1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Calling External Code from Oct-Files (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Calling External Code from Oct-Files (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Calling External Code from Oct-Files (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Oct_002dFiles.html" rel="up" title="Oct-Files">
<link href="Allocating-Local-Memory-in-Oct_002dFiles.html" rel="next" title="Allocating Local Memory in Oct-Files">
<link href="Calling-Octave-Functions-from-Oct_002dFiles.html" rel="prev" title="Calling Octave Functions from Oct-Files">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="subsection-level-extent" id="Calling-External-Code-from-Oct_002dFiles">
<div class="nav-panel">
<p>
Next: <a href="Allocating-Local-Memory-in-Oct_002dFiles.html" accesskey="n" rel="next">Allocating Local Memory in Oct-Files</a>, Previous: <a href="Calling-Octave-Functions-from-Oct_002dFiles.html" accesskey="p" rel="prev">Calling Octave Functions from Oct-Files</a>, Up: <a href="Oct_002dFiles.html" accesskey="u" rel="up">Oct-Files</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h4 class="subsection" id="Calling-External-Code-from-Oct_002dFiles-1"><span>A.1.9 Calling External Code from Oct-Files<a class="copiable-link" href="#Calling-External-Code-from-Oct_002dFiles-1"> ¶</a></span></h4>
<p>Linking external C code to Octave is relatively simple, as the C functions can
easily be called directly from C++. One possible issue is that the
declarations of the external C functions may need to be explicitly defined as C
functions to the compiler. If the declarations of the external C functions are
in the header <samp class="file">foo.h</samp>, then the tactic to ensure that the C++ compiler
treats these declarations as C code is
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">#ifdef __cplusplus
extern "C"
{
#endif
#include "foo.h"
#ifdef __cplusplus
} /* end extern "C" */
#endif
</pre></div></div>
<p>When calling functions that are implemented in Fortran code, some peculiarities
have to be taken into account. Symbol names in Fortran are case-insensitive,
and depending on the used Fortran compiler, function names are either exported
with all lowercase or with all uppercase characters. Additionally, some
compilers append none, one or two underscores "<code class="code">_</code>" at the end of
exported function names. This is called "name-mangling".
</p>
<p>Octave supplies macros that allow writing code that automatically handles the
name-mangling for a number of different Fortran compilers. These macros are
<code class="env">F77_FUNC</code><!-- /@w --> and <code class="env">F77_FUNC_</code><!-- /@w -->. The former should be used for
Fortran functions that do not contain any underscores in their name. The
latter should be used for Fortran functions with underscores in their names.
Both macros take two arguments: The first is the Fortran function name in all
lowercase characters. The second is the same Fortran function name in all
uppercase characters.
</p>
<p>Additionally to the name-mangling, different compilers are using different
calling conventions for some types. Octave defines the following preprocessor
macros to allow writing code that can be used with different Fortran calling
conventions.
</p>
<p>Note that we don’t attempt to handle Fortran functions, we always use
subroutine wrappers for them and pass the return value as an extra argument.
</p>
<p>Use the following macros to pass character strings from C to Fortran:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> F77_CHAR_ARG(x)
F77_CONST_CHAR_ARG(x)
F77_CXX_STRING_ARG(x)
F77_CHAR_ARG_LEN(l)
F77_CHAR_ARG_DECL
F77_CONST_CHAR_ARG_DECL
F77_CHAR_ARG_LEN_DECL
</pre></div></div>
<p>Use the following macros to write C-language functions that accept
Fortran-style character strings:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> F77_CHAR_ARG_DEF(s, len)
F77_CONST_CHAR_ARG_DEF(s, len)
F77_CHAR_ARG_LEN_DEF(len)
F77_CHAR_ARG_USE(s)
F77_CHAR_ARG_LEN_USE(s, len)
</pre></div></div>
<p>Use the following macros for Fortran types in C++ code:
</p>
<dl class="table">
<dt><code class="code">F77_INT4</code></dt>
<dd><p>Equivalent to Fortran <code class="code">INTEGER*4</code> type
</p>
</dd>
<dt><code class="code">F77_DBLE</code></dt>
<dd><p>Equivalent to Fortran <code class="code">DOUBLE PRECISION</code> type
</p>
</dd>
<dt><code class="code">F77_REAL</code></dt>
<dd><p>Equivalent to Fortran <code class="code">REAL</code> type
</p>
</dd>
<dt><code class="code">F77_CMPLX</code></dt>
<dd><p>Equivalent to Fortran <code class="code">COMPLEX</code> type
</p>
</dd>
<dt><code class="code">F77_DBLE_CMPLX</code></dt>
<dd><p>Equivalent to Fortran <code class="code">DOUBLE COMPLEX</code> type
</p>
</dd>
<dt><code class="code">F77_LOGICAL</code></dt>
<dd><p>Equivalent to Fortran <code class="code">LOGICAL</code> type
</p>
</dd>
<dt><code class="code">F77_RET_T</code></dt>
<dd><p>Return type of a C++ function that acts like a Fortran subroutine.
</p></dd>
</dl>
<p>Use the following macros to return from C-language functions that are supposed
to act like Fortran subroutines. <code class="env">F77_NORETURN</code><!-- /@w --> is intended to be used
as the last statement of such a function that has been tagged with a
<code class="code">"noreturn"</code> attribute.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> F77_RETURN(retval)
F77_NORETURN(retval)
</pre></div></div>
<p>The underlying Fortran code should use the <code class="code">XSTOPX</code> function to replace
the Fortran <code class="code">STOP</code> function. <code class="code">XSTOPX</code> uses the Octave exception
handler to treat failing cases in the Fortran code explicitly. Note that
Octave supplies its own replacement <small class="sc">BLAS</small> <code class="code">XERBLA</code> function, which
uses <code class="code">XSTOPX</code>.
</p>
<p>The following example shows the inclusion of a Fortran function in an oct-file,
where the C++ wrapper is
</p>
<div class="example">
<pre class="verbatim">#include <octave/oct.h>
#include <octave/f77-fcn.h>
extern "C"
{
F77_RET_T
F77_FUNC (fortransub, FORTRANSUB)
(const F77_INT&, F77_DBLE*, F77_CHAR_ARG_DECL F77_CHAR_ARG_LEN_DECL);
}
DEFUN_DLD (fortrandemo, args, , "Fortran Demo")
{
if (args.length () != 1)
print_usage ();
NDArray a = args(0).array_value ();
double *av = a.rwdata ();
octave_idx_type na = a.numel ();
OCTAVE_LOCAL_BUFFER (char, ctmp, 128);
F77_FUNC (fortransub, FORTRANSUB)
(na, av, ctmp F77_CHAR_ARG_LEN (128));
return ovl (a, std::string (ctmp));
}
</pre></div>
<p>and the Fortran function is
</p>
<div class="example">
<pre class="verbatim"> subroutine fortransub (n, a, s)
implicit none
character*(*) s
real*8 a(*)
integer*4 i, n, ioerr
do i = 1, n
if (a(i) .eq. 0d0) then
call xstopx ('fortransub: divide by zero')
else
a(i) = 1d0 / a(i)
endif
enddo
write (unit = s, fmt = '(a,i3,a,a)', iostat = ioerr)
$ 'There are ', n,
$ ' values in the input vector', char(0)
if (ioerr .ne. 0) then
call xstopx ('fortransub: error writing string')
endif
return
end
</pre></div>
<p>This example demonstrates most of the features needed to link to an external
Fortran function, including passing arrays and strings, as well as exception
handling. Both the Fortran and C++ files need to be compiled in order for the
example to work.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">mkoctfile fortrandemo.cc fortransub.f
[b, s] = fortrandemo (1:3)
⇒
b = 1.00000 0.50000 0.33333
s = There are 3 values in the input vector
[b, s] = fortrandemo (0:3)
error: fortrandemo: fortransub: divide by zero
</pre></div></div>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Allocating-Local-Memory-in-Oct_002dFiles.html">Allocating Local Memory in Oct-Files</a>, Previous: <a href="Calling-Octave-Functions-from-Oct_002dFiles.html">Calling Octave Functions from Oct-Files</a>, Up: <a href="Oct_002dFiles.html">Oct-Files</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|