File: Derivatives-_002f-Integrals-_002f-Transforms.html

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (122 lines) | stat: -rw-r--r-- 7,607 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Derivatives / Integrals / Transforms (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Derivatives / Integrals / Transforms (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Derivatives / Integrals / Transforms (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html" rel="up" title="Polynomial Manipulations">
<link href="Polynomial-Interpolation.html" rel="next" title="Polynomial Interpolation">
<link href="Products-of-Polynomials.html" rel="prev" title="Products of Polynomials">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="section-level-extent" id="Derivatives-_002f-Integrals-_002f-Transforms">
<div class="nav-panel">
<p>
Next: <a href="Polynomial-Interpolation.html" accesskey="n" rel="next">Polynomial Interpolation</a>, Previous: <a href="Products-of-Polynomials.html" accesskey="p" rel="prev">Products of Polynomials</a>, Up: <a href="Polynomial-Manipulations.html" accesskey="u" rel="up">Polynomial Manipulations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Derivatives-_002f-Integrals-_002f-Transforms-1"><span>28.4 Derivatives / Integrals / Transforms<a class="copiable-link" href="#Derivatives-_002f-Integrals-_002f-Transforms-1"> &para;</a></span></h3>

<p>Octave comes with functions for computing the derivative and the integral
of a polynomial.  The functions <code class="code">polyder</code> and <code class="code">polyint</code>
both return new polynomials describing the result.  As an example we&rsquo;ll
compute the definite integral of <em class="math">p(x) = x^2 + 1</em> from 0 to 3.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">c = [1, 0, 1];
integral = polyint (c);
area = polyval (integral, 3) - polyval (integral, 0)
&rArr; 12
</pre></div></div>

<a class="anchor" id="XREFpolyder"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-polyder"><span><code class="def-type"><var class="var">k</var> =</code> <strong class="def-name">polyder</strong> <code class="def-code-arguments">(<var class="var">p</var>)</code><a class="copiable-link" href="#index-polyder"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-polyder-1"><span><code class="def-type"><var class="var">k</var> =</code> <strong class="def-name">polyder</strong> <code class="def-code-arguments">(<var class="var">a</var>, <var class="var">b</var>)</code><a class="copiable-link" href="#index-polyder-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-polyder-2"><span><code class="def-type">[<var class="var">q</var>, <var class="var">d</var>] =</code> <strong class="def-name">polyder</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">a</var>)</code><a class="copiable-link" href="#index-polyder-2"> &para;</a></span></dt>
<dd><p>Return the coefficients of the derivative of the polynomial whose
coefficients are given by the vector <var class="var">p</var>.
</p>
<p>If a pair of polynomials is given, return the derivative of the product
<em class="math"><var class="var">a</var>*<var class="var">b</var></em>.
</p>
<p>If two inputs and two outputs are given, return the derivative of the
polynomial quotient <em class="math"><var class="var">b</var>/<var class="var">a</var></em>.  The quotient numerator is
in <var class="var">q</var> and the denominator in <var class="var">d</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFpolyint">polyint</a>, <a class="ref" href="Evaluating-Polynomials.html#XREFpolyval">polyval</a>, <a class="ref" href="Miscellaneous-Functions.html#XREFpolyreduce">polyreduce</a>.
</p></dd></dl>


<a class="anchor" id="XREFpolyint"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-polyint"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">polyint</strong> <code class="def-code-arguments">(<var class="var">p</var>)</code><a class="copiable-link" href="#index-polyint"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-polyint-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">polyint</strong> <code class="def-code-arguments">(<var class="var">p</var>, <var class="var">k</var>)</code><a class="copiable-link" href="#index-polyint-1"> &para;</a></span></dt>
<dd><p>Return the coefficients of the integral of the polynomial whose
coefficients are represented by the vector <var class="var">p</var>.
</p>
<p>The variable <var class="var">k</var> is the constant of integration, which by default is
set to zero.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFpolyder">polyder</a>, <a class="ref" href="Evaluating-Polynomials.html#XREFpolyval">polyval</a>.
</p></dd></dl>


<a class="anchor" id="XREFpolyaffine"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-polyaffine"><span><code class="def-type"><var class="var">g</var> =</code> <strong class="def-name">polyaffine</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">mu</var>)</code><a class="copiable-link" href="#index-polyaffine"> &para;</a></span></dt>
<dd><p>Return the coefficients of the polynomial vector <var class="var">f</var> after an affine
transformation.
</p>
<p>If <var class="var">f</var> is the vector representing the polynomial f(x), then
<code class="code"><var class="var">g</var> = polyaffine (<var class="var">f</var>, <var class="var">mu</var>)</code> is the vector representing:
</p>
<div class="example">
<pre class="example-preformatted">g(x) = f( (x - <var class="var">mu</var>(1)) / <var class="var">mu</var>(2) )
</pre></div>


<p><strong class="strong">See also:</strong> <a class="ref" href="Evaluating-Polynomials.html#XREFpolyval">polyval</a>, <a class="ref" href="Polynomial-Interpolation.html#XREFpolyfit">polyfit</a>.
</p></dd></dl>


</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Polynomial-Interpolation.html">Polynomial Interpolation</a>, Previous: <a href="Products-of-Polynomials.html">Products of Polynomials</a>, Up: <a href="Polynomial-Manipulations.html">Polynomial Manipulations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>