.

If @var{dim} is larger than the dimensions of @var{A}, the result will have
@var{dim} dimensions.
@xseealso{@ref{XREFprepad,,prepad}, @ref{XREFcat,,cat}, @ref{XREFresize,,resize}}
@end deftypefn


@c diag libinterp/corefcn/data.cc
@anchor{XREFdiag}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{M} =} diag (@var{v})
@deftypefnx {} {@var{M} =} diag (@var{v}, @var{k})
@deftypefnx {} {@var{M} =} diag (@var{v}, @var{m}, @var{n})
@deftypefnx {} {@var{v} =} diag (@var{M})
@deftypefnx {} {@var{v} =} diag (@var{M}, @var{k})
Return a diagonal matrix with vector @var{v} on diagonal @var{k}.

The second argument is optional.  If it is positive, the vector is placed on
the @var{k}-th superdiagonal.  If it is negative, it is placed on the
@var{-k}-th subdiagonal.  The default value of @var{k} is 0, and the vector
is placed on the main diagonal.  For example:

@example
@group
diag ([1, 2, 3], 1)
   @result{}  0  1  0  0
       0  0  2  0
       0  0  0  3
       0  0  0  0
@end group
@end example

@noindent
The 3-input form returns a diagonal matrix with vector @var{v} on the main
diagonal and the resulting matrix being of size @var{m} rows x @var{n}
columns.

Given a matrix argument, instead of a vector, @code{diag} extracts the
@var{k}-th diagonal of the matrix.
@end deftypefn


@c blkdiag scripts/general/blkdiag.m
@anchor{XREFblkdiag}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{M} =} blkdiag (@var{A}, @var{B}, @var{C}, @dots{})
Build a block diagonal matrix from @var{A}, @var{B}, @var{C}, @enddots{}

All arguments must be numeric and either two-dimensional matrices or
scalars.  If any argument is of type sparse, the output will also be sparse.
@xseealso{@ref{XREFdiag,,diag}, @ref{XREFhorzcat,,horzcat}, @ref{XREFvertcat,,vertcat}, @ref{XREFsparse,,sparse}}
@end deftypefn


@node Special Utility Matrices
@section Special Utility Matrices

@c eye libinterp/corefcn/data.cc
@anchor{XREFeye}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{I} =} eye (@var{n})
@deftypefnx {} {@var{I} =} eye (@var{m}, @var{n})
@deftypefnx {} {@var{I} =} eye ([@var{m} @var{n}])
@deftypefnx {} {@var{I} =} eye (@dots{}, @var{class})
Return an identity matrix.

If invoked with a single scalar argument @var{n}, return a square
@nospell{NxN} identity matrix.

If supplied two scalar arguments (@var{m}, @var{n}), @code{eye} takes them
to be the number of rows and columns.  If given a vector with two elements,
@code{eye} uses the values of the elements as the number of rows and
columns, respectively.  For example:

@example
@group
eye (3)
 @result{}  1  0  0
     0  1  0
     0  0  1
@end group
@end example

The following expressions all produce the same result:

@example
@group
eye (2)
@equiv{}
eye (2, 2)
@equiv{}
eye (size ([1, 2; 3, 4]))
@end group
@end example

The optional argument @var{class}, allows @code{eye} to return an array of
the specified type, like

@example
val = zeros (n,m, "uint8")
@end example

Calling @code{eye} with no arguments is equivalent to calling it with an
argument of 1.  Any negative dimensions are treated as zero.  These odd
definitions are for compatibility with @sc{matlab}.
@xseealso{@ref{XREFspeye,,speye}, @ref{XREFones,,ones}, @ref{XREFzeros,,zeros}}
@end deftypefn


@c ones libinterp/corefcn/data.cc
@anchor{XREFones}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{val} =} ones (@var{n})
@deftypefnx {} {@var{val} =} ones (@var{m}, @var{n})
@deftypefnx {} {@var{val} =} ones (@var{m}, @var{n}, @var{k}, @dots{})
@deftypefnx {} {@var{val} =} ones ([@var{m} @var{n} @dots{}])
@deftypefnx {} {@var{val} =} ones (@dots{}, "like", @var{var})
@deftypefnx {} {@var{val} =} ones (@dots{}, @var{class})
Return a matrix or N-dimensional array whose elements are all 1.

If invoked with a single scalar integer argument @var{n}, return a square
@nospell{NxN} matrix.

If invoked with two or more scalar integer arguments, or a vector of integer
values, return an array with the given dimensions.

To create a constant matrix whose values are all the same use an expression
such as

@example
val_matrix = val * ones (m, n)
@end example

If a variable @var{var} is specified after @qcode{"like"}, the output @var{val}
will have the same data type, complexity, and sparsity as @var{var}.

The optional argument @var{class} specifies the class of the return array
and defaults to double.  For example:

@example
val = ones (m,n, "uint8")
@end example
@xseealso{@ref{XREFzeros,,zeros}}
@end deftypefn


@c zeros libinterp/corefcn/data.cc
@anchor{XREFzeros}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{val} =} zeros (@var{n})
@deftypefnx {} {@var{val} =} zeros (@var{m}, @var{n})
@deftypefnx {} {@var{val} =} zeros (@var{m}, @var{n}, @var{k}, @dots{})
@deftypefnx {} {@var{val} =} zeros ([@var{m} @var{n} @dots{}])
@deftypefnx {} {@var{val} =} zeros (@dots{}, "like", @var{var})
@deftypefnx {} {@var{val} =} zeros (@dots{}, @var{class})
Return a matrix or N-dimensional array whose elements are all 0.

If invoked with a single scalar integer argument, return a square
@nospell{NxN} matrix.

If invoked with two or more scalar integer arguments, or a vector of integer
values, return an array with the given dimensions.

If a variable @var{var} is specified after @qcode{"like"}, the output @var{val}
will have the same data type, complexity, and sparsity as @var{var}.

The optional argument @var{class} specifies the class of the return array
and defaults to double.  For example:

@example
val = zeros (m,n, "uint8")
@end example
@xseealso{@ref{XREFones,,ones}}
@end deftypefn


@c repmat scripts/general/repmat.m
@anchor{XREFrepmat}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{B} =} repmat (@var{A}, @var{m})
@deftypefnx {} {@var{B} =} repmat (@var{A}, @var{m}, @var{n})
@deftypefnx {} {@var{B} =} repmat (@var{A}, @var{m}, @var{n}, @var{p} @dots{})
@deftypefnx {} {@var{B} =} repmat (@var{A}, [@var{m} @var{n}])
@deftypefnx {} {@var{B} =} repmat (@var{A}, [@var{m} @var{n} @var{p} @dots{}])
Repeat matrix or N-D array.

Form a block matrix of size @var{m} by @var{n}, with a copy of matrix
@var{A} as each element.

If @var{n} is not specified, form an @var{m} by @var{m} block matrix.  For
copying along more than two dimensions, specify the number of times to copy
across each dimension @var{m}, @var{n}, @var{p}, @dots{}, in a vector in the
second argument.

@xseealso{@ref{XREFbsxfun,,bsxfun}, @ref{XREFkron,,kron}, @ref{XREFrepelems,,repelems}}
@end deftypefn


@c repelems libinterp/corefcn/data.cc
@anchor{XREFrepelems}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{y} =} repelems (@var{x}, @var{r})
Construct a vector of repeated elements from @var{x}.

@var{r} is a 2x@var{N} integer matrix specifying which elements to repeat
and how often to repeat each element.  Entries in the first row,
@var{r}(1,j), select an element to repeat.  The corresponding entry in the
second row, @var{r}(2,j), specifies the repeat count.  If @var{x} is a
matrix then the columns of @var{x} are imagined to be stacked on top of
each other for purposes of the selection index.  A row vector is always
returned.

Conceptually the result is calculated as follows:

@example
@group
y = [];
for i = 1:columns (@var{r})
  y = [y, @var{x}(@var{r}(1,i)*ones(1, @var{r}(2,i)))];
endfor
@end group
@end example
@xseealso{@ref{XREFrepmat,,repmat}, @ref{XREFcat,,cat}}
@end deftypefn


@c repelem scripts/general/repelem.m
@anchor{XREFrepelem}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{xxx} =} repelem (@var{x}, @var{R})
@deftypefnx {} {@var{xxx} =} repelem (@var{x}, @var{R_1}, @dots{}, @var{R_n})
Construct an array of repeated elements from @var{x} and repeat instructions
@var{R_1}, @enddots{}

@var{x} must be a scalar, vector, or N-dimensional array.

A repeat instruction @var{R_j} must either be a scalar or a vector.  If the
instruction is a scalar then each component of @var{x} in dimension @var{j}
is repeated @var{R_j} times.  If the instruction is a vector then it must
have the same number of elements as the corresponding dimension @var{j} of
@var{x}.  In this case, the @var{k}th component of dimension @var{j} is
repeated @code{@var{R_j}(@var{k})} times.

If @var{x} is a scalar or vector then @code{repelem} may be called with just
a single repeat instruction @var{R} and @code{repelem} will return a vector
with the same orientation as the input.

If @var{x} is a matrix then at least two @var{R_j}s must be specified.

Note: Using @code{repelem} with a vector @var{x} and a vector for @var{R_j}
is equivalent to Run Length Decoding.

Examples:

@example
@group
A = [1 2 3 4 5];
B = [2 1 0 1 2];
repelem (A, B)
  @result{}   1   1   2   4   5   5
@end group
@end example

@example
@group
A = magic (3)
  @result{} A =
       8   1   6
       3   5   7
       4   9   2
B1 = [1 2 3];
B2 = 2;
repelem (A, B1, B2)
  @result{}     8   8   1   1   6   6
         3   3   5   5   7   7
         3   3   5   5   7   7
         4   4   9   9   2   2
         4   4   9   9   2   2
         4   4   9   9   2   2
@end group
@end example

More @var{R_j} may be specified than the number of dimensions of @var{x}.
Any excess @var{R_j} must be scalars (because @var{x}'s size in those
dimensions is only 1), and @var{x} will be replicated in those dimensions
accordingly.

@example
@group
A = [1 2 3 4 5];
B1 = 2;
B2 = [2 1 3 0 2];
B3 = 3;
repelem (A, B1, B2, B3)
  @result{}    ans(:,:,1) =
           1   1   2   3   3   3   5   5
           1   1   2   3   3   3   5   5

        ans(:,:,2) =

           1   1   2   3   3   3   5   5
           1   1   2   3   3   3   5   5

        ans(:,:,3) =
           1   1   2   3   3   3   5   5
           1   1   2   3   3   3   5   5
@end group
@end example

@var{R_j} must be specified in order.  A placeholder of 1 may be used for
dimensions which do not need replication.

@example
@group
repelem ([-1, 0; 0, 1], 1, 2, 1, 2)
  @result{}  ans(:,:,1,1) =
        -1  -1   0   0
         0   0   1   1

      ans(:,:,1,2) =
        -1  -1   0   0
         0   0   1   1
@end group
@end example

If fewer @var{R_j} are given than the number of dimensions in @var{x},
@code{repelem} will assume @var{R_j} is 1 for those dimensions.

@example
A = cat (3, [-1 0; 0 1], [-1 0; 0 1])
  @result{}  ans(:,:,1) =
        -1   0
         0   1

      ans(:,:,2) =
        -1   0
         0   1

repelem (A,2,3)
  @result{}  ans(:,:,1) =
        -1  -1  -1   0   0   0
        -1  -1  -1   0   0   0
         0   0   0   1   1   1
         0   0   0   1   1   1

      ans(:,:,2) =
        -1  -1  -1   0   0   0
        -1  -1  -1   0   0   0
         0   0   0   1   1   1
         0   0   0   1   1   1
@end example

@code{repelem} preserves the class of @var{x}, and works with strings,
cell arrays, NA, and NAN inputs.  If any @var{R_j} is 0 the output will
be an empty array.

@example
@group
repelem ("Octave", 2, 3)
  @result{}    OOOccctttaaavvveee
        OOOccctttaaavvveee

repelem ([1 2 3; 1 2 3], 2, 0)
  @result{}    [](4x0)
@end group
@end example

@xseealso{@ref{XREFcat,,cat}, @ref{XREFkron,,kron}, @ref{XREFrepmat,,repmat}}
@end deftypefn


The functions @code{linspace} and @code{logspace} make it very easy to
create vectors with evenly or logarithmically spaced elements.
@xref{Ranges}.

@c linspace libinterp/corefcn/data.cc
@anchor{XREFlinspace}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{y} =} linspace (@var{start}, @var{end})
@deftypefnx {} {@var{y} =} linspace (@var{start}, @var{end}, @var{n})
Return a row vector with @var{n} linearly spaced elements between @var{start}
and @var{end}.

If the number of elements @var{n} is greater than one, then the endpoints
@var{start} and @var{end} are always included in the range.  If @var{start} is
greater than @var{end}, the elements are stored in decreasing order.  If the
number of points @var{n} is not specified, a value of 100 is used.

The @code{linspace} function returns a row vector when both @var{start} and
@var{end} are scalars.  If one, or both, inputs are vectors, then
@code{linspace} transforms them to column vectors and returns a matrix where
each row is an independent sequence between
@w{@code{@var{start}(@var{row_n}), @var{end}(@var{row_n})}}.

Programming Notes: For compatibility with @sc{matlab}, return the second
argument (@var{end}) when a single value (@var{n} = 1) is requested.  If
@var{n} is not an integer then @code{floor (@var{n})} is used to round the
number of elements.  If @var{n} is zero or negative then an empty 1x0 matrix
is returned.
@xseealso{@ref{XREFcolon,,colon}, @ref{XREFlogspace,,logspace}}
@end deftypefn


@c logspace scripts/general/logspace.m
@anchor{XREFlogspace}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{y} =} logspace (@var{a}, @var{b})
@deftypefnx {} {@var{y} =} logspace (@var{a}, @var{b}, @var{n})
@deftypefnx {} {@var{y} =} logspace (@var{a}, pi)
@deftypefnx {} {@var{y} =} logspace (@var{a}, pi, @var{n})
Return a row vector with @var{n} elements logarithmically spaced from
@tex
$10^{a}$ to $10^{b}$.
@end tex
@ifnottex
10^@var{a} to 10^@var{b}.
@end ifnottex

If the number of elements @var{n} is unspecified it defaults to 50.

If @var{b} is equal to
@tex
$\pi$,
@end tex
@ifnottex
pi,
@end ifnottex
the points are between
@tex
$10^{a}$ and $\pi$,
@end tex
@ifnottex
10^@var{a} and pi,
@end ifnottex
@emph{not}
@tex
$10^{a}$ and $10^{\pi}$,
@end tex
@ifnottex
10^@var{a} and 10^pi,
@end ifnottex
which is useful in digital signal processing.

Programming Notes: For compatibility with @sc{matlab}, return the right-hand
side of the range
@tex
($10^{b}$)
@end tex
@ifnottex
(10^@var{b})
@end ifnottex
when a single value (@var{n} = 1) is requested.
If @var{n} is not an integer then @code{floor (@var{n})} is used to round
the number of elements.  If @var{n} is zero or negative then an empty 1x0
matrix is returned.
@xseealso{@ref{XREFlinspace,,linspace}}
@end deftypefn


@c rand libinterp/corefcn/rand.cc
@anchor{XREFrand}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{x} =} rand (@var{n})
@deftypefnx {} {@var{x} =} rand (@var{m}, @var{n}, @dots{})
@deftypefnx {} {@var{x} =} rand ([@var{m} @var{n} @dots{}])
@deftypefnx {} {@var{x} =} rand (@dots{}, "single")
@deftypefnx {} {@var{x} =} rand (@dots{}, "double")
@deftypefnx {} {@var{v} =} rand ("state")
@deftypefnx {} {} rand ("state", @var{v})
@deftypefnx {} {} rand ("state", "reset")
@deftypefnx {} {@var{v} =} rand ("seed")
@deftypefnx {} {} rand ("seed", @var{v})
@deftypefnx {} {} rand ("seed", "reset")
Return a matrix with random elements uniformly distributed on the
interval (0, 1).

The arguments are handled the same as the arguments for @code{eye}.

You can query the state of the random number generator using the form

@example
v = rand ("state")
@end example

This returns a column vector @var{v} of length 625.  Later, you can restore
the random number generator to the state @var{v} using the form

@example
rand ("state", v)
@end example

@noindent
You may also initialize the state vector from an arbitrary vector of length
@leq{} 625 for @var{v}.  This new state will be a hash based on the value of
@var{v}, not @var{v} itself.

By default, the generator is initialized by contributing entropy from the
wall clock time, the CPU time, the current fraction of a second, the process
ID and---if available---up to 1024 bits from the C++ random numbers source
@code{random_device}, which might be non-deterministic (implementation
specific).  Note that this differs from @sc{matlab}, which always initializes
the state to the same state at startup.  To obtain behavior comparable to
@sc{matlab}, initialize with a deterministic state vector in Octave's startup
files (@pxref{Startup Files}).

To compute the pseudo-random sequence, @code{rand} uses the Mersenne
Twister with a period of @math{2^{19937}-1}
(See @nospell{M. Matsumoto and T. Nishimura},
@cite{Mersenne Twister: A 623-dimensionally equidistributed uniform
pseudorandom number generator},
@nospell{ACM} Trans.@: on Modeling and Computer Simulation Vol.@: 8, No.@: 1,
pp.@: 3--30, January 1998,
@url{http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html}).
Do @strong{not} use for cryptography without securely hashing several
returned values together, otherwise the generator state can be learned after
reading 624 consecutive values.

Older versions of Octave used a different random number generator.
The new generator is used by default as it is significantly faster than the
old generator, and produces random numbers with a significantly longer cycle
time.  However, in some circumstances it might be desirable to obtain the
same random sequences as produced by the old generators.  To do this the
keyword @qcode{"seed"} is used to specify that the old generators should
be used, as in

@example
rand ("seed", val)
@end example

@noindent
which sets the seed of the generator to @var{val}.  The seed of the
generator can be queried with

@example
s = rand ("seed")
@end example

However, it should be noted that querying the seed will not cause
@code{rand} to use the old generators, only setting the seed will.  To cause
@code{rand} to once again use the new generators, the keyword
@qcode{"state"} should be used to reset the state of the @code{rand}.

The state or seed of the generator can be reset to a new random value using
the @qcode{"reset"} keyword.

The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument.  These are the only valid
classes.
@xseealso{@ref{XREFrandn,,randn}, @ref{XREFrande,,rande}, @ref{XREFrandg,,randg}, @ref{XREFrandp,,randp}}
@end deftypefn


@c randi scripts/general/randi.m
@anchor{XREFrandi}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{R} =} randi (@var{imax})
@deftypefnx {} {@var{R} =} randi (@var{imax}, @var{n})
@deftypefnx {} {@var{R} =} randi (@var{imax}, @var{m}, @var{n}, @dots{})
@deftypefnx {} {@var{R} =} randi ([@var{imin} @var{imax}], @dots{})
@deftypefnx {} {@var{R} =} randi (@dots{}, "@var{class}")
Return random integers in the range 1:@var{imax}.

Additional arguments determine the shape of the return matrix.  When no
arguments are specified a single random integer is returned.  If one
argument @var{n} is specified then a square matrix @w{(@var{n} x @var{n})}
is returned.  Two or more arguments will return a multi-dimensional matrix
@w{(@var{m} x @var{n} x @dots{})}.

The integer range may optionally be described by a two-element matrix with a
lower and upper bound in which case the returned integers will be on the
interval @w{[@var{imin}, @var{imax}]}.

The optional argument @var{class} will return a matrix of the requested
type.  The default is @qcode{"double"}.

The following example returns 150 integers in the range 1--10.

@example
ri = randi (10, 150, 1)
@end example

Implementation Note: @code{randi} relies internally on @code{rand} which
uses class @qcode{"double"} to represent numbers.  This limits the maximum
integer (@var{imax}) and range (@var{imax} - @var{imin}) to the value
returned by the @code{flintmax} function.  For IEEE@tie{}754 floating point
numbers this value is @w{@math{2^{53} - 1}}.

@xseealso{@ref{XREFrand,,rand}, @ref{XREFrandn,,randn}}
@end deftypefn


@c randn libinterp/corefcn/rand.cc
@anchor{XREFrandn}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{x} =} randn (@var{n})
@deftypefnx {} {@var{x} =} randn (@var{m}, @var{n}, @dots{})
@deftypefnx {} {@var{x} =} randn ([@var{m} @var{n} @dots{}])
@deftypefnx {} {@var{x} =} randn (@dots{}, "single")
@deftypefnx {} {@var{x} =} randn (@dots{}, "double")
@deftypefnx {} {@var{v} =} randn ("state")
@deftypefnx {} {} randn ("state", @var{v})
@deftypefnx {} {} randn ("state", "reset")
@deftypefnx {} {@var{v} =} randn ("seed")
@deftypefnx {} {} randn ("seed", @var{v})
@deftypefnx {} {} randn ("seed", "reset")
Return a matrix with normally distributed random elements having zero mean
and variance one.

The arguments are handled the same as the arguments for @code{rand}.

By default, @code{randn} uses the @nospell{Marsaglia and Tsang}
``Ziggurat technique'' to transform from a uniform to a normal distribution.

The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument.  These are the only valid
classes.

Reference: @nospell{G. Marsaglia and W.W. Tsang},
@cite{Ziggurat Method for Generating Random Variables},
J. Statistical Software, vol 5, 2000,
@url{https://www.jstatsoft.org/v05/i08/}

@xseealso{@ref{XREFrand,,rand}, @ref{XREFrande,,rande}, @ref{XREFrandg,,randg}, @ref{XREFrandp,,randp}}
@end deftypefn


@c rande libinterp/corefcn/rand.cc
@anchor{XREFrande}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{x} =} rande (@var{n})
@deftypefnx {} {@var{x} =} rande (@var{m}, @var{n}, @dots{})
@deftypefnx {} {@var{x} =} rande ([@var{m} @var{n} @dots{}])
@deftypefnx {} {@var{x} =} rande (@dots{}, "single")
@deftypefnx {} {@var{x} =} rande (@dots{}, "double")
@deftypefnx {} {@var{v} =} rande ("state")
@deftypefnx {} {} rande ("state", @var{v})
@deftypefnx {} {} rande ("state", "reset")
@deftypefnx {} {@var{v} =} rande ("seed")
@deftypefnx {} {} rande ("seed", @var{v})
@deftypefnx {} {} rande ("seed", "reset")
Return a matrix with exponentially distributed random elements.

The arguments are handled the same as the arguments for @code{rand}.

By default, @code{rande} uses the @nospell{Marsaglia and Tsang}
``Ziggurat technique'' to transform from a uniform to an exponential
distribution.

The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument.  These are the only valid
classes.

Reference: @nospell{G. Marsaglia and W.W. Tsang},
@cite{Ziggurat Method for Generating Random Variables},
J. Statistical Software, vol 5, 2000,
@url{https://www.jstatsoft.org/v05/i08/}

@xseealso{@ref{XREFrand,,rand}, @ref{XREFrandn,,randn}, @ref{XREFrandg,,randg}, @ref{XREFrandp,,randp}}
@end deftypefn


@c randp libinterp/corefcn/rand.cc
@anchor{XREFrandp}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{x} =} randp (@var{l}, @var{n})
@deftypefnx {} {@var{x} =} randp (@var{l}, @var{m}, @var{n}, @dots{})
@deftypefnx {} {@var{x} =} randp (@var{l}, [@var{m} @var{n} @dots{}])
@deftypefnx {} {@var{x} =} randp (@dots{}, "single")
@deftypefnx {} {@var{x} =} randp (@dots{}, "double")
@deftypefnx {} {@var{v} =} randp ("state")
@deftypefnx {} {} randp ("state", @var{v})
@deftypefnx {} {} randp ("state", "reset")
@deftypefnx {} {@var{v} =} randp ("seed")
@deftypefnx {} {} randp ("seed", @var{v})
@deftypefnx {} {} randp ("seed", "reset")
Return a matrix with Poisson distributed random elements with mean value
parameter given by the first argument, @var{l}.

The arguments are handled the same as the arguments for @code{rand}, except
for the argument @var{l}.

Five different algorithms are used depending on the range of @var{l} and
whether or not @var{l} is a scalar or a matrix.

@table @asis
@item For scalar @var{l} @leq{} 12, use direct method.
W.H. Press, et al., @cite{Numerical Recipes in C},
Cambridge University Press, 1992.

@item For scalar @var{l} > 12, use rejection method.[1]
W.H. Press, et al., @cite{Numerical Recipes in C},
Cambridge University Press, 1992.

@item For matrix @var{l} @leq{} 10, use inversion method.[2]
@nospell{E. Stadlober, et al., WinRand source code}, available via FTP.

@item For matrix @var{l} > 10, use patchwork rejection method.
@nospell{E. Stadlober, et al., WinRand source code}, available via FTP, or
@nospell{H. Zechner}, @cite{Efficient sampling from continuous and discrete
unimodal distributions}, Doctoral Dissertation, 156pp., Technical
University @nospell{Graz}, Austria, 1994.

@item For @var{l} > 1e8, use normal approximation.
@nospell{L. Montanet}, et al., @cite{Review of Particle Properties},
Physical Review D 50 p1284, 1994.
@end table

The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument.  These are the only valid
classes.
@xseealso{@ref{XREFrand,,rand}, @ref{XREFrandn,,randn}, @ref{XREFrande,,rande}, @ref{XREFrandg,,randg}}
@end deftypefn


@c randg libinterp/corefcn/rand.cc
@anchor{XREFrandg}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{x} =} randg (@var{a}, @var{n})
@deftypefnx {} {@var{x} =} randg (@var{a}, @var{m}, @var{n}, @dots{})
@deftypefnx {} {@var{x} =} randg (@var{a}, [@var{m} @var{n} @dots{}])
@deftypefnx {} {@var{x} =} randg (@dots{}, "single")
@deftypefnx {} {@var{x} =} randg (@dots{}, "double")
@deftypefnx {} {@var{v} =} randg ("state")
@deftypefnx {} {} randg ("state", @var{v})
@deftypefnx {} {} randg ("state", "reset")
@deftypefnx {} {@var{v} =} randg ("seed")
@deftypefnx {} {} randg ("seed", @var{v})
@deftypefnx {} {} randg ("seed", "reset")

Return a matrix with @code{gamma (@var{a},1)} distributed random elements.

The arguments are handled the same as the arguments for @code{rand}, except
for the argument @var{a}.

This can be used to generate many distributions:

@table @asis
@item @code{gamma (a, b)} for @code{a > -1}, @code{b > 0}

@example
r = b * randg (a)
@end example

@item @code{beta (a, b)} for @code{a > -1}, @code{b > -1}

@example
@group
r1 = randg (a, 1)
r = r1 / (r1 + randg (b, 1))
@end group
@end example

@item @code{Erlang (a, n)}

@example
r = a * randg (n)
@end example

@item @code{chisq (df)} for @code{df > 0}

@example
r = 2 * randg (df / 2)
@end example

@item @code{t (df)} for @code{0 < df < inf} (use randn if df is infinite)

@example
r = randn () / sqrt (2 * randg (df / 2) / df)
@end example

@item @code{F (n1, n2)} for @code{0 < n1}, @code{0 < n2}

@example
@group
## r1 equals 1 if n1 is infinite
r1 = 2 * randg (n1 / 2) / n1
## r2 equals 1 if n2 is infinite
r2 = 2 * randg (n2 / 2) / n2
r = r1 / r2
@end group
@end example

@item negative @code{binomial (n, p)} for @code{n > 0}, @code{0 < p <= 1}

@example
r = randp ((1 - p) / p * randg (n))
@end example

@item non-central @code{chisq (df, L)}, for @code{df >= 0} and @code{L > 0}
(use chisq if @code{L = 0})

@example
@group
r = randp (L / 2)
r(r > 0) = 2 * randg (r(r > 0))
r(df > 0) += 2 * randg (df(df > 0)/2)
@end group
@end example

@item @code{Dirichlet (a1, @dots{} ak)}

@example
@group
r = (randg (a1), @dots{}, randg (ak))
r = r / sum (r)
@end group
@end example

@end table

The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument.  These are the only valid
classes.
@xseealso{@ref{XREFrand,,rand}, @ref{XREFrandn,,randn}, @ref{XREFrande,,rande}, @ref{XREFrandp,,randp}}
@end deftypefn


@c rng scripts/general/rng.m
@anchor{XREFrng}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {} rng (@var{seed})
@deftypefnx {} {} rng (@var{seed}, "@var{generator}")
@deftypefnx {} {} rng ("shuffle")
@deftypefnx {} {} rng ("shuffle", "@var{generator}")
@deftypefnx {} {} rng ("default")
@deftypefnx {} {@var{s} =} rng ()
@deftypefnx {} {} rng (@var{s})
@deftypefnx {} {@var{s} =} rng (@dots{})
Set or query the seed of the random number generator used by @code{rand} and
@code{randn}.

The input @var{seed} is a scalar numeric value used to initialize the state
vector of the random number generator.

The optional string @var{generator} specifies the type of random number
generator to be used.  Its value can be @qcode{"twister"},
@qcode{"v5uniform"}, or @qcode{"v5normal"}.  The @qcode{"twister"} keyword
is described below.  @qcode{"v5uniform"} and @qcode{"v5normal"} refer to
older versions of Octave that used to use a different random number
generator.

The state or seed of the random number generator can be reset to a new
random value using the @qcode{"shuffle"} keyword.

The random number generator can be reset to default values using the
@qcode{"default"} keyword.  The default values are to use the Mersenne
Twister generator with a seed of 0.

The optional return value @var{s} contains the state of the random number
generator at the time the function is called (i.e., before it might be
modified according to the input arguments).  It is encoded as a structure
variable with three fields: @qcode{"Type"}, @qcode{"Seed"}, and
@qcode{"State"}.  The random number generator can be restored to the state
@var{s} using @code{rng (@var{s})}.  This is useful when the identical
sequence of pseudo-random numbers is required for an algorithm.

By default, and with the @qcode{"twister"} option, pseudo-random sequences
are computed using the Mersenne Twister with a period of @math{2^{19937}-1}
(See @nospell{M. Matsumoto and T. Nishimura},
@cite{Mersenne Twister: A 623-dimensionally equidistributed uniform
pseudorandom number generator},
@nospell{ACM} Trans.@: on Modeling and Computer Simulation Vol.@: 8, No.@: 1,
pp.@: 3--30, January 1998,
@url{http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html}).
Do @strong{not} use for cryptography without securely hashing several
returned values together, otherwise the generator state can be learned after
reading 624 consecutive values.

@xseealso{@ref{XREFrand,,rand}, @ref{XREFrandn,,randn}}
@end deftypefn


The generators operate in the new or old style together, it is not
possible to mix the two.  Initializing any generator with
@qcode{"state"} or @qcode{"seed"} causes the others to switch to the
same style for future calls.

The state of each generator is independent and calls to different
generators can be interleaved without affecting the final result.  For
example,

@example
@group
rand ("state", [11, 22, 33]);
randn ("state", [44, 55, 66]);
u = rand (100, 1);
n = randn (100, 1);
@end group
@end example

@noindent
and

@example
@group
rand ("state", [11, 22, 33]);
randn ("state", [44, 55, 66]);
u = zeros (100, 1);
n = zeros (100, 1);
for i = 1:100
  u(i) = rand ();
  n(i) = randn ();
end
@end group
@end example

@noindent
produce equivalent results.  When the generators are initialized in
the old style with @qcode{"seed"} only @code{rand} and @code{randn} are
independent, because the old @code{rande}, @code{randg} and
@code{randp} generators make calls to @code{rand} and @code{randn}.

The generators are initialized with random states at start-up, so
that the sequences of random numbers are not the same each time you run
Octave.@footnote{The old versions of @code{rand} and @code{randn}
obtain their initial seeds from the system clock.} If you really do
need to reproduce a sequence of numbers exactly, you can set the state
or seed to a specific value.

If invoked without arguments, @code{rand} and @code{randn} return a
single element of a random sequence.

The original @code{rand} and @code{randn} functions use Fortran code from
@sc{ranlib}, a library of Fortran routines for random number generation,
compiled by Barry W. Brown and @nospell{James Lovato} of the Department of
Biomathematics at The University of Texas, M.D. Anderson Cancer Center,
Houston, TX 77030.

@c randperm libinterp/corefcn/rand.cc
@anchor{XREFrandperm}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{v} =} randperm (@var{n})
@deftypefnx {} {@var{v} =} randperm (@var{n}, @var{m})
Return a row vector containing a random permutation of @code{1:@var{n}}.

If @var{m} is supplied, return @var{m} unique entries, sampled without
replacement from @code{1:@var{n}}.

The complexity is O(@var{n}) in memory and O(@var{m}) in time, unless
@var{m} < @var{n}/5, in which case O(@var{m}) memory is used as well.  The
randomization is performed using rand().  All permutations are equally
likely.
@xseealso{@ref{XREFperms,,perms}}
@end deftypefn


@node Famous Matrices
@section Famous Matrices

The following functions return famous matrix forms.

@c gallery scripts/special-matrix/gallery.m
@anchor{XREFgallery}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {} gallery (@var{name})
@deftypefnx {} {} gallery (@var{name}, @var{args})
Create interesting matrices for testing.

@end deftypefn

@deftypefn  {} {@var{c} =} gallery ("cauchy", @var{x})
@deftypefnx {} {@var{c} =} gallery ("cauchy", @var{x}, @var{y})
Create a Cauchy matrix.

@end deftypefn

@deftypefn  {} {@var{c} =} gallery ("chebspec", @var{n})
@deftypefnx {} {@var{c} =} gallery ("chebspec", @var{n}, @var{k})
Create a Chebyshev spectral differentiation matrix.

@end deftypefn

@deftypefn  {} {@var{c} =} gallery ("chebvand", @var{p})
@deftypefnx {} {@var{c} =} gallery ("chebvand", @var{m}, @var{p})
Create a @nospell{Vandermonde}-like matrix for the Chebyshev polynomials.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("chow", @var{n})
@deftypefnx {} {@var{a} =} gallery ("chow", @var{n}, @var{alpha})
@deftypefnx {} {@var{a} =} gallery ("chow", @var{n}, @var{alpha}, @var{delta})
Create a Chow matrix -- a singular Toeplitz lower Hessenberg matrix.

@end deftypefn

@deftypefn {} {@var{c} =} gallery ("circul", @var{v})
Create a circulant matrix.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("clement", @var{n})
@deftypefnx {} {@var{a} =} gallery ("clement", @var{n}, @var{k})
Create a tridiagonal matrix with zero diagonal entries.

@end deftypefn

@deftypefn  {} {@var{c} =} gallery ("compar", @var{a})
@deftypefnx {} {@var{c} =} gallery ("compar", @var{a}, @var{k})
Create a comparison matrix.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("condex", @var{n})
@deftypefnx {} {@var{a} =} gallery ("condex", @var{n}, @var{k})
@deftypefnx {} {@var{a} =} gallery ("condex", @var{n}, @var{k}, @var{theta})
Create a @nospell{"counterexample"} matrix to a condition estimator.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("cycol", [@var{m} @var{n}])
@deftypefnx {} {@var{a} =} gallery ("cycol", @var{n})
@deftypefnx {} {@var{a} =} gallery (@dots{}, @var{k})
Create a matrix whose columns repeat cyclically.

@end deftypefn

@deftypefn  {} {[@var{c}, @var{d}, @var{e}] =} gallery ("dorr", @var{n})
@deftypefnx {} {[@var{c}, @var{d}, @var{e}] =} gallery ("dorr", @var{n}, @var{theta})
@deftypefnx {} {@var{a} =} gallery ("dorr", @dots{})
Create a diagonally dominant, ill-conditioned, tridiagonal matrix.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("dramadah", @var{n})
@deftypefnx {} {@var{a} =} gallery ("dramadah", @var{n}, @var{k})
Create a (0, 1) matrix whose inverse has large integer entries.

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("fiedler", @var{c})
Create a symmetric @nospell{Fiedler} matrix.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("forsythe", @var{n})
@deftypefnx {} {@var{a} =} gallery ("forsythe", @var{n}, @var{alpha})
@deftypefnx {} {@var{a} =} gallery ("forsythe", @var{n}, @var{alpha}, @var{lambda})
Create a @nospell{Forsythe} matrix (a perturbed Jordan block).

@end deftypefn

@deftypefn  {} {@var{f} =} gallery ("frank", @var{n})
@deftypefnx {} {@var{f} =} gallery ("frank", @var{n}, @var{k})
Create a Frank matrix (ill-conditioned eigenvalues).

@end deftypefn

@deftypefn {} {@var{c} =} gallery ("gcdmat", @var{n})
Create a greatest common divisor matrix.

@var{c} is an @var{n}-by-@var{n} matrix whose values correspond to the
greatest common divisor of its coordinate values, i.e., @var{c}(i,j)
correspond @code{gcd (i, j)}.
@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("gearmat", @var{n})
@deftypefnx {} {@var{a} =} gallery ("gearmat", @var{n}, @var{i})
@deftypefnx {} {@var{a} =} gallery ("gearmat", @var{n}, @var{i}, @var{j})
Create a Gear matrix.

@end deftypefn

@deftypefn  {} {@var{g} =} gallery ("grcar", @var{n})
@deftypefnx {} {@var{g} =} gallery ("grcar", @var{n}, @var{k})
Create a Toeplitz matrix with sensitive eigenvalues.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("hanowa", @var{n})
@deftypefnx {} {@var{a} =} gallery ("hanowa", @var{n}, @var{d})
Create a matrix whose eigenvalues lie on a vertical line in the complex
plane.

@end deftypefn

@deftypefn  {} {@var{v} =} gallery ("house", @var{x})
@deftypefnx {} {[@var{v}, @var{beta}] =} gallery ("house", @var{x})
Create a householder matrix.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("integerdata", @var{imax}, [@var{M} @var{N} @dots{}], @var{j})
@deftypefnx {} {@var{a} =} gallery ("integerdata", @var{imax}, @var{M}, @var{N}, @dots{}, @var{j})
@deftypefnx {} {@var{a} =} gallery ("integerdata", [@var{imin}, @var{imax}], [@var{M} @var{N} @dots{}], @var{j})
@deftypefnx {} {@var{a} =} gallery ("integerdata", [@var{imin}, @var{imax}], @var{M}, @var{N}, @dots{}, @var{j})
@deftypefnx {} {@var{a} =} gallery ("integerdata", @dots{}, "@var{class}")
Create a matrix with random integers in the range [1, @var{imax}].
If @var{imin} is given then the integers are in the range
[@var{imin}, @var{imax}].

The second input is a matrix of dimensions describing the size of the
output.  The dimensions can also be input as comma-separated arguments.

The input @var{j} is an integer index in the range [0, 2^32-1].  The values
of the output matrix are always exactly the same (reproducibility) for a
given size input and @var{j} index.

The final optional argument determines the class of the resulting matrix.
Possible values for @var{class}: @qcode{"uint8"}, @qcode{"uint16"},
@qcode{"uint32"}, @qcode{"int8"}, @qcode{"int16"}, int32", @qcode{"single"},
@qcode{"double"}.  The default is @qcode{"double"}.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("invhess", @var{x})
@deftypefnx {} {@var{a} =} gallery ("invhess", @var{x}, @var{y})
Create the inverse of an upper Hessenberg matrix.

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("invol", @var{n})
Create an involutory matrix.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("ipjfact", @var{n})
@deftypefnx {} {@var{a} =} gallery ("ipjfact", @var{n}, @var{k})
Create a Hankel matrix with factorial elements.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("jordbloc", @var{n})
@deftypefnx {} {@var{a} =} gallery ("jordbloc", @var{n}, @var{lambda})
Create a Jordan block.

@end deftypefn

@deftypefn  {} {@var{u} =} gallery ("kahan", @var{n})
@deftypefnx {} {@var{u} =} gallery ("kahan", @var{n}, @var{theta})
@deftypefnx {} {@var{u} =} gallery ("kahan", @var{n}, @var{theta}, @var{pert})
Create a @nospell{Kahan} matrix (upper trapezoidal).

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("kms", @var{n})
@deftypefnx {} {@var{a} =} gallery ("kms", @var{n}, @var{rho})
Create a @nospell{Kac-Murdock-Szego} Toeplitz matrix.

@end deftypefn

@deftypefn  {} {@var{b} =} gallery ("krylov", @var{a})
@deftypefnx {} {@var{b} =} gallery ("krylov", @var{a}, @var{x})
@deftypefnx {} {@var{b} =} gallery ("krylov", @var{a}, @var{x}, @var{j})
Create a Krylov matrix.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("lauchli", @var{n})
@deftypefnx {} {@var{a} =} gallery ("lauchli", @var{n}, @var{mu})
Create a @nospell{Lauchli} matrix (rectangular).

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("lehmer", @var{n})
Create a @nospell{Lehmer} matrix (symmetric positive definite).

@end deftypefn

@deftypefn {} {@var{t} =} gallery ("lesp", @var{n})
Create a tridiagonal matrix with real, sensitive eigenvalues.

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("lotkin", @var{n})
Create a @nospell{Lotkin} matrix.

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("minij", @var{n})
Create a symmetric positive definite matrix MIN(i,j).

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("moler", @var{n})
@deftypefnx {} {@var{a} =} gallery ("moler", @var{n}, @var{alpha})
Create a @nospell{Moler} matrix (symmetric positive definite).

@end deftypefn

@deftypefn {} {[@var{a}, @var{t}] =} gallery ("neumann", @var{n})
Create a singular matrix from the discrete @nospell{Neumann} problem
(sparse).

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("normaldata", [@var{M} @var{N} @dots{}], @var{j})
@deftypefnx {} {@var{a} =} gallery ("normaldata", @var{M}, @var{N}, @dots{}, @var{j})
@deftypefnx {} {@var{a} =} gallery ("normaldata", @dots{}, "@var{class}")
Create a matrix with random samples from the standard normal distribution
(mean = 0, std = 1).

The first input is a matrix of dimensions describing the size of the output.
The dimensions can also be input as comma-separated arguments.

The input @var{j} is an integer index in the range [0, 2^32-1].  The values
of the output matrix are always exactly the same (reproducibility) for a
given size input and @var{j} index.

The final optional argument determines the class of the resulting matrix.
Possible values for @var{class}: @qcode{"single"}, @qcode{"double"}.
The default is @qcode{"double"}.

@end deftypefn

@deftypefn  {} {@var{q} =} gallery ("orthog", @var{n})
@deftypefnx {} {@var{q} =} gallery ("orthog", @var{n}, @var{k})
Create orthogonal and nearly orthogonal matrices.

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("parter", @var{n})
Create a @nospell{Parter} matrix (a Toeplitz matrix with singular values
near pi).

@end deftypefn

@deftypefn  {} {@var{p} =} gallery ("pei", @var{n})
@deftypefnx {} {@var{p} =} gallery ("pei", @var{n}, @var{alpha})
Create a Pei matrix.

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("poisson", @var{n})
Create a block tridiagonal matrix from Poisson's equation (sparse).

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("prolate", @var{n})
@deftypefnx {} {@var{a} =} gallery ("prolate", @var{n}, @var{w})
Create a prolate matrix (symmetric, ill-conditioned Toeplitz matrix).

@end deftypefn

@deftypefn {} {@var{h} =} gallery ("randhess", @var{x})
Create a random, orthogonal upper Hessenberg matrix.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("rando", @var{n})
@deftypefnx {} {@var{a} =} gallery ("rando", @var{n}, @var{k})
Create a random matrix with elements -1, 0 or 1.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("randsvd", @var{n})
@deftypefnx {} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa})
@deftypefnx {} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode})
@deftypefnx {} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode}, @var{kl})
@deftypefnx {} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode}, @var{kl}, @var{ku})
Create a random matrix with pre-assigned singular values.

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("redheff", @var{n})
Create a zero and ones matrix of @nospell{Redheffer} associated with the
Riemann hypothesis.

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("riemann", @var{n})
Create a matrix associated with the Riemann hypothesis.

@end deftypefn

@deftypefn {} {@var{a} =} gallery ("ris", @var{n})
Create a symmetric Hankel matrix.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("smoke", @var{n})
@deftypefnx {} {@var{a} =} gallery ("smoke", @var{n}, @var{k})
Create a complex matrix, with a @nospell{"smoke ring"} pseudospectrum.

@end deftypefn

@deftypefn  {} {@var{t} =} gallery ("toeppd", @var{n})
@deftypefnx {} {@var{t} =} gallery ("toeppd", @var{n}, @var{m})
@deftypefnx {} {@var{t} =} gallery ("toeppd", @var{n}, @var{m}, @var{w})
@deftypefnx {} {@var{t} =} gallery ("toeppd", @var{n}, @var{m}, @var{w}, @var{theta})
Create a symmetric positive definite Toeplitz matrix.

@end deftypefn

@deftypefn  {} {@var{p} =} gallery ("toeppen", @var{n})
@deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a})
@deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b})
@deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c})
@deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c}, @var{d})
@deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c}, @var{d}, @var{e})
Create a pentadiagonal Toeplitz matrix (sparse).

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("tridiag", @var{x}, @var{y}, @var{z})
@deftypefnx {} {@var{a} =} gallery ("tridiag", @var{n})
@deftypefnx {} {@var{a} =} gallery ("tridiag", @var{n}, @var{c}, @var{d}, @var{e})
Create a tridiagonal matrix (sparse).

@end deftypefn

@deftypefn  {} {@var{t} =} gallery ("triw", @var{n})
@deftypefnx {} {@var{t} =} gallery ("triw", @var{n}, @var{alpha})
@deftypefnx {} {@var{t} =} gallery ("triw", @var{n}, @var{alpha}, @var{k})
Create an upper triangular matrix discussed by
@nospell{Kahan, Golub, and Wilkinson}.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("uniformdata", [@var{M} @var{N} @dots{}], @var{j})
@deftypefnx {} {@var{a} =} gallery ("uniformdata", @var{M}, @var{N}, @dots{}, @var{j})
@deftypefnx {} {@var{a} =} gallery ("uniformdata", @dots{}, "@var{class}")
Create a matrix with random samples from the standard uniform distribution
(range [0,1]).

The first input is a matrix of dimensions describing the size of the output.
The dimensions can also be input as comma-separated arguments.

The input @var{j} is an integer index in the range [0, 2^32-1].  The values
of the output matrix are always exactly the same (reproducibility) for a
given size input and @var{j} index.

The final optional argument determines the class of the resulting matrix.
Possible values for @var{class}: @qcode{"single"}, @qcode{"double"}.
The default is @qcode{"double"}.

@end deftypefn

@deftypefn  {} {@var{a} =} gallery ("wathen", @var{nx}, @var{ny})
@deftypefnx {} {@var{a} =} gallery ("wathen", @var{nx}, @var{ny}, @var{k})
Create the @nospell{Wathen} matrix.

@end deftypefn

@deftypefn {} {[@var{a}, @var{b}] =} gallery ("wilk", @var{n})
Create various specific matrices devised/discussed by Wilkinson.

@end deftypefn


@c hadamard scripts/special-matrix/hadamard.m
@anchor{XREFhadamard}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{h} =} hadamard (@var{n})
Construct a Hadamard matrix (@nospell{Hn}) of size @var{n}-by-@var{n}.

The size @var{n} must be of the form @math{2^k * p} in which p is one of
1, 12, 20 or 28.  The returned matrix is normalized, meaning
@w{@code{Hn(:,1) == 1}}@ and @w{@code{Hn(1,:) == 1}}.

Some of the properties of Hadamard matrices are:

@itemize @bullet
@item
@code{kron (Hm, Hn)} is a Hadamard matrix of size @var{m}-by-@var{n}.

@item
@code{Hn * Hn' = @var{n} * eye (@var{n})}.

@item
The rows of @nospell{Hn} are orthogonal.

@item
@code{det (@var{A}) <= abs (det (Hn))} for all @var{A} with
@w{@code{abs (@var{A}(i, j)) <= 1}}.

@item
Multiplying any row or column by -1 and the matrix will remain a Hadamard
matrix.
@end itemize
@xseealso{@ref{XREFcompan,,compan}, @ref{XREFhankel,,hankel}, @ref{XREFtoeplitz,,toeplitz}}
@end deftypefn


@c hankel scripts/special-matrix/hankel.m
@anchor{XREFhankel}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{h} =} hankel (@var{c})
@deftypefnx {} {@var{h} =} hankel (@var{c}, @var{r})
Return the Hankel matrix constructed from the first column @var{c}, and
(optionally) the last row @var{r}.

If the last element of @var{c} is not the same as the first element of
@var{r}, the last element of @var{c} is used.  If the second argument is
omitted, it is assumed to be a vector of zeros with the same size as
@var{c}.

A Hankel matrix formed from an m-vector @var{c}, and an n-vector @var{r},
has the elements
@tex
$$
H(i, j) = \cases{c_{i+j-1},&$i+j-1\le m$;\cr r_{i+j-m},&otherwise.\cr}
$$
@end tex
@ifnottex

@example
@group
H(i,j) = c(i+j-1),  i+j-1 <= m;
H(i,j) = r(i+j-m),  otherwise
@end group
@end example

@end ifnottex
@xseealso{@ref{XREFhadamard,,hadamard}, @ref{XREFtoeplitz,,toeplitz}}
@end deftypefn


@c hilb scripts/special-matrix/hilb.m
@anchor{XREFhilb}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{h} =} hilb (@var{n})
Return the Hilbert matrix of order @var{n}.

The @math{i,j} element of a Hilbert matrix is defined as
@tex
$$
H(i, j) = {1 \over (i + j - 1)}
$$
@end tex
@ifnottex

@example
H(i, j) = 1 / (i + j - 1)
@end example

@end ifnottex

Hilbert matrices are close to being singular which make them difficult to
invert with numerical routines.  Comparing the condition number of a random
matrix 5x5 matrix with that of a Hilbert matrix of order 5 reveals just how
difficult the problem is.

@example
@group
cond (rand (5))
   @result{} 14.392
cond (hilb (5))
   @result{} 4.7661e+05
@end group
@end example

@xseealso{@ref{XREFinvhilb,,invhilb}}
@end deftypefn


@c invhilb scripts/special-matrix/invhilb.m
@anchor{XREFinvhilb}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{hinv} =} invhilb (@var{n})
Return the inverse of the Hilbert matrix of order @var{n}.

This can be computed exactly using
@tex
$$\eqalign{
  A_{ij} &= -1^{i+j} (i+j-1)
             \left( \matrix{n+i-1 \cr n-j } \right)
             \left( \matrix{n+j-1 \cr n-i } \right)
             \left( \matrix{i+j-2 \cr i-2 } \right)^2 \cr
         &= { p(i)p(j) \over (i+j-1) }
}$$
where
$$
  p(k) = -1^k \left( \matrix{ k+n-1 \cr k-1 } \right)
              \left( \matrix{ n \cr k } \right)
$$
@end tex
@ifnottex

@example
@group

           (i+j)         /n+i-1\  /n+j-1\   /i+j-2\ 2
A(i,j) = -1      (i+j-1)(       )(       ) (       )
                         \ n-j /  \ n-i /   \ i-2 /

       = p(i) p(j) / (i+j-1)

@end group
@end example

@noindent
where

@example
@group
         k  /k+n-1\   /n\
p(k) = -1  (       ) (   )
            \ k-1 /   \k/
@end group
@end example

@end ifnottex
The validity of this formula can easily be checked by expanding the binomial
coefficients in both formulas as factorials.  It can be derived more
directly via the theory of Cauchy matrices.  See @nospell{J. W. Demmel},
@cite{Applied Numerical Linear Algebra}, p.@: 92.

Compare this with the numerical calculation of @code{inv (hilb (n))},
which suffers from the ill-conditioning of the Hilbert matrix, and the
finite precision of your computer's floating point arithmetic.
@xseealso{@ref{XREFhilb,,hilb}}
@end deftypefn


@c magic scripts/special-matrix/magic.m
@anchor{XREFmagic}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{M} =} magic (@var{n})

Create an @var{n}-by-@var{n} magic square.

A magic square is an arrangement of the integers @code{1:n^2} such that the
row sums, column sums, and diagonal sums are all equal to the same value.

Note: @var{n} must be a scalar greater than or equal to 3.  If you supply
@var{n} less than 3, magic returns either a nonmagic square, or else the
degenerate magic squares 1 and [].
@end deftypefn


@c pascal scripts/special-matrix/pascal.m
@anchor{XREFpascal}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{P} =} pascal (@var{n})
@deftypefnx {} {@var{P} =} pascal (@var{n}, @var{t})
Return the Pascal matrix of order @var{n} if @code{@var{t} = 0}.

The default value of @var{t} is 0.

When @code{@var{t} = 1}, return the pseudo-lower triangular
Cholesky@tie{}factor of the Pascal matrix (The sign of some columns may be
negative).  This matrix is its own inverse, that is
@code{pascal (@var{n}, 1) ^ 2 == eye (@var{n})}.

If @code{@var{t} = -1}, return the true Cholesky@tie{}factor with strictly
positive values on the diagonal.

If @code{@var{t} = 2}, return a transposed and permuted version of
@code{pascal (@var{n}, 1)}, which is the cube root of the identity matrix.
That is, @code{pascal (@var{n}, 2) ^ 3 == eye (@var{n})}.

@xseealso{@ref{XREFchol,,chol}}
@end deftypefn


@c rosser scripts/special-matrix/rosser.m
@anchor{XREFrosser}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{R} =} rosser ()
Return the @nospell{Rosser} matrix.

This is a difficult test case used to evaluate eigenvalue algorithms.
@xseealso{@ref{XREFwilkinson,,wilkinson}, @ref{XREFeig,,eig}}
@end deftypefn


@c toeplitz scripts/special-matrix/toeplitz.m
@anchor{XREFtoeplitz}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{T} =} toeplitz (@var{c})
@deftypefnx {} {@var{T} =} toeplitz (@var{c}, @var{r})
Return the Toeplitz matrix constructed from the first column @var{c},
and optionally the first row @var{r}.

If the second argument is omitted, the first row is taken to be the
same as the first column.  If the first element of @var{r} is not the same
as the first element of @var{c}, the first element of @var{c} is used.

A Toeplitz, or diagonal-constant, matrix has the same value along each
diagonal.  Although it need not be square, it often is.  An @nospell{MxN}
Toeplitz matrix has the form:
@tex
$$
\left[\matrix{c_1    & r_2     & r_3      & \cdots & r_n\cr
              c_2    & c_1     & r_2      & \cdots & r_{n-1}\cr
              c_3    & c_2     & c_1      & \cdots & r_{n-2}\cr
              \vdots & \vdots  & \vdots   & \ddots & \vdots\cr
              c_m    & c_{m-1} & c_{m-2} & \ldots & c{m-n+1}}\right]
$$
@end tex
@ifnottex

@example
@group
c(1)  r(2)   r(3)  @dots{}  r(n)
c(2)  c(1)   r(2)  @dots{} r(n-1)
c(3)  c(2)   c(1)  @dots{} r(n-2)
 .     .      .   .      .
 .     .      .     .    .
 .     .      .       .  .
c(m) c(m-1) c(m-2) @dots{} c(m-n+1)
@end group
@end example

@end ifnottex
@xseealso{@ref{XREFhankel,,hankel}}
@end deftypefn


@c vander scripts/special-matrix/vander.m
@anchor{XREFvander}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{V} =} vander (@var{c})
@deftypefnx {} {@var{V} =} vander (@var{c}, @var{n})
Return the @nospell{Vandermonde} matrix whose next to last column is
@var{c}.

If @var{n} is specified, it determines the number of columns; otherwise,
@var{n} is taken to be equal to the length of @var{c}.

A @nospell{Vandermonde} matrix has the form:
@tex
$$
\left[\matrix{c_1^{n-1}  & \cdots & c_1^2  & c_1    & 1      \cr
              c_2^{n-1}  & \cdots & c_2^2  & c_2    & 1      \cr
              \vdots     & \ddots & \vdots & \vdots & \vdots \cr
              c_n^{n-1}  & \cdots & c_n^2  & c_n    & 1      }\right]
$$
@end tex
@ifnottex

@example
@group
c(1)^(n-1) @dots{} c(1)^2  c(1)  1
c(2)^(n-1) @dots{} c(2)^2  c(2)  1
    .     .      .      .    .
    .       .    .      .    .
    .         .  .      .    .
c(n)^(n-1) @dots{} c(n)^2  c(n)  1
@end group
@end example

@end ifnottex
@xseealso{@ref{XREFpolyfit,,polyfit}}
@end deftypefn


@c wilkinson scripts/special-matrix/wilkinson.m
@anchor{XREFwilkinson}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{W} =} wilkinson (@var{n})
Return the Wilkinson matrix of order @var{n}.

Wilkinson matrices are symmetric and tridiagonal with pairs of nearly, but
not exactly, equal eigenvalues.  They are useful in testing the behavior and
performance of eigenvalue solvers.

@xseealso{@ref{XREFrosser,,rosser}, @ref{XREFeig,,eig}}
@end deftypefn