1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <https://www.gnu.org/licenses/>.
@node Numeric Data Types
@chapter Numeric Data Types
@cindex numeric constant
@cindex numeric value
A @dfn{numeric constant} may be a scalar, a vector, or a matrix, and it may
contain complex values.
The simplest form of a numeric constant, a scalar, is a single number. Note
that by default numbers are represented within Octave by IEEE@tie{}754 double
precision (binary64) floating-point format (complex constants are stored as
pairs of binary64 values). It is, however, possible to represent true integers
as described in @ref{Integer Data Types}.
If the numeric constant is a real integer, it can be defined in decimal,
hexadecimal, or binary notation. An important difference, however, is that
decimal constants will be stored as binary64 values while using hexadecimal or
binary notation will result in a true integer with a storage class just large
enough to hold the specified number. Hexadecimal notation starts with
@samp{0x} or @samp{0X}, binary notation starts with @samp{0b} or @samp{0B},
otherwise decimal notation is assumed. As a consequence, @samp{0b} is not a
hexadecimal number, in fact, it is not a valid number at all.
For better readability, digits may be partitioned by the underscore separator
@samp{_}, which is ignored by the Octave interpreter. Here are some examples
of real-valued integer constants, which all represent the same value:
@example
@group
42 # decimal notation, binary64
0x2A # hexadecimal notation
0b101010 # binary notation
0b10_1010 # underscore notation
round (42.1) # also binary64
@end group
@end example
In decimal notation, the numeric constant may be denoted as decimal fraction
or even in scientific (exponential) notation. Note that this is not possible
for hexadecimal or binary notation. Again, in the following example all
numeric constants represent the same value:
@example
@group
.105
1.05e-1
.00105e+2
@end group
@end example
Unlike most programming languages, complex numeric constants are denoted as
the sum of real and imaginary parts. The imaginary part is denoted by a
real-valued numeric constant followed immediately by a complex value indicator
(@samp{i}, @samp{j}, @samp{I}, or @samp{J} which represents
@tex
$\sqrt{-1}$).
@end tex
@ifnottex
@code{sqrt (-1)}).
@end ifnottex
No spaces are allowed between the numeric constant and the complex value
indicator. All complex values are stored as pairs of binary64 values and the
use of hexadecimal or binary notation does @emph{not} result in a true integer.
Some examples of complex numeric constants that all represent the same value:
@example
@group
3 + 42i
3 + 42j
3 + 42I
3 + 42J
3.0 + 42.0i
3.0 + 0x2Ai
3.0 + 0b10_1010i
0.3e1 + 420e-1i
@end group
@end example
@c double libinterp/octave-value/ov.cc
@anchor{XREFdouble}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} double (@var{x})
Convert @var{x} to double precision type.
@xseealso{@ref{XREFsingle,,single}}
@end deftypefn
@c complex libinterp/corefcn/data.cc
@anchor{XREFcomplex}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{z} =} complex (@var{x})
@deftypefnx {} {@var{z} =} complex (@var{re}, @var{im})
Return a complex value from real arguments.
With 1 real argument @var{x}, return the complex result
@w{@code{@var{x} + 0i}}.
With 2 real arguments, return the complex result
@w{@code{@var{re} + @var{im}i}}.
@code{complex} can often be more convenient than expressions such as
@w{@code{a + b*i}}.
For example:
@example
@group
complex ([1, 2], [3, 4])
@result{} [ 1 + 3i 2 + 4i ]
@end group
@end example
@xseealso{@ref{XREFreal,,real}, @ref{XREFimag,,imag}, @ref{XREFiscomplex,,iscomplex}, @ref{XREFabs,,abs}, @ref{XREFarg,,arg}}
@end deftypefn
@menu
* Matrices::
* Ranges::
* Single Precision Data Types::
* Integer Data Types::
* Bit Manipulations::
* Logical Values::
* Automatic Conversion of Data Types::
* Predicates for Numeric Objects::
@end menu
@node Matrices
@section Matrices
@cindex matrices
@opindex [
@opindex ]
@opindex ;
@opindex ,
It is easy to define a matrix of values in Octave. The size of the
matrix is determined automatically, so it is not necessary to explicitly
state the dimensions. The expression
@example
a = [1, 2; 3, 4]
@end example
@noindent
results in the matrix
@tex
$$ a = \left[ \matrix{ 1 & 2 \cr 3 & 4 } \right] $$
@end tex
@ifnottex
@example
@group
/ \
| 1 2 |
a = | |
| 3 4 |
\ /
@end group
@end example
@end ifnottex
Elements of a matrix may be arbitrary expressions, provided that the
dimensions all make sense when combining the various pieces. For
example, given the above matrix, the expression
@example
[ a, a ]
@end example
@noindent
produces the matrix
@example
@group
ans =
1 2 1 2
3 4 3 4
@end group
@end example
@noindent
but the expression
@example
[ a, 1 ]
@end example
@noindent
produces the error
@example
error: number of rows must match (1 != 2) near line 13, column 6
@end example
@noindent
(assuming that this expression was entered as the first thing on line
13, of course).
Inside the square brackets that delimit a matrix expression, Octave
looks at the surrounding context to determine whether spaces and newline
characters should be converted into element and row separators, or
simply ignored, so an expression like
@example
@group
a = [ 1 2
3 4 ]
@end group
@end example
@noindent
will work. However, some possible sources of confusion remain. For
example, in the expression
@example
[ 1 - 1 ]
@end example
@noindent
the @samp{-} is treated as a binary operator and the result is the
scalar 0, but in the expression
@example
[ 1 -1 ]
@end example
@noindent
the @samp{-} is treated as a unary operator and the result is the
vector @code{[ 1, -1 ]}. Similarly, the expression
@example
[ sin (pi) ]
@end example
@noindent
will be parsed as
@example
[ sin, (pi) ]
@end example
@noindent
and will result in an error since the @code{sin} function will be
called with no arguments. To get around this, you must omit the space
between @code{sin} and the opening parenthesis, or enclose the
expression in a set of parentheses:
@example
[ (sin (pi)) ]
@end example
Whitespace surrounding the single quote character (@samp{'}, used as a
transpose operator and for delimiting character strings) can also cause
confusion. Given @code{a = 1}, the expression
@example
[ 1 a' ]
@end example
@noindent
results in the single quote character being treated as a
transpose operator and the result is the vector @code{[ 1, 1 ]}, but the
expression
@example
[ 1 a ' ]
@end example
@noindent
produces the error message
@example
@group
parse error:
syntax error
>>> [ 1 a ' ]
^
@end group
@end example
@noindent
because not doing so would cause trouble when parsing the valid expression
@example
[ a 'foo' ]
@end example
For clarity, it is probably best to always use commas and semicolons to
separate matrix elements and rows.
The maximum number of elements in a matrix is fixed when Octave is compiled.
The allowable number can be queried with the function @code{sizemax}. Note
that other factors, such as the amount of memory available on your machine,
may limit the maximum size of matrices to something smaller.
@c sizemax libinterp/corefcn/bitfcns.cc
@anchor{XREFsizemax}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{max_numel} =} sizemax ()
Return the largest value allowed for the size of an array.
If Octave is compiled with 64-bit indexing, the result is of class int64,
otherwise it is of class int32. The maximum array size is slightly smaller
than the maximum value allowable for the relevant class as reported by
@code{intmax}.
@xseealso{@ref{XREFintmax,,intmax}}
@end deftypefn
When you type a matrix or the name of a variable whose value is a
matrix, Octave responds by printing the matrix in with neatly aligned
rows and columns. If the rows of the matrix are too large to fit on the
screen, Octave splits the matrix and displays a header before each
section to indicate which columns are being displayed. You can use the
following variables to control the format of the output.
@c output_precision libinterp/corefcn/pr-flt-fmt.cc
@anchor{XREFoutput_precision}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} output_precision ()
@deftypefnx {} {@var{old_val} =} output_precision (@var{new_val})
@deftypefnx {} {@var{old_val} =} output_precision (@var{new_val}, "local")
Query or set the internal variable that specifies the minimum number of
significant figures to display for numeric output.
Note that regardless of the value set for @code{output_precision}, the
number of digits of precision displayed is limited to 16 for double
precision values and 7 for single precision values. Also, calls to the
@code{format} function that change numeric display can also change the set
value for @code{output_precision}.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@xseealso{@ref{XREFformat,,format}, @ref{XREFfixed_point_format,,fixed_point_format}}
@end deftypefn
It is possible to achieve a wide range of output styles by using
different values of @code{output_precision}. Reasonable combinations can be
set using the @code{format} function. @xref{Basic Input and Output}.
@c split_long_rows libinterp/corefcn/pr-output.cc
@anchor{XREFsplit_long_rows}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} split_long_rows ()
@deftypefnx {} {@var{old_val} =} split_long_rows (@var{new_val})
@deftypefnx {} {@var{old_val} =} split_long_rows (@var{new_val}, "local")
Query or set the internal variable that controls whether rows of a matrix
may be split when displayed to a terminal window.
If the rows are split, Octave will display the matrix in a series of smaller
pieces, each of which can fit within the limits of your terminal width and
each set of rows is labeled so that you can easily see which columns are
currently being displayed. For example:
@example
@group
octave:13> rand (2,10)
ans =
Columns 1 through 6:
0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201
Columns 7 through 10:
0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150
@end group
@end example
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@xseealso{@ref{XREFformat,,format}}
@end deftypefn
Octave automatically switches to scientific notation when values become
very large or very small. This guarantees that you will see several
significant figures for every value in a matrix. If you would prefer to
see all values in a matrix printed in a fixed point format, you can use
the function @code{fixed_point_format}. But doing so is not
recommended, because it can produce output that can easily be
misinterpreted.
@c fixed_point_format libinterp/corefcn/pr-output.cc
@anchor{XREFfixed_point_format}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} fixed_point_format ()
@deftypefnx {} {@var{old_val} =} fixed_point_format (@var{new_val})
@deftypefnx {} {@var{old_val} =} fixed_point_format (@var{new_val}, "local")
Query or set the internal variable that controls whether Octave will
use a scaled format to print matrix values.
The scaled format prints a scaling factor on the first line of output chosen
such that the largest matrix element can be written with a single leading
digit. For example:
@example
@group
fixed_point_format (true)
logspace (1, 7, 5)'
ans =
1.0e+07 *
0.00000
0.00003
0.00100
0.03162
1.00000
@end group
@end example
@noindent
Notice that the first value appears to be 0 when it is actually 1. Because
of the possibility for confusion you should be careful about enabling
@code{fixed_point_format}.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@xseealso{@ref{XREFformat,,format}, @ref{XREFoutput_precision,,output_precision}}
@end deftypefn
@menu
* Empty Matrices::
@end menu
@node Empty Matrices
@subsection Empty Matrices
A matrix may have one or both dimensions zero, and operations on empty
matrices are handled as described by @nospell{Carl de Boor} in
@cite{An Empty Exercise}, SIGNUM, Volume 25, pages 2--6, 1990 and
@nospell{C. N. Nett and W. M. Haddad}, in
@cite{A System-Theoretic Appropriate Realization of the Empty Matrix Concept},
IEEE Transactions on Automatic Control, Volume 38, Number 5, May 1993.
@tex
Briefly, given a scalar $s$, an $m\times n$ matrix $M_{m\times n}$,
and an $m\times n$ empty matrix $[\,]_{m\times n}$ (with either one or
both dimensions equal to zero), the following are true:
$$
\eqalign{%
s \cdot [\,]_{m\times n} = [\,]_{m\times n} \cdot s &= [\,]_{m\times n}\cr
[\,]_{m\times n} + [\,]_{m\times n} &= [\,]_{m\times n}\cr
[\,]_{0\times m} \cdot M_{m\times n} &= [\,]_{0\times n}\cr
M_{m\times n} \cdot [\,]_{n\times 0} &= [\,]_{m\times 0}\cr
[\,]_{m\times 0} \cdot [\,]_{0\times n} &= 0_{m\times n}}
$$
@end tex
@ifnottex
Briefly, given a scalar @var{s}, an @var{m} by
@var{n} matrix @code{M(mxn)}, and an @var{m} by @var{n} empty matrix
@code{[](mxn)} (with either one or both dimensions equal to zero), the
following are true:
@example
@group
s * [](mxn) = [](mxn) * s = [](mxn)
[](mxn) + [](mxn) = [](mxn)
[](0xm) * M(mxn) = [](0xn)
M(mxn) * [](nx0) = [](mx0)
[](mx0) * [](0xn) = 0(mxn)
@end group
@end example
@end ifnottex
By default, dimensions of the empty matrix are printed along with the
empty matrix symbol, @samp{[]}. The built-in variable
@code{print_empty_dimensions} controls this behavior.
@c print_empty_dimensions libinterp/corefcn/pr-output.cc
@anchor{XREFprint_empty_dimensions}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} print_empty_dimensions ()
@deftypefnx {} {@var{old_val} =} print_empty_dimensions (@var{new_val})
@deftypefnx {} {@var{old_val} =} print_empty_dimensions (@var{new_val}, "local")
Query or set the internal variable that controls whether the dimensions of
empty matrices are printed along with the empty matrix symbol, @samp{[]}.
For example, the expression
@example
zeros (3, 0)
@end example
@noindent
will print
@example
ans = [](3x0)
@end example
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@xseealso{@ref{XREFformat,,format}}
@end deftypefn
Empty matrices may also be used in assignment statements as a convenient
way to delete rows or columns of matrices.
@xref{Assignment Ops,,Assignment Expressions}.
When Octave parses a matrix expression, it examines the elements of the
list to determine whether they are all constants. If they are, it
replaces the list with a single matrix constant.
@node Ranges
@section Ranges
@cindex range expressions
@cindex expression, range
@opindex :, range expressions
A @dfn{range} is a convenient way to write a row vector with evenly
spaced elements. A range expression is defined by the value of the first
element in the range, an optional value for the increment between
elements, and a maximum value which the elements of the range will not
exceed. The base, increment, and limit are separated by colons (the
@samp{:} character) and may contain any arithmetic expressions and
function calls. If the increment is omitted, it is assumed to be 1.
For example, the range
@example
1 : 5
@end example
@noindent
defines the set of values @code{[ 1, 2, 3, 4, 5 ]}, and the range
@example
1 : 3 : 5
@end example
@noindent
defines the set of values @code{[ 1, 4 ]}.
Although a range constant specifies a row vector, Octave does @emph{not}
normally convert range constants to vectors unless it is necessary to do so.
This allows you to write a constant like @code{1 : 10000} without using
80,000 bytes of storage on a typical workstation.
A common example of when it does become necessary to convert ranges into
vectors occurs when they appear within a vector (i.e., inside square
brackets). For instance, whereas
@example
x = 0 : 0.1 : 1;
@end example
@noindent
defines @var{x} to be a variable of type @code{double_range} and occupies 24
bytes of memory, the expression
@example
y = [ 0 : 0.1 : 1];
@end example
@noindent
defines @var{y} to be of type @code{matrix} and occupies 88 bytes of
memory.
This space saving optimization may be disabled using the function
@code{optimize_range}.
@c optimize_range libinterp/octave-value/ov.cc
@anchor{XREFoptimize_range}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} optimize_range ()
@deftypefnx {} {@var{old_val} =} optimize_range (@var{new_val})
@deftypefnx {} {@var{old_val} =} optimize_range (@var{new_val}, "local")
Query or set whether a special space-efficient format is used for storing
ranges.
The default value is true. If this option is set to false, Octave will store
ranges as full matrices.
When called from inside a function with the @qcode{"local"} option, the setting
is changed locally for the function and any subroutines it calls. The original
setting is restored when exiting the function.
@xseealso{@ref{XREFoptimize_diagonal_matrix,,optimize_diagonal_matrix}, @ref{XREFoptimize_permutation_matrix,,optimize_permutation_matrix}}
@end deftypefn
Note that the upper (or lower, if the increment is negative) bound on
the range is not always included in the set of values. This can be useful
in some contexts. For example:
@example
@group
## x is some predefined range or vector or matrix or array
x(1:2:end) += 1; # increment all odd-numbered elements
x(2:2:end) -= 1; # decrement all even-numbered elements
@end group
@end example
The above code works correctly whether @var{x} has an odd number of elements
or not: there is no need to treat the two cases differently.
Octave uses floating point arithmetic to compute the values in the
range. As a result, defining ranges with floating-point values can result
in pitfalls like these:
@example
@group
a = -2
b = (0.3 - 0.2 - 0.1)
x = a : b
@end group
@end example
Due to floating point rounding, @var{b} may or may not equal zero exactly,
and if it does not, it may be above zero or below zero, hence the final range
@var{x} may or may not include zero as its final value. Similarly:
@example
@group
x = 1.80 : 0.05 : 1.90
y = 1.85 : 0.05 : 1.90
@end group
@end example
@noindent
is not as predictable as it looks. As of Octave 8.3, the results obtained are
that @var{x} has three elements (1.80, 1.85, and 1.90), and @var{y} has only
one element (1.85 but not 1.90). Thus, when using floating points in ranges,
changing the start of the range can easily affect the end of the range even
though the ending value was not touched in the above example.
To avoid such pitfalls with floating-points in ranges, you can use one of
the following patterns. This change to the previous code:
@example
@group
x = (0:2) * 0.05 + 1.80
y = (0:1) * 0.05 + 1.85
@end group
@end example
@noindent
use integers to construct the range and then converts to floating point making
the overall expression safe and repeatable across platforms, compilers, and
compiler settings. If you know the number of elements, you can use the
@code{linspace} function (@pxref{Special Utility Matrices}), which will include
the endpoints of a range. You can also make judicious use of @code{round},
@code{floor}, @code{ceil}, @code{fix}, etc.@: to set the limits and the
increment without getting interference from floating-point rounding. For
example, the earlier example can be made safer with one of the following:
@example
@group
a = -2
b = round ((0.3 - 0.2 - 0.1) * 1e12) / 1e12 # rounds to 12 digits
c = floor (0.3 - 0.2 - 0.1) # floors as integer
d = floor ((0.3 - 0.2 - 0.1) * 1e12) / 1e12 # floors at 12 digits
x = a : b
y = a : c
z = a : d
@end group
@end example
If the result of the range expression is empty then Octave returns an empty
@code{matrix}, not an empty @code{double_range}. Similarly, if there is just
a single element in the range then Octave returns a @code{scalar}, not a
@code{double_range} with one element.
@node Single Precision Data Types
@section Single Precision Data Types
Octave includes support for single precision data types, and most of the
functions in Octave accept single precision values and return single
precision answers. A single precision variable is created with the
@code{single} function.
@c single libinterp/octave-value/ov.cc
@anchor{XREFsingle}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} single (@var{x})
Convert @var{x} to single precision type.
@xseealso{@ref{XREFdouble,,double}}
@end deftypefn
for example:
@example
@group
sngl = single (rand (2, 2))
@result{} sngl =
0.37569 0.92982
0.11962 0.50876
class (sngl)
@result{} single
@end group
@end example
Many functions can also return single precision values directly. For
example
@example
@group
ones (2, 2, "single")
zeros (2, 2, "single")
eye (2, 2, "single")
rand (2, 2, "single")
NaN (2, 2, "single")
NA (2, 2, "single")
Inf (2, 2, "single")
@end group
@end example
@noindent
will all return single precision matrices.
@node Integer Data Types
@section Integer Data Types
Octave supports integer matrices as an alternative to using double precision.
It is possible to use both signed and unsigned integers represented by 8, 16,
32, or 64 bits. It should be noted that most computations require floating
point data, meaning that integers will often change type when involved in
numeric computations. For this reason integers are most often used to store
data, and not for calculations.
In general, most integer matrices are created by casting existing matrices to
integers. The following example shows how to cast a matrix into 32-bit
integers.
@example
@group
float = rand (2, 2)
@result{} float = 0.37569 0.92982
0.11962 0.50876
integer = int32 (float)
@result{} integer = 0 1
0 1
@end group
@end example
@noindent
As can be seen, floating point values are rounded to the nearest integer when
converted.
@c isinteger libinterp/corefcn/data.cc
@anchor{XREFisinteger}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isinteger (@var{x})
Return true if @var{x} is an integer object (int8, uint8, int16, etc.).
Note that @w{@code{isinteger (14)}}@ is false because numeric constants in
Octave are double precision floating point values.
@xseealso{@ref{XREFisfloat,,isfloat}, @ref{XREFischar,,ischar}, @ref{XREFislogical,,islogical}, @ref{XREFisstring,,isstring}, @ref{XREFisnumeric,,isnumeric}, @ref{XREFisa,,isa}}
@end deftypefn
@c int8 libinterp/octave-value/ov.cc
@anchor{XREFint8}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} int8 (@var{x})
Convert @var{x} to 8-bit integer type.
@xseealso{@ref{XREFuint8,,uint8}, @ref{XREFint16,,int16}, @ref{XREFuint16,,uint16}, @ref{XREFint32,,int32}, @ref{XREFuint32,,uint32}, @ref{XREFint64,,int64}, @ref{XREFuint64,,uint64}}
@end deftypefn
@c uint8 libinterp/octave-value/ov.cc
@anchor{XREFuint8}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} uint8 (@var{x})
Convert @var{x} to unsigned 8-bit integer type.
@xseealso{@ref{XREFint8,,int8}, @ref{XREFint16,,int16}, @ref{XREFuint16,,uint16}, @ref{XREFint32,,int32}, @ref{XREFuint32,,uint32}, @ref{XREFint64,,int64}, @ref{XREFuint64,,uint64}}
@end deftypefn
@c int16 libinterp/octave-value/ov.cc
@anchor{XREFint16}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} int16 (@var{x})
Convert @var{x} to 16-bit integer type.
@xseealso{@ref{XREFint8,,int8}, @ref{XREFuint8,,uint8}, @ref{XREFuint16,,uint16}, @ref{XREFint32,,int32}, @ref{XREFuint32,,uint32}, @ref{XREFint64,,int64}, @ref{XREFuint64,,uint64}}
@end deftypefn
@c uint16 libinterp/octave-value/ov.cc
@anchor{XREFuint16}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} uint16 (@var{x})
Convert @var{x} to unsigned 16-bit integer type.
@xseealso{@ref{XREFint8,,int8}, @ref{XREFuint8,,uint8}, @ref{XREFint16,,int16}, @ref{XREFint32,,int32}, @ref{XREFuint32,,uint32}, @ref{XREFint64,,int64}, @ref{XREFuint64,,uint64}}
@end deftypefn
@c int32 libinterp/octave-value/ov.cc
@anchor{XREFint32}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} int32 (@var{x})
Convert @var{x} to 32-bit integer type.
@xseealso{@ref{XREFint8,,int8}, @ref{XREFuint8,,uint8}, @ref{XREFint16,,int16}, @ref{XREFuint16,,uint16}, @ref{XREFuint32,,uint32}, @ref{XREFint64,,int64}, @ref{XREFuint64,,uint64}}
@end deftypefn
@c uint32 libinterp/octave-value/ov.cc
@anchor{XREFuint32}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} uint32 (@var{x})
Convert @var{x} to unsigned 32-bit integer type.
@xseealso{@ref{XREFint8,,int8}, @ref{XREFuint8,,uint8}, @ref{XREFint16,,int16}, @ref{XREFuint16,,uint16}, @ref{XREFint32,,int32}, @ref{XREFint64,,int64}, @ref{XREFuint64,,uint64}}
@end deftypefn
@c int64 libinterp/octave-value/ov.cc
@anchor{XREFint64}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} int64 (@var{x})
Convert @var{x} to 64-bit integer type.
@xseealso{@ref{XREFint8,,int8}, @ref{XREFuint8,,uint8}, @ref{XREFint16,,int16}, @ref{XREFuint16,,uint16}, @ref{XREFint32,,int32}, @ref{XREFuint32,,uint32}, @ref{XREFuint64,,uint64}}
@end deftypefn
@c uint64 libinterp/octave-value/ov.cc
@anchor{XREFuint64}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{y} =} uint64 (@var{x})
Convert @var{x} to unsigned 64-bit integer type.
@xseealso{@ref{XREFint8,,int8}, @ref{XREFuint8,,uint8}, @ref{XREFint16,,int16}, @ref{XREFuint16,,uint16}, @ref{XREFint32,,int32}, @ref{XREFuint32,,uint32}, @ref{XREFint64,,int64}}
@end deftypefn
@c intmax libinterp/corefcn/bitfcns.cc
@anchor{XREFintmax}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{Imax} =} intmax ()
@deftypefnx {} {@var{Imax} =} intmax ("@var{type}")
@deftypefnx {} {@var{Imax} =} intmax (@var{var})
Return the largest integer that can be represented by a specific integer type.
The input is either a string @qcode{"@var{type}"} specifying an integer type,
or it is an existing integer variable @var{var}.
Possible values for @var{type} are
@table @asis
@item @qcode{"int8"}
signed 8-bit integer.
@item @qcode{"int16"}
signed 16-bit integer.
@item @qcode{"int32"}
signed 32-bit integer.
@item @qcode{"int64"}
signed 64-bit integer.
@item @qcode{"uint8"}
unsigned 8-bit integer.
@item @qcode{"uint16"}
unsigned 16-bit integer.
@item @qcode{"uint32"}
unsigned 32-bit integer.
@item @qcode{"uint64"}
unsigned 64-bit integer.
@end table
The default for @var{type} is @qcode{"int32"}.
Example Code - query an existing variable
@example
@group
x = int8 (1);
intmax (x)
@result{} 127
@end group
@end example
@xseealso{@ref{XREFintmin,,intmin}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
@c intmin libinterp/corefcn/bitfcns.cc
@anchor{XREFintmin}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{Imin} =} intmin ()
@deftypefnx {} {@var{Imin} =} intmin ("@var{type}")
@deftypefnx {} {@var{Imin} =} intmin (@var{var})
Return the smallest integer that can be represented by a specific integer type.
The input is either a string @qcode{"@var{type}"} specifying an integer type,
or it is an existing integer variable @var{var}.
Possible values for @var{type} are
@table @asis
@item @qcode{"int8"}
signed 8-bit integer.
@item @qcode{"int16"}
signed 16-bit integer.
@item @qcode{"int32"}
signed 32-bit integer.
@item @qcode{"int64"}
signed 64-bit integer.
@item @qcode{"uint8"}
unsigned 8-bit integer.
@item @qcode{"uint16"}
unsigned 16-bit integer.
@item @qcode{"uint32"}
unsigned 32-bit integer.
@item @qcode{"uint64"}
unsigned 64-bit integer.
@end table
The default for @var{type} is @qcode{"int32"}.
Example Code - query an existing variable
@example
@group
x = int8 (1);
intmin (x)
@result{} -128
@end group
@end example
@xseealso{@ref{XREFintmax,,intmax}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
@c flintmax libinterp/corefcn/bitfcns.cc
@anchor{XREFflintmax}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{Imax} =} flintmax ()
@deftypefnx {} {@var{Imax} =} flintmax ("double")
@deftypefnx {} {@var{Imax} =} flintmax ("single")
@deftypefnx {} {@var{Imax} =} flintmax (@var{var})
Return the largest integer that can be represented consecutively in a
floating point value.
The input is either a string specifying a floating point type, or it is an
existing floating point variable @var{var}.
The default type is @qcode{"double"}, but @qcode{"single"} is a valid option.
On IEEE@tie{}754 compatible systems, @code{flintmax} is @w{@math{2^{53}}}@ for
@qcode{"double"} and @w{@math{2^{24}}}@ for @qcode{"single"}.
Example Code - query an existing variable
@example
@group
x = single (1);
flintmax (x)
@result{} 16777216
@end group
@end example
@xseealso{@ref{XREFintmax,,intmax}, @ref{XREFrealmax,,realmax}, @ref{XREFrealmin,,realmin}}
@end deftypefn
@menu
* Hexadecimal and Binary Integer Constants::
* Integer Arithmetic::
@end menu
@node Hexadecimal and Binary Integer Constants
@subsection Hexadecimal and Binary Integer Constants
The use of hexadecimal or binary notation to define a number will automatically
create an unsigned integer using a representation that is just large enough to
hold the specified value. For example:
@example
@group
0b101 # uint8
0x100 # uint16
0xDEADBEEF # uint32
0x1DEADBEEF # uint64
@end group
@end example
The storage class can be specified by adding a suffix. Use @samp{s} for signed
integers and @samp{u} for unsigned integers along with a size (@samp{8},
@samp{16}, @samp{32}, @samp{64}). The use of the underscore separator @samp{_}
can improve readability. For example:
@example
@group
0b101s16 # int16
0b101_s16 # int16, value and representation separated
0xDEADBEEFs32 # int32
0xDEADBEEF_u64 # uint64
@end group
@end example
Note that when defining matrices of integer constants the overall matrix will
have the storage class of its first element. The matrix
@code{[0x1; 0x100; 0x10000]} will be of type @code{uint8} and the larger values
will be truncated because of the saturation semantics of integer values. To
avoid this issue either: 1) declare the first integer to be of the desired size
such as @code{0x1u32; 0x100; 0x10000]}, or 2) pad constants in array
expressions with leading zeros so that they use the same number of digits for
each value such as @code{[0x00_00_01; 0x00_01_00; 0x01_00_00]}.
@node Integer Arithmetic
@subsection Integer Arithmetic
While many numerical computations can't be carried out in integers,
Octave does support basic operations like addition and multiplication
on integers. The operators @code{+}, @code{-}, @code{.*}, and @code{./}
work on integers of the same type. So, it is possible to add two 32-bit
integers, but not to add a 32-bit integer and a 16-bit integer.
When doing integer arithmetic one should consider the possibility of
underflow and overflow. This happens when the result of the computation
can't be represented using the chosen integer type. As an example it is
not possible to represent the result of @math{10 - 20} when using
unsigned integers. Octave makes sure that the result of integer
computations is the integer that is closest to the true result. So, the
result of @math{10 - 20} when using unsigned integers is zero.
When doing integer division Octave will round the result to the nearest
integer. This is different from most programming languages, where the
result is often floored to the nearest integer. So, the result of
@code{int32 (5) ./ int32 (8)} is @code{1}.
@c idivide scripts/general/idivide.m
@anchor{XREFidivide}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{C} =} idivide (@var{A}, @var{B}, @var{op})
Integer division with different rounding rules.
The standard behavior of integer division such as @code{@var{A} ./ @var{B}}
is to round the result to the nearest integer. This is not always the
desired behavior and @code{idivide} permits integer element-by-element
division to be performed with different treatment for the fractional
part of the division as determined by the @var{op} flag. @var{op} is
a string with one of the values:
@table @asis
@item @qcode{"fix"}
Calculate @code{@var{A} ./ @var{B}} with the fractional part rounded
towards zero.
@item @qcode{"round"}
Calculate @code{@var{A} ./ @var{B}} with the fractional part rounded
towards the nearest integer.
@item @qcode{"floor"}
Calculate @code{@var{A} ./ @var{B}} with the fractional part rounded
towards negative infinity.
@item @qcode{"ceil"}
Calculate @code{@var{A} ./ @var{B}} with the fractional part rounded
towards positive infinity.
@end table
@noindent
If @var{op} is not given it defaults to @qcode{"fix"}.
An example demonstrating these rounding rules is
@example
@group
idivide (int8 ([-3, 3]), int8 (4), "fix")
@result{} 0 0
idivide (int8 ([-3, 3]), int8 (4), "round")
@result{} -1 1
idivide (int8 ([-3, 3]), int8 (4), "floor")
@result{} -1 0
idivide (int8 ([-3, 3]), int8 (4), "ceil")
@result{} 0 1
@end group
@end example
@xseealso{@ref{XREFceil,,ceil}, @ref{XREFfloor,,floor}, @ref{XREFfix,,fix}, @ref{XREFround,,round}, @ref{XREFldivide,,ldivide}, @ref{XREFrdivide,,rdivide}}
@end deftypefn
@node Bit Manipulations
@section Bit Manipulations
Octave provides a number of functions for the manipulation of numeric
values on a bit by bit basis. The basic functions to set and obtain the
values of individual bits are @code{bitset} and @code{bitget}.
@c bitset scripts/general/bitset.m
@anchor{XREFbitset}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{B} =} bitset (@var{A}, @var{n})
@deftypefnx {} {@var{B} =} bitset (@var{A}, @var{n}, @var{val})
Set or reset bit(s) at position @var{n} of the unsigned integers in @var{A}.
The least significant bit is @var{n} = 1. @w{@var{val} = 0}@ resets bits
and @w{@var{val} = 1}@ sets bits. If no @var{val} is specified it
defaults to 1 (set bit). All inputs must be the same size or scalars.
Example 1: Set multiple bits
@example
@group
x = bitset (1, 3:5)
@result{} x =
5 9 17
dec2bin (x)
@result{}
00101
01001
10001
@end group
@end example
Example 2: Reset and set bits
@example
@group
x = bitset ([15 14], 1, [0 1])
@result{} x =
14 15
@end group
@end example
@xseealso{@ref{XREFbitand,,bitand}, @ref{XREFbitor,,bitor}, @ref{XREFbitxor,,bitxor}, @ref{XREFbitget,,bitget}, @ref{XREFbitcmp,,bitcmp}, @ref{XREFbitshift,,bitshift}, @ref{XREFintmax,,intmax}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
@c bitget scripts/general/bitget.m
@anchor{XREFbitget}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{b} =} bitget (@var{A}, @var{n})
Return the bit value at position(s) @var{n} of the unsigned integers in
@var{A}.
The least significant bit is @var{n} = 1.
@example
@group
bitget (100, 8:-1:1)
@result{} 0 1 1 0 0 1 0 0
@end group
@end example
@xseealso{@ref{XREFbitand,,bitand}, @ref{XREFbitor,,bitor}, @ref{XREFbitxor,,bitxor}, @ref{XREFbitset,,bitset}, @ref{XREFbitcmp,,bitcmp}, @ref{XREFbitshift,,bitshift}, @ref{XREFintmax,,intmax}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
The arguments to all of Octave's bitwise operations can be scalar or
arrays, except for @code{bitcmp}, whose @var{k} argument must a
scalar. In the case where more than one argument is an array, then all
arguments must have the same shape, and the bitwise operator is applied
to each of the elements of the argument individually. If at least one
argument is a scalar and one an array, then the scalar argument is
duplicated. Therefore
@example
bitget (100, 8:-1:1)
@end example
@noindent
is the same as
@example
bitget (100 * ones (1, 8), 8:-1:1)
@end example
It should be noted that all values passed to the bit manipulation
functions of Octave are treated as integers. Therefore, even though the
example for @code{bitset} above passes the floating point value
@code{10}, it is treated as the bits @code{[1, 0, 1, 0]} rather than the
bits of the native floating point format representation of @code{10}.
As the maximum value that can be represented by a number is important
for bit manipulation, particularly when forming masks, Octave supplies
two utility functions: @code{flintmax} for floating point integers, and
@code{intmax} for integer objects (@code{uint8}, @code{int64}, etc.).
Octave also includes the basic bitwise 'and', 'or', and 'exclusive or'
operators.
@c bitand libinterp/corefcn/bitfcns.cc
@anchor{XREFbitand}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{z} =} bitand (@var{x}, @var{y})
Return the bitwise AND of non-negative integers.
@var{x}, @var{y} must be in the range [0,intmax]
@xseealso{@ref{XREFbitor,,bitor}, @ref{XREFbitxor,,bitxor}, @ref{XREFbitset,,bitset}, @ref{XREFbitget,,bitget}, @ref{XREFbitcmp,,bitcmp}, @ref{XREFbitshift,,bitshift}, @ref{XREFintmax,,intmax}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
@c bitor libinterp/corefcn/bitfcns.cc
@anchor{XREFbitor}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{z} =} bitor (@var{x}, @var{y})
Return the bitwise OR of non-negative integers @var{x} and @var{y}.
@xseealso{@ref{XREFbitor,,bitor}, @ref{XREFbitxor,,bitxor}, @ref{XREFbitset,,bitset}, @ref{XREFbitget,,bitget}, @ref{XREFbitcmp,,bitcmp}, @ref{XREFbitshift,,bitshift}, @ref{XREFintmax,,intmax}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
@c bitxor libinterp/corefcn/bitfcns.cc
@anchor{XREFbitxor}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{z} =} bitxor (@var{x}, @var{y})
Return the bitwise XOR of non-negative integers @var{x} and @var{y}.
@xseealso{@ref{XREFbitand,,bitand}, @ref{XREFbitor,,bitor}, @ref{XREFbitset,,bitset}, @ref{XREFbitget,,bitget}, @ref{XREFbitcmp,,bitcmp}, @ref{XREFbitshift,,bitshift}, @ref{XREFintmax,,intmax}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
The bitwise 'not' operator is a unary operator that performs a logical
negation of each of the bits of the value. For this to make sense, the
mask against which the value is negated must be defined. Octave's
bitwise 'not' operator is @code{bitcmp}.
@c bitcmp scripts/general/bitcmp.m
@anchor{XREFbitcmp}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{C} =} bitcmp (@var{A}, @var{k})
Return the @var{k}-bit complement of integers in @var{A}.
If @var{k} is omitted @code{k = log2 (flintmax) + 1} is assumed.
@example
@group
bitcmp (7,4)
@result{} 8
dec2bin (11)
@result{} 1011
dec2bin (bitcmp (11, 6))
@result{} 110100
@end group
@end example
@xseealso{@ref{XREFbitand,,bitand}, @ref{XREFbitor,,bitor}, @ref{XREFbitxor,,bitxor}, @ref{XREFbitset,,bitset}, @ref{XREFbitget,,bitget}, @ref{XREFbitcmp,,bitcmp}, @ref{XREFbitshift,,bitshift}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
Octave also includes the ability to left-shift and right-shift values bitwise.
@c bitshift libinterp/corefcn/bitfcns.cc
@anchor{XREFbitshift}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{B} =} bitshift (@var{A}, @var{k})
@deftypefnx {} {@var{B} =} bitshift (@var{A}, @var{k}, @var{n})
Return a @var{k} bit shift of @var{n}-digit unsigned integers in @var{A}.
A positive @var{k} leads to a left shift; A negative value to a right shift.
If @var{n} is omitted it defaults to 64. @var{n} must be in the range [1,64].
@example
@group
bitshift (eye (3), 1)
@result{}
@group
2 0 0
0 2 0
0 0 2
@end group
bitshift (10, [-2, -1, 0, 1, 2])
@result{} 2 5 10 20 40
@c FIXME: restore this example when third arg is allowed to be an array.
@c
@c
@c bitshift ([1, 10], 2, [3,4])
@c @result{} 4 8
@end group
@end example
@xseealso{@ref{XREFbitand,,bitand}, @ref{XREFbitor,,bitor}, @ref{XREFbitxor,,bitxor}, @ref{XREFbitset,,bitset}, @ref{XREFbitget,,bitget}, @ref{XREFbitcmp,,bitcmp}, @ref{XREFintmax,,intmax}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
Bits that are shifted out of either end of the value are lost. Octave
also uses arithmetic shifts, where the sign bit of the value is kept
during a right shift. For example:
@example
@group
bitshift (-10, -1)
@result{} -5
bitshift (int8 (-1), -1)
@result{} -1
@end group
@end example
Note that @code{bitshift (int8 (-1), -1)} is @code{-1} since the bit
representation of @code{-1} in the @code{int8} data type is @code{[1, 1,
1, 1, 1, 1, 1, 1]}.
@node Logical Values
@section Logical Values
Octave has built-in support for logical values, i.e., variables that
are either @code{true} or @code{false}. When comparing two variables,
the result will be a logical value whose value depends on whether or
not the comparison is true.
The basic logical operations are @code{&}, @code{|}, and @code{!},
which correspond to ``Logical And'', ``Logical Or'', and ``Logical
Negation''. These operations all follow the usual rules of logic.
It is also possible to use logical values as part of standard numerical
calculations. In this case @code{true} is converted to @code{1}, and
@code{false} to 0, both represented using double precision floating
point numbers. So, the result of @code{true*22 - false/6} is @code{22}.
Logical values can also be used to index matrices and cell arrays.
When indexing with a logical array the result will be a vector containing
the values corresponding to @code{true} parts of the logical array.
@xref{XREFLogicalIndexing, , Logical Indexing}.
Logical values can also be constructed by
casting numeric objects to logical values, or by using the @code{true}
or @code{false} functions.
@c logical libinterp/octave-value/ov-bool-mat.cc
@anchor{XREFlogical}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{TF} =} logical (@var{x})
Convert the numeric object @var{x} to logical type.
Any nonzero values will be converted to true (1) while zero values will be
converted to false (0). The non-numeric value NaN cannot be converted and will
produce an error.
Compatibility Note: Octave accepts complex values as input, whereas @sc{matlab}
issues an error.
@xseealso{@ref{XREFdouble,,double}, @ref{XREFsingle,,single}, @ref{XREFchar,,char}}
@end deftypefn
@c true libinterp/corefcn/data.cc
@anchor{XREFtrue}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} true (@var{x})
@deftypefnx {} {@var{val} =} true (@var{n}, @var{m})
@deftypefnx {} {@var{val} =} true (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {@var{val} =} true (@dots{}, "like", @var{var})
Return a matrix or N-dimensional array whose elements are all logical 1.
If invoked with a single scalar integer argument, return a square
matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer
values, return an array with given dimensions.
If a logical variable @var{var} is specified after @qcode{"like"}, the output
@var{val} will have the same sparsity as @var{var}.
@xseealso{@ref{XREFfalse,,false}}
@end deftypefn
@c false libinterp/corefcn/data.cc
@anchor{XREFfalse}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{val} =} false (@var{x})
@deftypefnx {} {@var{val} =} false (@var{n}, @var{m})
@deftypefnx {} {@var{val} =} false (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {@var{val} =} false (@dots{}, "like", @var{var})
Return a matrix or N-dimensional array whose elements are all logical 0.
If invoked with a single scalar integer argument, return a square
matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer
values, return an array with given dimensions.
If a logical variable @var{var} is specified after @qcode{"like"}, the output
@var{val} will have the same sparsity as @var{var}.
@xseealso{@ref{XREFtrue,,true}}
@end deftypefn
@node Automatic Conversion of Data Types
@section Automatic Conversion of Data Types
Many operators and functions can work with mixed data types. For example,
@example
@group
uint8 (1) + 1
@result{} 2
@end group
@group
single (1) + 1
@result{} 2
@end group
@group
min (single (1), 0)
@result{} 0
@end group
@end example
@noindent
where the results are respectively of types uint8, single, and single
respectively. This is done for @sc{matlab} compatibility. Valid mixed
operations are defined as follows:
@multitable @columnfractions .2 .3 .3 .2
@headitem @tab Mixed Operation @tab Result @tab
@item @tab double OP single @tab single @tab
@item @tab double OP integer @tab integer @tab
@item @tab double OP char @tab double @tab
@item @tab double OP logical @tab double @tab
@item @tab single OP integer @tab integer @tab
@item @tab single OP char @tab single @tab
@item @tab single OP logical @tab single @tab
@end multitable
When functions expect a double but are passed other types, automatic
conversion is function-dependent:
@example
@group
a = det (int8 ([1 2; 3 4]))
@result{} a = -2
class (a)
@result{} double
@end group
@group
a = eig (int8 ([1 2; 3 4]))
@result{} error: eig: wrong type argument 'int8 matrix'
@end group
@end example
When two operands are both integers but of different widths, then some cases
convert them to the wider bitwidth, and other cases throw an error:
@example
@group
a = min (int8 (100), int16 (200))
@result{} 100
class (a)
@result{} int16
@end group
@group
int8 (100) + int16 (200)
@result{} error: binary operator '+' not implemented
for 'int8 scalar' by 'int16 scalar' operations
@end group
@end example
For two integer operands, they typically need to both be signed or both be
unsigned. Mixing signed and unsigned usually causes an error, even if they
are of the same bitwidth.
@example
@group
min (int16 (100), uint16 (200))
@result{} error: min: cannot compute min (int16 scalar, uint16 scalar)
@end group
@end example
In the case of mixed type indexed assignments, the type is not
changed. For example,
@example
@group
x = ones (2, 2);
x(1, 1) = single (2)
@result{} x = 2 1
1 1
@end group
@end example
@noindent
where @code{x} remains of the double precision type.
@node Predicates for Numeric Objects
@section Predicates for Numeric Objects
Since the type of a variable may change during the execution of a
program, it can be necessary to do type checking at run-time. Doing this
also allows you to change the behavior of a function depending on the
type of the input. As an example, this naive implementation of @code{abs}
returns the absolute value of the input if it is a real number, and the
length of the input if it is a complex number.
@example
@group
function a = abs (x)
if (isreal (x))
a = sign (x) .* x;
elseif (iscomplex (x))
a = sqrt (real(x).^2 + imag(x).^2);
endif
endfunction
@end group
@end example
The following functions are available for determining the type of a
variable.
@c isnumeric libinterp/corefcn/data.cc
@anchor{XREFisnumeric}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isnumeric (@var{x})
Return true if @var{x} is a numeric object, i.e., an integer, real, or
complex array.
Logical and character arrays are not considered to be numeric.
@xseealso{@ref{XREFisinteger,,isinteger}, @ref{XREFisfloat,,isfloat}, @ref{XREFisreal,,isreal}, @ref{XREFiscomplex,,iscomplex}, @ref{XREFischar,,ischar}, @ref{XREFislogical,,islogical}, @ref{XREFisstring,,isstring}, @ref{XREFiscell,,iscell}, @ref{XREFisstruct,,isstruct}, @ref{XREFisa,,isa}}
@end deftypefn
@c islogical libinterp/corefcn/data.cc
@anchor{XREFislogical}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} islogical (@var{x})
@deftypefnx {} {@var{tf} =} isbool (@var{x})
Return true if @var{x} is a logical object.
Programming Note: @code{isbool} is an alias for @code{islogical} and can be
used interchangeably.
@xseealso{@ref{XREFischar,,ischar}, @ref{XREFisfloat,,isfloat}, @ref{XREFisinteger,,isinteger}, @ref{XREFisstring,,isstring}, @ref{XREFisnumeric,,isnumeric}, @ref{XREFisa,,isa}}
@end deftypefn
@c isfloat libinterp/corefcn/data.cc
@anchor{XREFisfloat}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isfloat (@var{x})
Return true if @var{x} is a floating-point numeric object.
Objects of class double or single are floating-point objects.
@xseealso{@ref{XREFisinteger,,isinteger}, @ref{XREFischar,,ischar}, @ref{XREFislogical,,islogical}, @ref{XREFisnumeric,,isnumeric}, @ref{XREFisstring,,isstring}, @ref{XREFisa,,isa}}
@end deftypefn
@c isreal libinterp/corefcn/data.cc
@anchor{XREFisreal}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isreal (@var{x})
Return true if @var{x} is a non-complex matrix or scalar.
For compatibility with @sc{matlab}, this includes logical and character
matrices.
@xseealso{@ref{XREFiscomplex,,iscomplex}, @ref{XREFisnumeric,,isnumeric}, @ref{XREFisa,,isa}}
@end deftypefn
@c iscomplex libinterp/corefcn/data.cc
@anchor{XREFiscomplex}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} iscomplex (@var{x})
Return true if @var{x} is a complex-valued numeric object.
@xseealso{@ref{XREFisreal,,isreal}, @ref{XREFisnumeric,,isnumeric}, @ref{XREFischar,,ischar}, @ref{XREFisfloat,,isfloat}, @ref{XREFislogical,,islogical}, @ref{XREFisstring,,isstring}, @ref{XREFisa,,isa}}
@end deftypefn
@c ismatrix libinterp/corefcn/data.cc
@anchor{XREFismatrix}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} ismatrix (@var{x})
Return true if @var{x} is a 2-D array.
A matrix is an array of any type where @code{ndims (@var{x}) == 2} and for
which @code{size (@var{x})} returns @w{@code{[M, N]}}@ with non-negative M and
N.
@xseealso{@ref{XREFisscalar,,isscalar}, @ref{XREFisvector,,isvector}, @ref{XREFiscell,,iscell}, @ref{XREFisstruct,,isstruct}, @ref{XREFissparse,,issparse}, @ref{XREFisa,,isa}}
@end deftypefn
@c isvector libinterp/corefcn/data.cc
@anchor{XREFisvector}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isvector (@var{x})
Return true if @var{x} is a vector.
A vector is a 2-D array of any type where one of the dimensions is equal to 1
(either @nospell{1xN} or @nospell{Nx1}). As a consequence of this definition,
a 1x1 object (a scalar) is also a vector.
@xseealso{@ref{XREFisscalar,,isscalar}, @ref{XREFismatrix,,ismatrix}, @ref{XREFiscolumn,,iscolumn}, @ref{XREFisrow,,isrow}, @ref{XREFsize,,size}}
@end deftypefn
@c isrow libinterp/corefcn/data.cc
@anchor{XREFisrow}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isrow (@var{x})
Return true if @var{x} is a row vector.
A row vector is a 2-D array of any type for which @code{size (@var{x})} returns
@w{@code{[1, N]}}@ with non-negative N.
@xseealso{@ref{XREFiscolumn,,iscolumn}, @ref{XREFisscalar,,isscalar}, @ref{XREFisvector,,isvector}, @ref{XREFismatrix,,ismatrix}, @ref{XREFsize,,size}}
@end deftypefn
@c iscolumn libinterp/corefcn/data.cc
@anchor{XREFiscolumn}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} iscolumn (@var{x})
Return true if @var{x} is a column vector.
A column vector is a 2-D array of any type for which @code{size (@var{x})}
returns @w{@code{[N, 1]}}@ with non-negative N.
@xseealso{@ref{XREFisrow,,isrow}, @ref{XREFisscalar,,isscalar}, @ref{XREFisvector,,isvector}, @ref{XREFismatrix,,ismatrix}, @ref{XREFsize,,size}}
@end deftypefn
@c isscalar libinterp/corefcn/data.cc
@anchor{XREFisscalar}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isscalar (@var{x})
Return true if @var{x} is a scalar.
A scalar is a single-element object of any type for which @code{size (@var{x})}
returns @w{@code{[1, 1]}}.
@xseealso{@ref{XREFisvector,,isvector}, @ref{XREFismatrix,,ismatrix}, @ref{XREFsize,,size}}
@end deftypefn
@c issquare libinterp/corefcn/data.cc
@anchor{XREFissquare}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} issquare (@var{x})
Return true if @var{x} is a 2-D square array.
A square array is a 2-D array of any type for which @code{size (@var{x})}
returns @w{@code{[N, N]}}@ where N is a non-negative integer.
@xseealso{@ref{XREFisscalar,,isscalar}, @ref{XREFisvector,,isvector}, @ref{XREFismatrix,,ismatrix}, @ref{XREFsize,,size}}
@end deftypefn
@c issymmetric scripts/linear-algebra/issymmetric.m
@anchor{XREFissymmetric}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} issymmetric (@var{A})
@deftypefnx {} {@var{tf} =} issymmetric (@var{A}, @var{tol})
@deftypefnx {} {@var{tf} =} issymmetric (@var{A}, @qcode{"skew"})
@deftypefnx {} {@var{tf} =} issymmetric (@var{A}, @qcode{"skew"}, @var{tol})
Return true if @var{A} is a symmetric or skew-symmetric numeric matrix
within the tolerance specified by @var{tol}.
The default tolerance is zero (uses faster code).
The type of symmetry to check may be specified with the additional input
@qcode{"nonskew"} (default) for regular symmetry or @qcode{"skew"} for
skew-symmetry.
Background: A matrix is symmetric if the transpose of the matrix is equal
to the original matrix: @w{@tcode{@var{A} == @var{A}.'}}. If a tolerance
is given then symmetry is determined by
@code{norm (@var{A} - @var{A}.', Inf) / norm (@var{A}, Inf) < @var{tol}}.
A matrix is skew-symmetric if the transpose of the matrix is equal to the
negative of the original matrix: @w{@tcode{@var{A} == -@var{A}.'}}. If a
tolerance is given then skew-symmetry is determined by
@code{norm (@var{A} + @var{A}.', Inf) / norm (@var{A}, Inf) < @var{tol}}.
@xseealso{@ref{XREFishermitian,,ishermitian}, @ref{XREFisdefinite,,isdefinite}}
@end deftypefn
@c ishermitian scripts/linear-algebra/ishermitian.m
@anchor{XREFishermitian}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} ishermitian (@var{A})
@deftypefnx {} {@var{tf} =} ishermitian (@var{A}, @var{tol})
@deftypefnx {} {@var{tf} =} ishermitian (@var{A}, @qcode{"skew"})
@deftypefnx {} {@var{tf} =} ishermitian (@var{A}, @qcode{"skew"}, @var{tol})
Return true if @var{A} is a Hermitian or skew-Hermitian numeric matrix
within the tolerance specified by @var{tol}.
The default tolerance is zero (uses faster code).
The type of symmetry to check may be specified with the additional input
@qcode{"nonskew"} (default) for regular Hermitian or @qcode{"skew"} for
skew-Hermitian.
Background: A matrix is Hermitian if the complex conjugate transpose of the
matrix is equal to the original matrix: @w{@tcode{@var{A} == @var{A}'}}. If
a tolerance is given then the calculation is
@code{norm (@var{A} - @var{A}', Inf) / norm (@var{A}, Inf) < @var{tol}}.
A matrix is skew-Hermitian if the complex conjugate transpose of the matrix
is equal to the negative of the original matrix:
@w{@tcode{@var{A} == -@var{A}'}}. If a
tolerance is given then the calculation is
@code{norm (@var{A} + @var{A}', Inf) / norm (@var{A}, Inf) < @var{tol}}.
@xseealso{@ref{XREFissymmetric,,issymmetric}, @ref{XREFisdefinite,,isdefinite}}
@end deftypefn
@c isdefinite scripts/linear-algebra/isdefinite.m
@anchor{XREFisdefinite}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isdefinite (@var{A})
@deftypefnx {} {@var{tf} =} isdefinite (@var{A}, @var{tol})
Return true if @var{A} is symmetric positive definite numeric matrix within
the tolerance specified by @var{tol}.
If @var{tol} is omitted, use a tolerance of
@code{100 * eps * norm (@var{A}, "fro")}.
Background: A positive definite matrix has eigenvalues which are all
greater than zero. A positive semi-definite matrix has eigenvalues which
are all greater than or equal to zero. The matrix @var{A} is very likely to
be positive semi-definite if the following two conditions hold for a
suitably small tolerance @var{tol}.
@example
@group
isdefinite (@var{A}) @result{} 0
isdefinite (@var{A} + 5*@var{tol}, @var{tol}) @result{} 1
@end group
@end example
@xseealso{@ref{XREFissymmetric,,issymmetric}, @ref{XREFishermitian,,ishermitian}}
@end deftypefn
@c isbanded scripts/linear-algebra/isbanded.m
@anchor{XREFisbanded}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isbanded (@var{A}, @var{lower}, @var{upper})
Return true if @var{A} is a numeric matrix with entries confined between
@var{lower} diagonals below the main diagonal and @var{upper} diagonals
above the main diagonal.
@var{lower} and @var{upper} must be non-negative integers.
@xseealso{@ref{XREFisdiag,,isdiag}, @ref{XREFistril,,istril}, @ref{XREFistriu,,istriu}, @ref{XREFbandwidth,,bandwidth}}
@end deftypefn
@c isdiag scripts/linear-algebra/isdiag.m
@anchor{XREFisdiag}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isdiag (@var{A})
Return true if @var{A} is a diagonal numeric matrix which is defined as a
2-D array where all elements above and below the main diagonal are zero.
@xseealso{@ref{XREFisbanded,,isbanded}, @ref{XREFistril,,istril}, @ref{XREFistriu,,istriu}, @ref{XREFdiag,,diag}, @ref{XREFbandwidth,,bandwidth}}
@end deftypefn
@c istril scripts/linear-algebra/istril.m
@anchor{XREFistril}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} istril (@var{A})
Return true if @var{A} is a lower triangular numeric matrix.
A lower triangular matrix has nonzero entries only on the main diagonal and
below.
@xseealso{@ref{XREFistriu,,istriu}, @ref{XREFisbanded,,isbanded}, @ref{XREFisdiag,,isdiag}, @ref{XREFtril,,tril}, @ref{XREFbandwidth,,bandwidth}}
@end deftypefn
@c istriu scripts/linear-algebra/istriu.m
@anchor{XREFistriu}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} istriu (@var{A})
Return true if @var{A} is an upper triangular numeric matrix.
An upper triangular matrix has nonzero entries only on the main diagonal and
above.
@xseealso{@ref{XREFisdiag,,isdiag}, @ref{XREFisbanded,,isbanded}, @ref{XREFistril,,istril}, @ref{XREFtriu,,triu}, @ref{XREFbandwidth,,bandwidth}}
@end deftypefn
@c isprime scripts/specfun/isprime.m
@anchor{XREFisprime}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isprime (@var{x})
Return a logical array which is true where the elements of @var{x} are prime
numbers and false where they are not.
A prime number is conventionally defined as a positive integer greater than
1 (e.g., 2, 3, @dots{}) which is divisible only by itself and 1. Octave
extends this definition to include both negative integers and complex
values. A negative integer is prime if its positive counterpart is prime.
This is equivalent to @code{isprime (abs (x))}.
If @code{class (@var{x})} is complex, then primality is tested in the domain
of Gaussian integers (@url{https://en.wikipedia.org/wiki/Gaussian_integer}).
Some non-complex integers are prime in the ordinary sense, but not in the
domain of Gaussian integers. For example, @math{5 = (1+2i)*(1-2i)} shows
that 5 is not prime because it has a factor other than itself and 1.
Exercise caution when testing complex and real values together in the same
matrix.
Examples:
@example
@group
isprime (1:6)
@result{} 0 1 1 0 1 0
@end group
@end example
@example
@group
isprime ([i, 2, 3, 5])
@result{} 0 0 1 0
@end group
@end example
Programming Note: @code{isprime} is suitable for all @var{x}
in the range abs(@var{x})
@tex
$ < 2^{64}$.
@end tex
@ifnottex
< 2^64.
@end ifnottex
Cast inputs larger than @code{flintmax} to @code{uint64}.
For larger inputs, use ‘sym’ if you have the Symbolic package installed
and loaded:
@example
@group
isprime (sym ('58745389709258902525390450') + (0:4))
@result{} 0 1 0 0 0
@end group
@end example
Compatibility Note: @sc{matlab} does not extend the definition of prime
numbers and will produce an error if given negative or complex inputs.
@xseealso{@ref{XREFprimes,,primes}, @ref{XREFfactor,,factor}, @ref{XREFgcd,,gcd}, @ref{XREFlcm,,lcm}}
@end deftypefn
@c isuniform scripts/general/isuniform.m
@anchor{XREFisuniform}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tf} =} isuniform (@var{v})
@deftypefnx {} {[@var{tf}, @var{delta}] =} isuniform (@var{v})
Return true if the real vector @var{v} is uniformly spaced and false
otherwise.
A vector is uniform if the mean difference (@var{delta}) between all
elements is the same to within a tolerance of
@w{@code{4 * eps (max (abs (@var{v})))}}.
The optional output @var{delta} is the uniform difference between elements.
If the vector is not uniform then @var{delta} is @code{NaN}. @var{delta}
is of the same class as @var{v} for floating point inputs and of class
double for integer, logical, and character inputs.
Programming Notes: The output is always false for the special cases of an
empty input or a scalar input. If any element is @code{NaN} then the output
is false. If @var{delta} is smaller than the calculated relative tolerance
then an absolute tolerance of @code{eps} is used.
@xseealso{@ref{XREFlinspace,,linspace}, @ref{XREFcolon,,colon}}
@end deftypefn
If instead of knowing properties of variables, you wish to know which
variables are defined and to gather other information about the
workspace itself, @pxref{Status of Variables}.
|