File: Creating-Sparse-Matrices.html

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (476 lines) | stat: -rw-r--r-- 31,253 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Creating Sparse Matrices (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Creating Sparse Matrices (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Creating Sparse Matrices (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Basics.html" rel="up" title="Basics">
<link href="Information.html" rel="next" title="Information">
<link href="Storage-of-Sparse-Matrices.html" rel="prev" title="Storage of Sparse Matrices">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
ul.mark-bullet {list-style-type: disc}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="subsection-level-extent" id="Creating-Sparse-Matrices">
<div class="nav-panel">
<p>
Next: <a href="Information.html" accesskey="n" rel="next">Finding Information about Sparse Matrices</a>, Previous: <a href="Storage-of-Sparse-Matrices.html" accesskey="p" rel="prev">Storage of Sparse Matrices</a>, Up: <a href="Basics.html" accesskey="u" rel="up">Creation and Manipulation of Sparse Matrices</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h4 class="subsection" id="Creating-Sparse-Matrices-1"><span>22.1.2 Creating Sparse Matrices<a class="copiable-link" href="#Creating-Sparse-Matrices-1"> &para;</a></span></h4>

<p>There are several means to create sparse matrix.
</p>
<dl class="table">
<dt>Returned from a function</dt>
<dd><p>There are many functions that directly return sparse matrices.  These include
<em class="dfn">speye</em>, <em class="dfn">sprand</em>, <em class="dfn">diag</em>, etc.
</p>
</dd>
<dt>Constructed from matrices or vectors</dt>
<dd><p>The function <em class="dfn">sparse</em> allows a sparse matrix to be constructed from
three vectors representing the row, column and data.  Alternatively, the
function <em class="dfn">spconvert</em> uses a three column matrix format to allow easy
importation of data from elsewhere.
</p>
</dd>
<dt>Created and then filled</dt>
<dd><p>The function <em class="dfn">sparse</em> or <em class="dfn">spalloc</em> can be used to create an empty
matrix that is then filled by the user
</p>
</dd>
<dt>From a user binary program</dt>
<dd><p>The user can directly create the sparse matrix within an oct-file.
</p></dd>
</dl>

<p>There are several basic functions to return specific sparse
matrices.  For example the sparse identity matrix, is a matrix that is
often needed.  It therefore has its own function to create it as
<code class="code">speye (<var class="var">n</var>)</code> or <code class="code">speye (<var class="var">r</var>, <var class="var">c</var>)</code>, which
creates an <var class="var">n</var>-by-<var class="var">n</var> or <var class="var">r</var>-by-<var class="var">c</var> sparse identity
matrix.
</p>
<p>Another typical sparse matrix that is often needed is a random distribution
of random elements.  The functions <em class="dfn">sprand</em> and <em class="dfn">sprandn</em> perform
this for uniform and normal random distributions of elements.  They have
exactly the same calling convention, where <code class="code">sprand (<var class="var">r</var>, <var class="var">c</var>,
<var class="var">d</var>)</code>, creates an <var class="var">r</var>-by-<var class="var">c</var> sparse matrix with a density of
filled elements of <var class="var">d</var>.
</p>
<p>Other functions of interest that directly create sparse matrices, are
<em class="dfn">diag</em> or its generalization <em class="dfn">spdiags</em>, that can take the
definition of the diagonals of the matrix and create the sparse matrix
that corresponds to this.  For example,
</p>
<div class="example">
<pre class="example-preformatted">s = diag (sparse (randn (1,n)), -1);
</pre></div>

<p>creates a sparse (<var class="var">n</var>+1)-by-(<var class="var">n</var>+1) sparse matrix with a single
diagonal defined.
</p>
<a class="anchor" id="XREFspdiags"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spdiags"><span><code class="def-type"><var class="var">B</var> =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-spdiags"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spdiags-1"><span><code class="def-type">[<var class="var">B</var>, <var class="var">d</var>] =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-spdiags-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spdiags-2"><span><code class="def-type"><var class="var">B</var> =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-spdiags-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spdiags-3"><span><code class="def-type"><var class="var">A</var> =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">v</var>, <var class="var">d</var>, <var class="var">A</var>)</code><a class="copiable-link" href="#index-spdiags-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spdiags-4"><span><code class="def-type"><var class="var">A</var> =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">v</var>, <var class="var">d</var>, <var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-spdiags-4"> &para;</a></span></dt>
<dd><p>A generalization of the function <code class="code">diag</code>.
</p>
<p>Called with a single input argument, the nonzero diagonals <var class="var">d</var> of
<var class="var">A</var> are extracted.
</p>
<p>With two arguments the diagonals to extract are given by the vector <var class="var">d</var>.
</p>
<p>The other two forms of <code class="code">spdiags</code> modify the input matrix by replacing
the diagonals.  They use the columns of <var class="var">v</var> to replace the diagonals
represented by the vector <var class="var">d</var>.  If the sparse matrix <var class="var">A</var> is
defined then the diagonals of this matrix are replaced.  Otherwise a
matrix of <var class="var">m</var> by <var class="var">n</var> is created with the diagonals given by the
columns of <var class="var">v</var>.
</p>
<p>Negative values of <var class="var">d</var> represent diagonals below the main diagonal, and
positive values of <var class="var">d</var> diagonals above the main diagonal.
</p>
<p>For example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
   &rArr; 5 10  0  0
      1  6 11  0
      0  2  7 12
      0  0  3  8
      0  0  0  4
</pre></div></div>


<p><strong class="strong">See also:</strong> <a class="ref" href="Rearranging-Matrices.html#XREFdiag">diag</a>.
</p></dd></dl>


<a class="anchor" id="XREFspeye"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-speye"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">speye</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-speye"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-speye-1"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">speye</strong> <code class="def-code-arguments">(<var class="var">m</var>)</code><a class="copiable-link" href="#index-speye-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-speye-2"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">speye</strong> <code class="def-code-arguments">([<var class="var">m</var>, <var class="var">n</var>])</code><a class="copiable-link" href="#index-speye-2"> &para;</a></span></dt>
<dd><p>Return a sparse identity matrix of size <var class="var">m</var>x<var class="var">n</var>.
</p>
<p>The implementation is significantly more efficient than
<code class="code">sparse&nbsp;(eye&nbsp;(<var class="var">m</var>))</code><!-- /@w -->&nbsp;as the full matrix is not constructed.
</p>
<p>When called with a single argument, a square matrix of size
<var class="var">m</var>-by-<var class="var">m</var> is created.  If called with a single vector argument,
this argument is taken to be the size of the matrix to create.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsparse">sparse</a>, <a class="ref" href="#XREFspdiags">spdiags</a>, <a class="ref" href="Special-Utility-Matrices.html#XREFeye">eye</a>.
</p></dd></dl>


<a class="anchor" id="XREFspones"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spones"><span><code class="def-type"><var class="var">r</var> =</code> <strong class="def-name">spones</strong> <code class="def-code-arguments">(<var class="var">S</var>)</code><a class="copiable-link" href="#index-spones"> &para;</a></span></dt>
<dd><p>Replace the nonzero entries of <var class="var">S</var> with ones.
</p>
<p>This creates a sparse matrix with the same structure as <var class="var">S</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsparse">sparse</a>, <a class="ref" href="#XREFsprand">sprand</a>, <a class="ref" href="#XREFsprandn">sprandn</a>, <a class="ref" href="#XREFsprandsym">sprandsym</a>, <a class="ref" href="Function-Application.html#XREFspfun">spfun</a>, <a class="ref" href="Information.html#XREFspy">spy</a>.
</p></dd></dl>


<a class="anchor" id="XREFsprand"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sprand"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprand</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-sprand"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprand-1"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprand</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">d</var>, <var class="var">rc</var>)</code><a class="copiable-link" href="#index-sprand-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprand-2"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprand</strong> <code class="def-code-arguments">(<var class="var">s</var>)</code><a class="copiable-link" href="#index-sprand-2"> &para;</a></span></dt>
<dd><p>Generate a sparse matrix with uniformly distributed random values.
</p>
<p>The size of the matrix is <var class="var">m</var>x<var class="var">n</var> with a density of values <var class="var">d</var>.
<var class="var">d</var> must be between 0 and 1.  Values will be uniformly distributed on
the interval (0, 1).
</p>
<p>If called with a single matrix argument, a sparse matrix is generated with
random values wherever the matrix <var class="var">s</var> is nonzero.
</p>
<p>If called with a scalar fourth argument <var class="var">rc</var>, a random sparse matrix
with reciprocal condition number <var class="var">rc</var> is generated.  If <var class="var">rc</var> is
a vector, then it specifies the first singular values of the generated
matrix (<code class="code">length (<var class="var">rc</var>) &lt;= min (<var class="var">m</var>, <var class="var">n</var>)</code>).
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsprandn">sprandn</a>, <a class="ref" href="#XREFsprandsym">sprandsym</a>, <a class="ref" href="Special-Utility-Matrices.html#XREFrand">rand</a>.
</p></dd></dl>


<a class="anchor" id="XREFsprandn"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sprandn"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprandn</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-sprandn"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprandn-1"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprandn</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">d</var>, <var class="var">rc</var>)</code><a class="copiable-link" href="#index-sprandn-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprandn-2"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprandn</strong> <code class="def-code-arguments">(<var class="var">s</var>)</code><a class="copiable-link" href="#index-sprandn-2"> &para;</a></span></dt>
<dd><p>Generate a sparse matrix with normally distributed random values.
</p>
<p>The size of the matrix is <var class="var">m</var>x<var class="var">n</var> with a density of values <var class="var">d</var>.
<var class="var">d</var> must be between 0 and 1.  Values will be normally distributed with a
mean of 0 and a variance of 1.
</p>
<p>If called with a single matrix argument, a sparse matrix is generated with
random values wherever the matrix <var class="var">s</var> is nonzero.
</p>
<p>If called with a scalar fourth argument <var class="var">rc</var>, a random sparse matrix
with reciprocal condition number <var class="var">rc</var> is generated.  If <var class="var">rc</var> is
a vector, then it specifies the first singular values of the generated
matrix (<code class="code">length (<var class="var">rc</var>) &lt;= min (<var class="var">m</var>, <var class="var">n</var>)</code>).
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsprand">sprand</a>, <a class="ref" href="#XREFsprandsym">sprandsym</a>, <a class="ref" href="Special-Utility-Matrices.html#XREFrandn">randn</a>.
</p></dd></dl>


<a class="anchor" id="XREFsprandsym"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sprandsym"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sprandsym</strong> <code class="def-code-arguments">(<var class="var">n</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-sprandsym"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprandsym-1"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sprandsym</strong> <code class="def-code-arguments">(<var class="var">s</var>)</code><a class="copiable-link" href="#index-sprandsym-1"> &para;</a></span></dt>
<dd><p>Generate a symmetric random sparse matrix.
</p>
<p>The size of the matrix will be <var class="var">n</var>x<var class="var">n</var>, with a density of values
given by <var class="var">d</var>.  <var class="var">d</var> must be between 0 and 1 inclusive.  Values will
be normally distributed with a mean of zero and a variance of 1.
</p>
<p>If called with a single matrix argument, a random sparse matrix is generated
wherever the matrix <var class="var">s</var> is nonzero in its lower triangular part.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsprand">sprand</a>, <a class="ref" href="#XREFsprandn">sprandn</a>, <a class="ref" href="#XREFspones">spones</a>, <a class="ref" href="#XREFsparse">sparse</a>.
</p></dd></dl>


<p>The recommended way for the user to create a sparse matrix, is to create
two vectors containing the row and column index of the data and a third
vector of the same size containing the data to be stored.  For example,
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">  ri = ci = d = [];
  for j = 1:c
    ri = [ri; randperm(r,n)'];
    ci = [ci; j*ones(n,1)];
    d = [d; rand(n,1)];
  endfor
  s = sparse (ri, ci, d, r, c);
</pre></div></div>

<p>creates an <var class="var">r</var>-by-<var class="var">c</var> sparse matrix with a random distribution
of <var class="var">n</var> (&lt;<var class="var">r</var>) elements per column.  The elements of the vectors
do not need to be sorted in any particular order as Octave will sort
them prior to storing the data.  However, pre-sorting the data will
make the creation of the sparse matrix faster.
</p>
<p>The function <em class="dfn">spconvert</em> takes a three or four column real matrix.
The first two columns represent the row and column index respectively and
the third and four columns, the real and imaginary parts of the sparse
matrix.  The matrix can contain zero elements and the elements can be
sorted in any order.  Adding zero elements is a convenient way to define
the size of the sparse matrix.  For example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">s = spconvert ([1 2 3 4; 1 3 4 4; 1 2 3 0]')
&rArr; Compressed Column Sparse (rows=4, cols=4, nnz=3)
      (1 , 1) -&gt; 1
      (2 , 3) -&gt; 2
      (3 , 4) -&gt; 3
</pre></div></div>

<p>An example of creating and filling a matrix might be
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">k = 5;
nz = r * k;
s = spalloc (r, c, nz)
for j = 1:c
  idx = randperm (r);
  s (:, j) = [zeros(r - k, 1); ...
        rand(k, 1)] (idx);
endfor
</pre></div></div>

<p>It should be noted, that due to the way that the Octave
assignment functions are written that the assignment will reallocate
the memory used by the sparse matrix at each iteration of the above loop.
Therefore the <em class="dfn">spalloc</em> function ignores the <var class="var">nz</var> argument and
does not pre-assign the memory for the matrix.  Therefore, it is vitally
important that code using to above structure should be vectorized
as much as possible to minimize the number of assignments and reduce the
number of memory allocations.
</p>
<a class="anchor" id="XREFfull"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-full"><span><code class="def-type"><var class="var">FM</var> =</code> <strong class="def-name">full</strong> <code class="def-code-arguments">(<var class="var">SM</var>)</code><a class="copiable-link" href="#index-full"> &para;</a></span></dt>
<dd><p>Return a full storage matrix from a sparse, diagonal, or permutation matrix,
or from a range.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsparse">sparse</a>, <a class="ref" href="Information.html#XREFissparse">issparse</a>.
</p></dd></dl>


<a class="anchor" id="XREFspalloc"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spalloc"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">spalloc</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">nz</var>)</code><a class="copiable-link" href="#index-spalloc"> &para;</a></span></dt>
<dd><p>Create an <var class="var">m</var>-by-<var class="var">n</var> sparse matrix with pre-allocated space for at
most <var class="var">nz</var> nonzero elements.
</p>
<p>This is useful for building a matrix incrementally by a sequence of indexed
assignments.  Subsequent indexed assignments after <code class="code">spalloc</code> will reuse
the pre-allocated memory, provided they are of one of the simple forms
</p>
<ul class="itemize mark-bullet">
<li><code class="code"><var class="var">s</var>(I:J) = <var class="var">x</var></code>

</li><li><code class="code"><var class="var">s</var>(:,I:J) = <var class="var">x</var></code>

</li><li><code class="code"><var class="var">s</var>(K:L,I:J) = <var class="var">x</var></code>
</li></ul>

<p><b class="b">and</b> that the following conditions are met:
</p>
<ul class="itemize mark-bullet">
<li>the assignment does not decrease <code class="code">nnz (<var class="var">S</var>)</code>.

</li><li>after the assignment, <code class="code">nnz (<var class="var">S</var>)</code> does not exceed <var class="var">nz</var>.

</li><li>no index is out of bounds.
</li></ul>

<p>Partial movement of data may still occur, but in general the assignment will
be more memory and time efficient under these circumstances.  In particular,
it is possible to efficiently build a pre-allocated sparse matrix from a
contiguous block of columns.
</p>
<p>The amount of pre-allocated memory for a given matrix may be queried using
the function <code class="code">nzmax</code>.
</p>
<p>Programming Note: Octave always reserves memory for at least one value,
even if <var class="var">nz</var> is 0.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Information.html#XREFnzmax">nzmax</a>, <a class="ref" href="#XREFsparse">sparse</a>.
</p></dd></dl>


<a class="anchor" id="XREFsparse"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sparse"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-sparse"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-1"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-sparse-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-2"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>)</code><a class="copiable-link" href="#index-sparse-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-3"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, <var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-sparse-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-4"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, <var class="var">m</var>, <var class="var">n</var>, &quot;unique&quot;)</code><a class="copiable-link" href="#index-sparse-4"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-5"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, <var class="var">m</var>, <var class="var">n</var>, <var class="var">nzmax</var>)</code><a class="copiable-link" href="#index-sparse-5"> &para;</a></span></dt>
<dd><p>Create a sparse matrix from a full matrix <var class="var">A</var> or row, column, value
triplets.
</p>
<p>If <var class="var">A</var> is a full matrix, convert it to a sparse matrix representation,
removing all zero values in the process.  The matrix <var class="var">A</var> should be of type
logical or double.
</p>
<p>If two inputs <var class="var">m</var> (rows) and <var class="var">n</var> (columns) are specified then create
an empty sparse matrix with the specified dimensions.
</p>
<p>Given the integer index vectors <var class="var">i</var> and <var class="var">j</var>, and a 1-by-<code class="code">nnz</code>
vector of real or complex values <var class="var">sv</var>, construct the sparse matrix
<code class="code">S(<var class="var">i</var>(<var class="var">k</var>),<var class="var">j</var>(<var class="var">k</var>)) = <var class="var">sv</var>(<var class="var">k</var>)</code> with overall
dimensions <var class="var">m</var> and <var class="var">n</var>.  If any of <var class="var">i</var>, <var class="var">j</var>, or <var class="var">sv</var> are
scalars, they are expanded to have a common size.
</p>
<p>If <var class="var">m</var> or <var class="var">n</var> are not specified then their values are derived from the
maximum index in the vectors <var class="var">i</var> and <var class="var">j</var> as given by
<code class="code"><var class="var">m</var>&nbsp;=&nbsp;max&nbsp;(<var class="var">i</var>)</code><!-- /@w -->, <code class="code"><var class="var">n</var>&nbsp;=&nbsp;max&nbsp;(<var class="var">j</var>)</code><!-- /@w -->.
</p>
<p><strong class="strong">Note</strong>: If multiple values are specified with the same <var class="var">i</var>,
<var class="var">j</var> indices, the corresponding value in <var class="var">S</var> will be the sum of the
values at the repeated location.  See <a class="xref" href="Accumulation.html#XREFaccumarray"><code class="code">accumarray</code></a>, for
an example of how to produce different behavior such as taking the minimum
instead.
</p>
<p>If the option <code class="code">&quot;unique&quot;</code> is given, and more than one value is specified
at the same <var class="var">i</var>, <var class="var">j</var> indices, then only the last specified value will
be used.  For completeness, the option <code class="code">&quot;sum&quot;</code> can be given and will
be ignored as the default behavior is to sum values at repeated locations.
</p>
<p><code class="code">sparse (<var class="var">m</var>, <var class="var">n</var>)</code> will create an empty <var class="var">m</var>x<var class="var">n</var> sparse
matrix and is equivalent to <code class="code">sparse ([], [], [], <var class="var">m</var>, <var class="var">n</var>)</code>
</p>
<p>The optional final argument reserves space for <var class="var">nzmax</var> values in the sparse
array and is useful if the eventual number of nonzero values will be greater
than the number of values in <var class="var">sv</var> used during the initial construction of
the array.  See <a class="xref" href="#XREFspalloc"><code class="code">spalloc</code></a>, for more information and usage
instructions.
</p>
<p>Example 1 (convert full matrix to sparse to save memory):
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">x = full (diag (1:1000));
sizeof (x)
&rArr;  8000000
s = sparse (x);
sizeof (xs)
&rArr;  24008
</pre></div></div>

<p>Example 2 (sum at repeated indices):
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">i</var> = [1 1 2]; <var class="var">j</var> = [1 1 2]; <var class="var">sv</var> = [3 4 5];
sparse (<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, 3, 4)
&rArr;
   Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])

     (1, 1) -&gt;  7
     (2, 2) -&gt;  5
</pre></div></div>

<p>Example 3 (&quot;unique&quot; option):
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">i</var> = [1 1 2]; <var class="var">j</var> = [1 1 2]; <var class="var">sv</var> = [3 4 5];
sparse (<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, 3, 4, &quot;unique&quot;)
&rArr;
   Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])

     (1, 1) -&gt;  4
     (2, 2) -&gt;  5
</pre></div></div>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfull">full</a>, <a class="ref" href="Accumulation.html#XREFaccumarray">accumarray</a>, <a class="ref" href="#XREFspalloc">spalloc</a>, <a class="ref" href="#XREFspdiags">spdiags</a>, <a class="ref" href="#XREFspeye">speye</a>, <a class="ref" href="#XREFspones">spones</a>, <a class="ref" href="#XREFsprand">sprand</a>, <a class="ref" href="#XREFsprandn">sprandn</a>, <a class="ref" href="#XREFsprandsym">sprandsym</a>, <a class="ref" href="#XREFspconvert">spconvert</a>, <a class="ref" href="Function-Application.html#XREFspfun">spfun</a>.
</p></dd></dl>


<a class="anchor" id="XREFspconvert"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spconvert"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">spconvert</strong> <code class="def-code-arguments">(<var class="var">m</var>)</code><a class="copiable-link" href="#index-spconvert"> &para;</a></span></dt>
<dd><p>Convert a simple sparse matrix format easily generated by other programs
into Octave&rsquo;s internal sparse format.
</p>
<p>The input <var class="var">m</var> is either a 3 or 4 column real matrix, containing the
row, column, real, and imaginary parts of the elements of the sparse
matrix.  An element with a zero real and imaginary part can be used to
force a particular matrix size.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsparse">sparse</a>.
</p></dd></dl>


<p>The above problem of memory reallocation can be avoided in
oct-files.  However, the construction of a sparse matrix from an oct-file
is more complex than can be discussed here.  See <a class="xref" href="External-Code-Interface.html">External Code Interface</a>,
for a full description of the techniques involved.
</p>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Information.html">Finding Information about Sparse Matrices</a>, Previous: <a href="Storage-of-Sparse-Matrices.html">Storage of Sparse Matrices</a>, Up: <a href="Basics.html">Creation and Manipulation of Sparse Matrices</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>