1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Creating Sparse Matrices (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Creating Sparse Matrices (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Creating Sparse Matrices (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Basics.html" rel="up" title="Basics">
<link href="Information.html" rel="next" title="Information">
<link href="Storage-of-Sparse-Matrices.html" rel="prev" title="Storage of Sparse Matrices">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
ul.mark-bullet {list-style-type: disc}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="subsection-level-extent" id="Creating-Sparse-Matrices">
<div class="nav-panel">
<p>
Next: <a href="Information.html" accesskey="n" rel="next">Finding Information about Sparse Matrices</a>, Previous: <a href="Storage-of-Sparse-Matrices.html" accesskey="p" rel="prev">Storage of Sparse Matrices</a>, Up: <a href="Basics.html" accesskey="u" rel="up">Creation and Manipulation of Sparse Matrices</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h4 class="subsection" id="Creating-Sparse-Matrices-1"><span>22.1.2 Creating Sparse Matrices<a class="copiable-link" href="#Creating-Sparse-Matrices-1"> ¶</a></span></h4>
<p>There are several means to create sparse matrix.
</p>
<dl class="table">
<dt>Returned from a function</dt>
<dd><p>There are many functions that directly return sparse matrices. These include
<em class="dfn">speye</em>, <em class="dfn">sprand</em>, <em class="dfn">diag</em>, etc.
</p>
</dd>
<dt>Constructed from matrices or vectors</dt>
<dd><p>The function <em class="dfn">sparse</em> allows a sparse matrix to be constructed from
three vectors representing the row, column and data. Alternatively, the
function <em class="dfn">spconvert</em> uses a three column matrix format to allow easy
importation of data from elsewhere.
</p>
</dd>
<dt>Created and then filled</dt>
<dd><p>The function <em class="dfn">sparse</em> or <em class="dfn">spalloc</em> can be used to create an empty
matrix that is then filled by the user
</p>
</dd>
<dt>From a user binary program</dt>
<dd><p>The user can directly create the sparse matrix within an oct-file.
</p></dd>
</dl>
<p>There are several basic functions to return specific sparse
matrices. For example the sparse identity matrix, is a matrix that is
often needed. It therefore has its own function to create it as
<code class="code">speye (<var class="var">n</var>)</code> or <code class="code">speye (<var class="var">r</var>, <var class="var">c</var>)</code>, which
creates an <var class="var">n</var>-by-<var class="var">n</var> or <var class="var">r</var>-by-<var class="var">c</var> sparse identity
matrix.
</p>
<p>Another typical sparse matrix that is often needed is a random distribution
of random elements. The functions <em class="dfn">sprand</em> and <em class="dfn">sprandn</em> perform
this for uniform and normal random distributions of elements. They have
exactly the same calling convention, where <code class="code">sprand (<var class="var">r</var>, <var class="var">c</var>,
<var class="var">d</var>)</code>, creates an <var class="var">r</var>-by-<var class="var">c</var> sparse matrix with a density of
filled elements of <var class="var">d</var>.
</p>
<p>Other functions of interest that directly create sparse matrices, are
<em class="dfn">diag</em> or its generalization <em class="dfn">spdiags</em>, that can take the
definition of the diagonals of the matrix and create the sparse matrix
that corresponds to this. For example,
</p>
<div class="example">
<pre class="example-preformatted">s = diag (sparse (randn (1,n)), -1);
</pre></div>
<p>creates a sparse (<var class="var">n</var>+1)-by-(<var class="var">n</var>+1) sparse matrix with a single
diagonal defined.
</p>
<a class="anchor" id="XREFspdiags"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spdiags"><span><code class="def-type"><var class="var">B</var> =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-spdiags"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spdiags-1"><span><code class="def-type">[<var class="var">B</var>, <var class="var">d</var>] =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-spdiags-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spdiags-2"><span><code class="def-type"><var class="var">B</var> =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-spdiags-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spdiags-3"><span><code class="def-type"><var class="var">A</var> =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">v</var>, <var class="var">d</var>, <var class="var">A</var>)</code><a class="copiable-link" href="#index-spdiags-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spdiags-4"><span><code class="def-type"><var class="var">A</var> =</code> <strong class="def-name">spdiags</strong> <code class="def-code-arguments">(<var class="var">v</var>, <var class="var">d</var>, <var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-spdiags-4"> ¶</a></span></dt>
<dd><p>A generalization of the function <code class="code">diag</code>.
</p>
<p>Called with a single input argument, the nonzero diagonals <var class="var">d</var> of
<var class="var">A</var> are extracted.
</p>
<p>With two arguments the diagonals to extract are given by the vector <var class="var">d</var>.
</p>
<p>The other two forms of <code class="code">spdiags</code> modify the input matrix by replacing
the diagonals. They use the columns of <var class="var">v</var> to replace the diagonals
represented by the vector <var class="var">d</var>. If the sparse matrix <var class="var">A</var> is
defined then the diagonals of this matrix are replaced. Otherwise a
matrix of <var class="var">m</var> by <var class="var">n</var> is created with the diagonals given by the
columns of <var class="var">v</var>.
</p>
<p>Negative values of <var class="var">d</var> represent diagonals below the main diagonal, and
positive values of <var class="var">d</var> diagonals above the main diagonal.
</p>
<p>For example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
⇒ 5 10 0 0
1 6 11 0
0 2 7 12
0 0 3 8
0 0 0 4
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="Rearranging-Matrices.html#XREFdiag">diag</a>.
</p></dd></dl>
<a class="anchor" id="XREFspeye"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-speye"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">speye</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-speye"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-speye-1"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">speye</strong> <code class="def-code-arguments">(<var class="var">m</var>)</code><a class="copiable-link" href="#index-speye-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-speye-2"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">speye</strong> <code class="def-code-arguments">([<var class="var">m</var>, <var class="var">n</var>])</code><a class="copiable-link" href="#index-speye-2"> ¶</a></span></dt>
<dd><p>Return a sparse identity matrix of size <var class="var">m</var>x<var class="var">n</var>.
</p>
<p>The implementation is significantly more efficient than
<code class="code">sparse (eye (<var class="var">m</var>))</code><!-- /@w --> as the full matrix is not constructed.
</p>
<p>When called with a single argument, a square matrix of size
<var class="var">m</var>-by-<var class="var">m</var> is created. If called with a single vector argument,
this argument is taken to be the size of the matrix to create.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsparse">sparse</a>, <a class="ref" href="#XREFspdiags">spdiags</a>, <a class="ref" href="Special-Utility-Matrices.html#XREFeye">eye</a>.
</p></dd></dl>
<a class="anchor" id="XREFspones"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spones"><span><code class="def-type"><var class="var">r</var> =</code> <strong class="def-name">spones</strong> <code class="def-code-arguments">(<var class="var">S</var>)</code><a class="copiable-link" href="#index-spones"> ¶</a></span></dt>
<dd><p>Replace the nonzero entries of <var class="var">S</var> with ones.
</p>
<p>This creates a sparse matrix with the same structure as <var class="var">S</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsparse">sparse</a>, <a class="ref" href="#XREFsprand">sprand</a>, <a class="ref" href="#XREFsprandn">sprandn</a>, <a class="ref" href="#XREFsprandsym">sprandsym</a>, <a class="ref" href="Function-Application.html#XREFspfun">spfun</a>, <a class="ref" href="Information.html#XREFspy">spy</a>.
</p></dd></dl>
<a class="anchor" id="XREFsprand"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sprand"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprand</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-sprand"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprand-1"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprand</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">d</var>, <var class="var">rc</var>)</code><a class="copiable-link" href="#index-sprand-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprand-2"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprand</strong> <code class="def-code-arguments">(<var class="var">s</var>)</code><a class="copiable-link" href="#index-sprand-2"> ¶</a></span></dt>
<dd><p>Generate a sparse matrix with uniformly distributed random values.
</p>
<p>The size of the matrix is <var class="var">m</var>x<var class="var">n</var> with a density of values <var class="var">d</var>.
<var class="var">d</var> must be between 0 and 1. Values will be uniformly distributed on
the interval (0, 1).
</p>
<p>If called with a single matrix argument, a sparse matrix is generated with
random values wherever the matrix <var class="var">s</var> is nonzero.
</p>
<p>If called with a scalar fourth argument <var class="var">rc</var>, a random sparse matrix
with reciprocal condition number <var class="var">rc</var> is generated. If <var class="var">rc</var> is
a vector, then it specifies the first singular values of the generated
matrix (<code class="code">length (<var class="var">rc</var>) <= min (<var class="var">m</var>, <var class="var">n</var>)</code>).
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsprandn">sprandn</a>, <a class="ref" href="#XREFsprandsym">sprandsym</a>, <a class="ref" href="Special-Utility-Matrices.html#XREFrand">rand</a>.
</p></dd></dl>
<a class="anchor" id="XREFsprandn"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sprandn"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprandn</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-sprandn"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprandn-1"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprandn</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">d</var>, <var class="var">rc</var>)</code><a class="copiable-link" href="#index-sprandn-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprandn-2"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sprandn</strong> <code class="def-code-arguments">(<var class="var">s</var>)</code><a class="copiable-link" href="#index-sprandn-2"> ¶</a></span></dt>
<dd><p>Generate a sparse matrix with normally distributed random values.
</p>
<p>The size of the matrix is <var class="var">m</var>x<var class="var">n</var> with a density of values <var class="var">d</var>.
<var class="var">d</var> must be between 0 and 1. Values will be normally distributed with a
mean of 0 and a variance of 1.
</p>
<p>If called with a single matrix argument, a sparse matrix is generated with
random values wherever the matrix <var class="var">s</var> is nonzero.
</p>
<p>If called with a scalar fourth argument <var class="var">rc</var>, a random sparse matrix
with reciprocal condition number <var class="var">rc</var> is generated. If <var class="var">rc</var> is
a vector, then it specifies the first singular values of the generated
matrix (<code class="code">length (<var class="var">rc</var>) <= min (<var class="var">m</var>, <var class="var">n</var>)</code>).
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsprand">sprand</a>, <a class="ref" href="#XREFsprandsym">sprandsym</a>, <a class="ref" href="Special-Utility-Matrices.html#XREFrandn">randn</a>.
</p></dd></dl>
<a class="anchor" id="XREFsprandsym"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sprandsym"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sprandsym</strong> <code class="def-code-arguments">(<var class="var">n</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-sprandsym"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sprandsym-1"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sprandsym</strong> <code class="def-code-arguments">(<var class="var">s</var>)</code><a class="copiable-link" href="#index-sprandsym-1"> ¶</a></span></dt>
<dd><p>Generate a symmetric random sparse matrix.
</p>
<p>The size of the matrix will be <var class="var">n</var>x<var class="var">n</var>, with a density of values
given by <var class="var">d</var>. <var class="var">d</var> must be between 0 and 1 inclusive. Values will
be normally distributed with a mean of zero and a variance of 1.
</p>
<p>If called with a single matrix argument, a random sparse matrix is generated
wherever the matrix <var class="var">s</var> is nonzero in its lower triangular part.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsprand">sprand</a>, <a class="ref" href="#XREFsprandn">sprandn</a>, <a class="ref" href="#XREFspones">spones</a>, <a class="ref" href="#XREFsparse">sparse</a>.
</p></dd></dl>
<p>The recommended way for the user to create a sparse matrix, is to create
two vectors containing the row and column index of the data and a third
vector of the same size containing the data to be stored. For example,
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> ri = ci = d = [];
for j = 1:c
ri = [ri; randperm(r,n)'];
ci = [ci; j*ones(n,1)];
d = [d; rand(n,1)];
endfor
s = sparse (ri, ci, d, r, c);
</pre></div></div>
<p>creates an <var class="var">r</var>-by-<var class="var">c</var> sparse matrix with a random distribution
of <var class="var">n</var> (<<var class="var">r</var>) elements per column. The elements of the vectors
do not need to be sorted in any particular order as Octave will sort
them prior to storing the data. However, pre-sorting the data will
make the creation of the sparse matrix faster.
</p>
<p>The function <em class="dfn">spconvert</em> takes a three or four column real matrix.
The first two columns represent the row and column index respectively and
the third and four columns, the real and imaginary parts of the sparse
matrix. The matrix can contain zero elements and the elements can be
sorted in any order. Adding zero elements is a convenient way to define
the size of the sparse matrix. For example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">s = spconvert ([1 2 3 4; 1 3 4 4; 1 2 3 0]')
⇒ Compressed Column Sparse (rows=4, cols=4, nnz=3)
(1 , 1) -> 1
(2 , 3) -> 2
(3 , 4) -> 3
</pre></div></div>
<p>An example of creating and filling a matrix might be
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">k = 5;
nz = r * k;
s = spalloc (r, c, nz)
for j = 1:c
idx = randperm (r);
s (:, j) = [zeros(r - k, 1); ...
rand(k, 1)] (idx);
endfor
</pre></div></div>
<p>It should be noted, that due to the way that the Octave
assignment functions are written that the assignment will reallocate
the memory used by the sparse matrix at each iteration of the above loop.
Therefore the <em class="dfn">spalloc</em> function ignores the <var class="var">nz</var> argument and
does not pre-assign the memory for the matrix. Therefore, it is vitally
important that code using to above structure should be vectorized
as much as possible to minimize the number of assignments and reduce the
number of memory allocations.
</p>
<a class="anchor" id="XREFfull"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-full"><span><code class="def-type"><var class="var">FM</var> =</code> <strong class="def-name">full</strong> <code class="def-code-arguments">(<var class="var">SM</var>)</code><a class="copiable-link" href="#index-full"> ¶</a></span></dt>
<dd><p>Return a full storage matrix from a sparse, diagonal, or permutation matrix,
or from a range.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsparse">sparse</a>, <a class="ref" href="Information.html#XREFissparse">issparse</a>.
</p></dd></dl>
<a class="anchor" id="XREFspalloc"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spalloc"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">spalloc</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">nz</var>)</code><a class="copiable-link" href="#index-spalloc"> ¶</a></span></dt>
<dd><p>Create an <var class="var">m</var>-by-<var class="var">n</var> sparse matrix with pre-allocated space for at
most <var class="var">nz</var> nonzero elements.
</p>
<p>This is useful for building a matrix incrementally by a sequence of indexed
assignments. Subsequent indexed assignments after <code class="code">spalloc</code> will reuse
the pre-allocated memory, provided they are of one of the simple forms
</p>
<ul class="itemize mark-bullet">
<li><code class="code"><var class="var">s</var>(I:J) = <var class="var">x</var></code>
</li><li><code class="code"><var class="var">s</var>(:,I:J) = <var class="var">x</var></code>
</li><li><code class="code"><var class="var">s</var>(K:L,I:J) = <var class="var">x</var></code>
</li></ul>
<p><b class="b">and</b> that the following conditions are met:
</p>
<ul class="itemize mark-bullet">
<li>the assignment does not decrease <code class="code">nnz (<var class="var">S</var>)</code>.
</li><li>after the assignment, <code class="code">nnz (<var class="var">S</var>)</code> does not exceed <var class="var">nz</var>.
</li><li>no index is out of bounds.
</li></ul>
<p>Partial movement of data may still occur, but in general the assignment will
be more memory and time efficient under these circumstances. In particular,
it is possible to efficiently build a pre-allocated sparse matrix from a
contiguous block of columns.
</p>
<p>The amount of pre-allocated memory for a given matrix may be queried using
the function <code class="code">nzmax</code>.
</p>
<p>Programming Note: Octave always reserves memory for at least one value,
even if <var class="var">nz</var> is 0.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Information.html#XREFnzmax">nzmax</a>, <a class="ref" href="#XREFsparse">sparse</a>.
</p></dd></dl>
<a class="anchor" id="XREFsparse"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sparse"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-sparse"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-1"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-sparse-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-2"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>)</code><a class="copiable-link" href="#index-sparse-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-3"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, <var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-sparse-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-4"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, <var class="var">m</var>, <var class="var">n</var>, "unique")</code><a class="copiable-link" href="#index-sparse-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sparse-5"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">sparse</strong> <code class="def-code-arguments">(<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, <var class="var">m</var>, <var class="var">n</var>, <var class="var">nzmax</var>)</code><a class="copiable-link" href="#index-sparse-5"> ¶</a></span></dt>
<dd><p>Create a sparse matrix from a full matrix <var class="var">A</var> or row, column, value
triplets.
</p>
<p>If <var class="var">A</var> is a full matrix, convert it to a sparse matrix representation,
removing all zero values in the process. The matrix <var class="var">A</var> should be of type
logical or double.
</p>
<p>If two inputs <var class="var">m</var> (rows) and <var class="var">n</var> (columns) are specified then create
an empty sparse matrix with the specified dimensions.
</p>
<p>Given the integer index vectors <var class="var">i</var> and <var class="var">j</var>, and a 1-by-<code class="code">nnz</code>
vector of real or complex values <var class="var">sv</var>, construct the sparse matrix
<code class="code">S(<var class="var">i</var>(<var class="var">k</var>),<var class="var">j</var>(<var class="var">k</var>)) = <var class="var">sv</var>(<var class="var">k</var>)</code> with overall
dimensions <var class="var">m</var> and <var class="var">n</var>. If any of <var class="var">i</var>, <var class="var">j</var>, or <var class="var">sv</var> are
scalars, they are expanded to have a common size.
</p>
<p>If <var class="var">m</var> or <var class="var">n</var> are not specified then their values are derived from the
maximum index in the vectors <var class="var">i</var> and <var class="var">j</var> as given by
<code class="code"><var class="var">m</var> = max (<var class="var">i</var>)</code><!-- /@w -->, <code class="code"><var class="var">n</var> = max (<var class="var">j</var>)</code><!-- /@w -->.
</p>
<p><strong class="strong">Note</strong>: If multiple values are specified with the same <var class="var">i</var>,
<var class="var">j</var> indices, the corresponding value in <var class="var">S</var> will be the sum of the
values at the repeated location. See <a class="xref" href="Accumulation.html#XREFaccumarray"><code class="code">accumarray</code></a>, for
an example of how to produce different behavior such as taking the minimum
instead.
</p>
<p>If the option <code class="code">"unique"</code> is given, and more than one value is specified
at the same <var class="var">i</var>, <var class="var">j</var> indices, then only the last specified value will
be used. For completeness, the option <code class="code">"sum"</code> can be given and will
be ignored as the default behavior is to sum values at repeated locations.
</p>
<p><code class="code">sparse (<var class="var">m</var>, <var class="var">n</var>)</code> will create an empty <var class="var">m</var>x<var class="var">n</var> sparse
matrix and is equivalent to <code class="code">sparse ([], [], [], <var class="var">m</var>, <var class="var">n</var>)</code>
</p>
<p>The optional final argument reserves space for <var class="var">nzmax</var> values in the sparse
array and is useful if the eventual number of nonzero values will be greater
than the number of values in <var class="var">sv</var> used during the initial construction of
the array. See <a class="xref" href="#XREFspalloc"><code class="code">spalloc</code></a>, for more information and usage
instructions.
</p>
<p>Example 1 (convert full matrix to sparse to save memory):
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">x = full (diag (1:1000));
sizeof (x)
⇒ 8000000
s = sparse (x);
sizeof (xs)
⇒ 24008
</pre></div></div>
<p>Example 2 (sum at repeated indices):
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">i</var> = [1 1 2]; <var class="var">j</var> = [1 1 2]; <var class="var">sv</var> = [3 4 5];
sparse (<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, 3, 4)
⇒
Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])
(1, 1) -> 7
(2, 2) -> 5
</pre></div></div>
<p>Example 3 ("unique" option):
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">i</var> = [1 1 2]; <var class="var">j</var> = [1 1 2]; <var class="var">sv</var> = [3 4 5];
sparse (<var class="var">i</var>, <var class="var">j</var>, <var class="var">sv</var>, 3, 4, "unique")
⇒
Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])
(1, 1) -> 4
(2, 2) -> 5
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfull">full</a>, <a class="ref" href="Accumulation.html#XREFaccumarray">accumarray</a>, <a class="ref" href="#XREFspalloc">spalloc</a>, <a class="ref" href="#XREFspdiags">spdiags</a>, <a class="ref" href="#XREFspeye">speye</a>, <a class="ref" href="#XREFspones">spones</a>, <a class="ref" href="#XREFsprand">sprand</a>, <a class="ref" href="#XREFsprandn">sprandn</a>, <a class="ref" href="#XREFsprandsym">sprandsym</a>, <a class="ref" href="#XREFspconvert">spconvert</a>, <a class="ref" href="Function-Application.html#XREFspfun">spfun</a>.
</p></dd></dl>
<a class="anchor" id="XREFspconvert"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spconvert"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">spconvert</strong> <code class="def-code-arguments">(<var class="var">m</var>)</code><a class="copiable-link" href="#index-spconvert"> ¶</a></span></dt>
<dd><p>Convert a simple sparse matrix format easily generated by other programs
into Octave’s internal sparse format.
</p>
<p>The input <var class="var">m</var> is either a 3 or 4 column real matrix, containing the
row, column, real, and imaginary parts of the elements of the sparse
matrix. An element with a zero real and imaginary part can be used to
force a particular matrix size.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsparse">sparse</a>.
</p></dd></dl>
<p>The above problem of memory reallocation can be avoided in
oct-files. However, the construction of a sparse matrix from an oct-file
is more complex than can be discussed here. See <a class="xref" href="External-Code-Interface.html">External Code Interface</a>,
for a full description of the techniques involved.
</p>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Information.html">Finding Information about Sparse Matrices</a>, Previous: <a href="Storage-of-Sparse-Matrices.html">Storage of Sparse Matrices</a>, Up: <a href="Basics.html">Creation and Manipulation of Sparse Matrices</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|