File: Descriptive-Statistics.html

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (890 lines) | stat: -rw-r--r-- 62,767 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Descriptive Statistics (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Descriptive Statistics (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Descriptive Statistics (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html" rel="up" title="Statistics">
<link href="Statistics-on-Sliding-Windows-of-Data.html" rel="next" title="Statistics on Sliding Windows of Data">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
ul.mark-bullet {list-style-type: disc}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="section-level-extent" id="Descriptive-Statistics">
<div class="nav-panel">
<p>
Next: <a href="Statistics-on-Sliding-Windows-of-Data.html" accesskey="n" rel="next">Statistics on Sliding Windows of Data</a>, Up: <a href="Statistics.html" accesskey="u" rel="up">Statistics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Descriptive-Statistics-1"><span>26.1 Descriptive Statistics<a class="copiable-link" href="#Descriptive-Statistics-1"> &para;</a></span></h3>

<p>One principal goal of descriptive statistics is to represent the essence of a
large data set concisely.  Octave provides the mean, median, and mode functions
which all summarize a data set with just a single number corresponding to
the central tendency of the data.
</p>
<a class="anchor" id="XREFmean"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-mean"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-mean"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-mean-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-2"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-mean-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-3"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(<var class="var">x</var>, &quot;all&quot;)</code><a class="copiable-link" href="#index-mean-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-4"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(&hellip;, <var class="var">nanflag</var>)</code><a class="copiable-link" href="#index-mean-4"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-5"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(&hellip;, <var class="var">outtype</var>)</code><a class="copiable-link" href="#index-mean-5"> &para;</a></span></dt>
<dd><p>Compute the mean of the elements of <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is a vector, then <code class="code">mean (<var class="var">x</var>)</code> returns the mean of the
elements in <var class="var">x</var> defined as
</p>
<div class="example">
<pre class="example-preformatted">mean (<var class="var">x</var>) = SUM_i <var class="var">x</var>(i) / N
</pre></div>

<p>where <em class="math">N</em> is the number of elements in <var class="var">x</var>.
</p>

<p>If <var class="var">x</var> is an array, then <code class="code">mean(<var class="var">x</var>)</code> computes the mean along
the first non-singleton dimension of <var class="var">x</var>.
</p>
<p>The optional variable <var class="var">dim</var> forces <code class="code">mean</code> to operate over the
specified dimension, which must be a positive integer-valued number.
Specifying any singleton dimension in <var class="var">x</var>, including any dimension
exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in a mean equal to <var class="var">x</var>.
</p>
<p>Specifying the dimensions as  <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the mean over the array slice defined by
<var class="var">vecdim</var>.  If <var class="var">vecdim</var> indexes all dimensions of <var class="var">x</var>, then it is
equivalent to the option <code class="code">&quot;all&quot;</code>.  Any dimension in <var class="var">vecdim</var>
greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">&quot;all&quot;</code> will force <code class="code">mean</code> to operate
on all elements of <var class="var">x</var>, and is equivalent to <code class="code">mean (<var class="var">x</var>(:))</code>.
</p>
<p>The optional input <var class="var">outtype</var> specifies the data type that is returned.
<var class="var">outtype</var> can take the following values:
</p>
<dl class="table">
<dt><code class="code">'default'</code> : Output is of type double, unless the input is</dt>
<dd><p>single in which case the output is of type single.
</p>
</dd>
<dt><code class="code">'double'</code> : Output is of type double.</dt>
<dt><code class="code">'native'</code> : Output is of the same type as the input as reported</dt>
<dd><p>by (<code class="code">class (<var class="var">x</var>)</code>), unless the input is logical in which case the
output is of type double.
</p></dd>
</dl>

<p>The optional variable <var class="var">nanflag</var> specifies whether to include or exclude
NaN values from the calculation using any of the previously specified input
argument combinations.  The default value for <var class="var">nanflag</var> is
<code class="code">&quot;includenan&quot;</code> which keeps NaN values in the calculation.  To exclude
NaN values set the value of <var class="var">nanflag</var> to <code class="code">&quot;omitnan&quot;</code>.  The output
will still contain NaN values if <var class="var">x</var> consists of all NaN values in the
operating dimension.
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmedian">median</a>, <a class="ref" href="#XREFmode">mode</a>, <a class="ref" href="Statistics-on-Sliding-Windows-of-Data.html#XREFmovmean">movmean</a>.
</p></dd></dl>


<a class="anchor" id="XREFmedian"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-median"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-median"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-median-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-2"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-median-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-3"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(<var class="var">x</var>, &quot;all&quot;)</code><a class="copiable-link" href="#index-median-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-4"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(&hellip;, <var class="var">nanflag</var>)</code><a class="copiable-link" href="#index-median-4"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-5"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(&hellip;, <var class="var">outtype</var>)</code><a class="copiable-link" href="#index-median-5"> &para;</a></span></dt>
<dd><p>Compute the median value of the elements of <var class="var">x</var>.
</p>
<p>When the elements of <var class="var">x</var> are sorted, say
<code class="code"><var class="var">s</var> = sort (<var class="var">x</var>)</code>, the median is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">             |  <var class="var">s</var>(ceil (N/2))          N odd
median (<var class="var">x</var>) = |
             | (<var class="var">s</var>(N/2) + <var class="var">s</var>(N/2+1))/2   N even
</pre></div></div>


<p>If <var class="var">x</var> is an array, then <code class="code">median (<var class="var">x</var>)</code> operates along the
first non-singleton dimension of <var class="var">x</var>.
</p>
<p>The optional variable <var class="var">dim</var> forces <code class="code">median</code> to operate over the
specified dimension, which must be a positive integer-valued number.
Specifying any singleton dimension in <var class="var">x</var>, including any dimension
exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in a median equal to <var class="var">x</var>.
</p>
<p>Specifying the dimensions as  <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the median over the array slice defined by
<var class="var">vecdim</var>.  If <var class="var">vecdim</var> indexes all dimensions of <var class="var">x</var>, then it is
equivalent to the option <code class="code">&quot;all&quot;</code>.  Any dimension in <var class="var">vecdim</var>
greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">&quot;all&quot;</code> will force <code class="code">median</code> to
operate on all elements of <var class="var">x</var>, and is equivalent to
<code class="code">median (<var class="var">x</var>(:))</code>.
</p>
<p><code class="code">median (&hellip;, <var class="var">outtype</var>)</code> returns the median with a specified
data type, using any of the input arguments in the previous syntaxes.
<var class="var">outtype</var> can take the following values:
</p>
<dl class="table">
<dt><code class="code">&quot;default&quot;</code></dt>
<dd><p>Output is of type double, unless the input is single in which case the
output is of type single.
</p>
</dd>
<dt><code class="code">&quot;double&quot;</code></dt>
<dd><p>Output is of type double.
</p>
</dd>
<dt><code class="code">&quot;native&quot;</code>.</dt>
<dd><p>Output is of the same type as the input (<code class="code">class (<var class="var">x</var>)</code>), unless the
input is logical in which case the output is of type double.
</p></dd>
</dl>

<p>The optional variable <var class="var">nanflag</var> specifies whether to include or exclude
NaN values from the calculation using any of the previously specified input
argument combinations.  The default value for <var class="var">nanflag</var> is
<code class="code">&quot;includenan&quot;</code> which keeps NaN values in the calculation.  To
exclude NaN values set the value of <var class="var">nanflag</var> to <code class="code">&quot;omitnan&quot;</code>.
The output will still contain NaN values if <var class="var">x</var> consists of all NaN
values in the operating dimension.
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFmode">mode</a>, <a class="ref" href="Statistics-on-Sliding-Windows-of-Data.html#XREFmovmedian">movmedian</a>.
</p></dd></dl>


<a class="anchor" id="XREFmode"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-mode"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mode</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-mode"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mode-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mode</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-mode-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mode-2"><span><code class="def-type">[<var class="var">m</var>, <var class="var">f</var>, <var class="var">c</var>] =</code> <strong class="def-name">mode</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-mode-2"> &para;</a></span></dt>
<dd><p>Compute the most frequently occurring value in a dataset (mode).
</p>
<p><code class="code">mode</code> determines the frequency of values along the first non-singleton
dimension and returns the value with the highest frequency.  If two, or
more, values have the same frequency <code class="code">mode</code> returns the smallest.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p>The return variable <var class="var">f</var> is the number of occurrences of the mode in
the dataset.
</p>
<p>The cell array <var class="var">c</var> contains all of the elements with the maximum
frequency.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFmedian">median</a>.
</p></dd></dl>


<p>Using just one number, such as the mean, to represent an entire data set may
not give an accurate picture of the data.  One way to characterize the fit is
to measure the dispersion of the data.  Octave provides several functions for
measuring dispersion.
</p>
<a class="anchor" id="XREFbounds"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-bounds"><span><code class="def-type">[<var class="var">s</var>, <var class="var">l</var>] =</code> <strong class="def-name">bounds</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-bounds"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-bounds-1"><span><code class="def-type">[<var class="var">s</var>, <var class="var">l</var>] =</code> <strong class="def-name">bounds</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-bounds-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-bounds-2"><span><code class="def-type">[<var class="var">s</var>, <var class="var">l</var>] =</code> <strong class="def-name">bounds</strong> <code class="def-code-arguments">(&hellip;, &quot;nanflag&quot;)</code><a class="copiable-link" href="#index-bounds-2"> &para;</a></span></dt>
<dd><p>Return the smallest and largest values of the input data <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is a vector, the bounds are calculated over the elements of
<var class="var">x</var>.  If <var class="var">x</var> is a matrix, the bounds are calculated for each column.
For a multi-dimensional array, the bounds are calculated over the first
non-singleton dimension.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p>The optional argument <code class="code">&quot;nanflag&quot;</code> defaults to <code class="code">&quot;omitnan&quot;</code> which
does not include NaN values in the result.  If the argument
<code class="code">&quot;includenan&quot;</code> is given, and there is a NaN present, then the result
for both smallest (<var class="var">s</var>) and largest (<var class="var">l</var>) elements will be NaN.
</p>
<p>The bounds are a quickly computed measure of the dispersion of a data set,
but are less accurate than <code class="code">iqr</code> if there are outlying data points.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFrange">range</a>, <a class="ref" href="#XREFiqr">iqr</a>, <a class="ref" href="#XREFmad">mad</a>, <a class="ref" href="#XREFstd">std</a>.
</p></dd></dl>


<a class="anchor" id="XREFrange"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-range"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">range</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-range"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-range-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">range</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-range-1"> &para;</a></span></dt>
<dd><p>Return the range, i.e., the difference between the maximum and the minimum
of the input data.
</p>
<p>If <var class="var">x</var> is a vector, the range is calculated over the elements of
<var class="var">x</var>.  If <var class="var">x</var> is a matrix, the range is calculated over each column
of <var class="var">x</var>.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p>The range is a quickly computed measure of the dispersion of a data set, but
is less accurate than <code class="code">iqr</code> if there are outlying data points.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFbounds">bounds</a>, <a class="ref" href="#XREFiqr">iqr</a>, <a class="ref" href="#XREFmad">mad</a>, <a class="ref" href="#XREFstd">std</a>.
</p></dd></dl>


<a class="anchor" id="XREFiqr"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-iqr"><span><code class="def-type"><var class="var">Z</var> =</code> <strong class="def-name">iqr</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-iqr"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-iqr-1"><span><code class="def-type"><var class="var">Z</var> =</code> <strong class="def-name">iqr</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-iqr-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-iqr-2"><span><code class="def-type"><var class="var">Z</var> =</code> <strong class="def-name">iqr</strong> <code class="def-code-arguments">(<var class="var">x</var>, <code class="code">&quot;ALL&quot;</code>)</code><a class="copiable-link" href="#index-iqr-2"> &para;</a></span></dt>
<dd><p>Return the interquartile range of <var class="var">x</var>, defined as the distance between
the 25th and 75th percentile values of <var class="var">x</var> calculated using:
   quantile (x, [0.25 0.75])
</p>
<p>If <var class="var">x</var> is a vector, <code class="code">iqr (<var class="var">x</var>)</code> will operate on the data in
<var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is a matrix, <code class="code">iqr (<var class="var">x</var>)</code> will operate independently on
each column in <var class="var">x</var> returning a row vector <var class="var">Z</var>.
</p>
<p>If <var class="var">x</var> is a n-dimensional array, <code class="code">iqr (<var class="var">x</var>)</code> will operate
independently on the first non-singleton dimension in <var class="var">x</var>, returning an
array <var class="var">Z</var> the same shape as <var class="var">x</var> with the non-singleton dimenion
reduced to 1.
</p>
<p>The optional variable <var class="var">dim</var> can be used to force <code class="code">iqr</code> to operate
over the specified dimension.  <var class="var">dim</var> can either be a scalar dimension or
a vector of non-repeating dimensions over which to operate.  In either case
<var class="var">dim</var> must be positive integers.  A vector <var class="var">dim</var> concatenates all
specified dimensions for independent operation by <code class="code">iqr</code>.
</p>
<p>Specifying dimension <code class="code">&quot;ALL&quot;</code> will force <code class="code">iqr</code> to operate
on all elements of <var class="var">x</var>, and is equivalent to <code class="code">iqr (<var class="var">x</var>(:))</code>.
Similarly, specifying a vector dimension including all non-singleton
dimensions of <var class="var">x</var> is equivalent to <code class="code">iqr (<var class="var">x</var>, <code class="code">&quot;ALL&quot;</code>)</code>.
</p>
<p>If <var class="var">x</var> is a scalar, or only singleton dimensions are specified for
<var class="var">dim</var>, the output will be <code class="code">zeros (size (<var class="var">x</var>))</code>.
</p>
<p>As a measure of dispersion, the interquartile range is less affected by
outliers than either <code class="code">range</code> or <code class="code">std</code>.
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFbounds">bounds</a>, <a class="ref" href="#XREFmad">mad</a>, <a class="ref" href="#XREFrange">range</a>, <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFprctile">prctile</a>, <a class="ref" href="#XREFquantile">quantile</a>.
</p></dd></dl>


<a class="anchor" id="XREFmad"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-mad"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-mad"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mad-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">opt</var>)</code><a class="copiable-link" href="#index-mad-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mad-2"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">opt</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-mad-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mad-3"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">opt</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-mad-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mad-4"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">opt</var>, &quot;all&quot;)</code><a class="copiable-link" href="#index-mad-4"> &para;</a></span></dt>
<dd><p>Compute the mean or median absolute deviation (MAD) of the elements of
<var class="var">x</var>.
</p>
<p>The mean absolute deviation is defined as
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">mad</var> = mean (abs (<var class="var">x</var> - mean (<var class="var">x</var>)))
</pre></div>

<p>The median absolute deviation is defined as
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">mad</var> = median (abs (<var class="var">x</var> - median (<var class="var">x</var>)))
</pre></div>

<p>If <var class="var">x</var> is a vector, compute <code class="code">mad</code> for each element in <var class="var">x</var>.  If
<var class="var">x</var> is an array the calculation is performed over the first
non-singleton dimension.
</p>
<p><code class="code">mad</code> excludes NaN values from calculation similar to using the
<code class="code">omitnan</code> option in <code class="code">var</code>, <code class="code">mean</code>, and <code class="code">median</code>.
</p>
<p>The optional argument <var class="var">opt</var> determines whether mean or median absolute
deviation is calculated.  The default is 0 which corresponds to mean
absolute deviation; a value of 1 corresponds to median absolute deviation.
Passing an empty input [] defaults to mean absolute deviation
(<var class="var">opt</var> = 0).
</p>
<p>The optional argument <var class="var">dim</var> forces <code class="code">mad</code> to operate along the
specified dimension.  Specifying any singleton dimension in <var class="var">x</var>,
including any dimension exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in
an output of 0.
</p>
<p>Specifying the dimension as <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the <code class="code">mad</code> over the array slice defined by
<var class="var">vecdim</var>.  If <var class="var">vecdim</var> indexes all dimensions of <var class="var">x</var>, then it is
equivalent to the option <code class="code">&quot;all&quot;</code>.  Any dimension included in
<var class="var">vecdim</var> greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">&quot;all&quot;</code> will force <code class="code">mad</code> to operate
on all elements of <var class="var">x</var>, and is equivalent to <code class="code">mad (<var class="var">x</var>(:))</code>.
</p>
<p>As a measure of dispersion, <code class="code">mad</code> is less affected by outliers than
<code class="code">std</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFbounds">bounds</a>, <a class="ref" href="#XREFrange">range</a>, <a class="ref" href="#XREFiqr">iqr</a>, <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFmedian">median</a>.
</p></dd></dl>


<a class="anchor" id="XREFmeansq"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-meansq"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">meansq</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-meansq"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meansq-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">meansq</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-meansq-1"> &para;</a></span></dt>
<dd><p>Compute the mean square of the elements of the vector <var class="var">x</var>.
</p>
<p>The mean square is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">meansq (<var class="var">x</var>) = 1/N SUM_i <var class="var">x</var>(i)^2
</pre></div></div>

<p>where <em class="math">N</em> is the length of the <var class="var">x</var> vector.
</p>
<p>If <var class="var">x</var> is a matrix, return a row vector containing the mean square
of each column.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFmoment">moment</a>.
</p></dd></dl>


<a class="anchor" id="XREFstd"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-std"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-std"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-1"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>)</code><a class="copiable-link" href="#index-std-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-2"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-std-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-3"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-std-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-4"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <code class="code">&quot;ALL&quot;</code>)</code><a class="copiable-link" href="#index-std-4"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-5"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(&hellip;, <var class="var">nanflag</var>)</code><a class="copiable-link" href="#index-std-5"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-6"><span><code class="def-type">[<var class="var">s</var>, <var class="var">m</var>] =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-std-6"> &para;</a></span></dt>
<dd><p>Compute the standard deviation of the elements of the vector <var class="var">x</var>.
</p>
<p>The standard deviation is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">std (<var class="var">x</var>) = sqrt ((1 / (N-1)) * SUM_i ((<var class="var">x</var>(i) - mean(<var class="var">x</var>))^2))
</pre></div></div>

<p>where <em class="math">N</em> is the number of elements of <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is an array, compute the standard deviation along the first
non-singleton dimensions of <var class="var">x</var>.
</p>
<p>The optional argument <var class="var">w</var> determines the weighting scheme to use.  Valid
values are:
</p>
<dl class="table">
<dt>0 [default]:</dt>
<dd><p>Normalize with <em class="math">N-1</em> (population standard deviation).  This provides
the square root of the best unbiased estimator of the standard deviation.
</p>
</dd>
<dt>1:</dt>
<dd><p>Normalize with <em class="math">N</em> (sample standard deviation).  This provides the
square root of the second moment around the mean.
</p>
</dd>
<dt>a vector:</dt>
<dd><p>Compute the weighted standard deviation with non-negative weights.
The length of <var class="var">w</var> must equal the size of <var class="var">x</var> in the operating
dimension.  NaN values are permitted in <var class="var">w</var>, will be multiplied with the
associated values in <var class="var">x</var>, and can be excluded by the <var class="var">nanflag</var>
option.
</p>
</dd>
<dt>an array:</dt>
<dd><p>Similar to vector weights, but <var class="var">w</var> must be the same size as <var class="var">x</var>.  If
the operating dimension is supplied as <var class="var">vecdim</var> or <code class="code">&quot;all&quot;</code> and
<var class="var">w</var> is not a scalar, <var class="var">w</var> must be an same-sized array.
</p></dd>
</dl>

<p>Note: <var class="var">w</var> must always be specified before specifying any of the
following dimension options.  To use the default value for <var class="var">w</var> you
may pass an empty input argument [].
</p>
<p>The optional variable <var class="var">dim</var> forces <code class="code">std</code> to operate over the
specified dimension, which must be a positive integer-valued number.
Specifying any singleton dimension in <var class="var">x</var>, including any dimension
exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in a standard deviation of 0.
</p>
<p>Specifying the dimensions as  <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the standard deviation calculated over the array
slice defined by <var class="var">vecdim</var>.  If <var class="var">vecdim</var> indexes all dimensions of
<var class="var">x</var>, then it is equivalent to the option <code class="code">&quot;all&quot;</code>.  Any
dimension in <var class="var">vecdim</var> greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">&quot;all&quot;</code> will force <code class="code">std</code> to
operate on all elements of <var class="var">x</var>, and is equivalent to
<code class="code">std (<var class="var">x</var>(:))</code>.
</p>
<p>The optional variable <var class="var">nanflag</var> specifies whether to include or exclude
NaN values from the calculation using any of the previously specified input
argument combinations.  The default value for <var class="var">nanflag</var> is
<code class="code">&quot;includenan&quot;</code> which keeps NaN values in the calculation.  To
exclude NaN values set the value of <var class="var">nanflag</var> to <code class="code">&quot;omitnan&quot;</code>.
The output will still contain NaN values if <var class="var">x</var> consists of all NaN
values in the operating dimension.
</p>
<p>The optional second output variable <var class="var">m</var> contains the mean of the
elements of <var class="var">x</var> used to calculate the standard deviation.  If <var class="var">v</var> is
the weighted standard deviation, then <var class="var">m</var> is also the weighted mean.
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFbounds">bounds</a>, <a class="ref" href="#XREFmad">mad</a>, <a class="ref" href="#XREFrange">range</a>, <a class="ref" href="#XREFiqr">iqr</a>, <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFmedian">median</a>.
</p></dd></dl>


<p>In addition to knowing the size of a dispersion it is useful to know the shape
of the data set.  For example, are data points massed to the left or right
of the mean?  Octave provides several common measures to describe the shape
of the data set.  Octave can also calculate moments allowing arbitrary shape
measures to be developed.
</p>
<a class="anchor" id="XREFvar"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-var"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-var"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-1"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>)</code><a class="copiable-link" href="#index-var-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-2"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-var-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-3"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-var-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-4"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <code class="code">&quot;all&quot;</code>)</code><a class="copiable-link" href="#index-var-4"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-5"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(&hellip;, <var class="var">nanflag</var>)</code><a class="copiable-link" href="#index-var-5"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-6"><span><code class="def-type">[<var class="var">v</var>, <var class="var">m</var>] =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-var-6"> &para;</a></span></dt>
<dd><p>Compute the variance of the elements of the vector <var class="var">x</var>.
</p>
<p>The variance is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">var (<var class="var">x</var>) = (1 / (N-1)) * SUM_i ((<var class="var">x</var>(i) - mean(<var class="var">x</var>))^2)
</pre></div></div>

<p>where <em class="math">N</em> is the number of elements of <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is an array, compute the variance along the first non-singleton
dimensions of <var class="var">x</var>.
</p>
<p>The optional argument <var class="var">w</var> determines the weighting scheme to use.  Valid
values are:
</p>
<dl class="table">
<dt>0 [default]:</dt>
<dd><p>Normalize with <em class="math">N-1</em> (population variance).  This provides the square
root of the best unbiased estimator of the variance.
</p>
</dd>
<dt>1:</dt>
<dd><p>Normalize with <em class="math">N</em> (sample variance).  This provides the square root of
the second moment around the mean.
</p>
</dd>
<dt>a vector:</dt>
<dd><p>Compute the weighted variance with non-negative weights.  The length of
<var class="var">w</var> must equal the size of <var class="var">x</var> in the operating dimension.  NaN
values are permitted in <var class="var">w</var>, will be multiplied with the associated
values in <var class="var">x</var>, and can be excluded by the <var class="var">nanflag</var> option.
</p>
</dd>
<dt>an array:</dt>
<dd><p>Similar to vector weights, but <var class="var">w</var> must be the same size as <var class="var">x</var>.  If
the operating dimension is supplied as <var class="var">vecdim</var> or <code class="code">&quot;all&quot;</code> and
<var class="var">w</var> is not a scalar, <var class="var">w</var> must be an same-sized array.
</p></dd>
</dl>

<p>Note: <var class="var">w</var> must always be specified before specifying any of the
following dimension options.  To use the default value for <var class="var">w</var> you
may pass an empty input argument [].
</p>
<p>The optional variable <var class="var">dim</var> forces <code class="code">var</code> to operate over the
specified dimension, which must be a positive integer-valued number.
Specifying any singleton dimension in <var class="var">x</var>, including any dimension
exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in a variance of 0.
</p>
<p>Specifying the dimensions as  <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the variance calculated over the array slice defined
by <var class="var">vecdim</var>.  If <var class="var">vecdim</var> indexes all dimensions of <var class="var">x</var>, then it
is equivalent to the option <code class="code">&quot;all&quot;</code>.  Any dimension in <var class="var">vecdim</var>
greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">&quot;all&quot;</code> will force <code class="code">var</code> to
operate on all elements of <var class="var">x</var>, and is equivalent to <code class="code">var
(<var class="var">x</var>(:))</code>.
</p>
<p>The optional variable <var class="var">nanflag</var> specifies whether to include or exclude
NaN values from the calculation using any of the previously specified input
argument combinations.  The default value for <var class="var">nanflag</var> is
<code class="code">&quot;includenan&quot;</code> which keeps NaN values in the calculation.  To
exclude NaN values set the value of <var class="var">nanflag</var> to <code class="code">&quot;omitnan&quot;</code>.
The output will still contain NaN values if <var class="var">x</var> consists of all NaN
values in the operating dimension.
</p>
<p>The optional second output variable <var class="var">m</var> contains the mean of the
elements of <var class="var">x</var> used to calculate the variance.  If <var class="var">v</var> is the
weighted variance, then <var class="var">m</var> is also the weighted mean.
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="Correlation-and-Regression-Analysis.html#XREFcov">cov</a>, <a class="ref" href="#XREFskewness">skewness</a>, <a class="ref" href="#XREFkurtosis">kurtosis</a>, <a class="ref" href="#XREFmoment">moment</a>.
</p></dd></dl>


<a class="anchor" id="XREFskewness"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-skewness"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">skewness</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-skewness"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-skewness-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">skewness</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">flag</var>)</code><a class="copiable-link" href="#index-skewness-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-skewness-2"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">skewness</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">flag</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-skewness-2"> &para;</a></span></dt>
<dd><p>Compute the sample skewness of the elements of <var class="var">x</var>.
</p>
<p>The sample skewness is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">               mean ((<var class="var">x</var> - mean (<var class="var">x</var>)).^3)
skewness (<var class="var">X</var>) = ------------------------.
                      std (<var class="var">x</var>).^3
</pre></div></div>


<p>The optional argument <var class="var">flag</var> controls which normalization is used.
If <var class="var">flag</var> is equal to 1 (default value, used when <var class="var">flag</var> is omitted
or empty), return the sample skewness as defined above.  If <var class="var">flag</var> is
equal to 0, return the adjusted skewness coefficient instead:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">                  sqrt (N*(N-1))   mean ((<var class="var">x</var> - mean (<var class="var">x</var>)).^3)
skewness (<var class="var">X</var>, 0) = -------------- * ------------------------.
                      (N - 2)             std (<var class="var">x</var>).^3
</pre></div></div>

<p>where <em class="math">N</em> is the length of the <var class="var">x</var> vector.
</p>
<p>The adjusted skewness coefficient is obtained by replacing the sample second
and third central moments by their bias-corrected versions.
</p>
<p>If <var class="var">x</var> is a matrix, or more generally a multi-dimensional array, return
the skewness along the first non-singleton dimension.  If the optional
<var class="var">dim</var> argument is given, operate along this dimension.
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFkurtosis">kurtosis</a>, <a class="ref" href="#XREFmoment">moment</a>.
</p></dd></dl>


<a class="anchor" id="XREFkurtosis"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-kurtosis"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">kurtosis</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-kurtosis"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-kurtosis-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">kurtosis</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">flag</var>)</code><a class="copiable-link" href="#index-kurtosis-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-kurtosis-2"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">kurtosis</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">flag</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-kurtosis-2"> &para;</a></span></dt>
<dd><p>Compute the sample kurtosis of the elements of <var class="var">x</var>.
</p>
<p>The sample kurtosis is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">     mean ((<var class="var">x</var> - mean (<var class="var">x</var>)).^4)
k1 = ------------------------
            std (<var class="var">x</var>).^4
</pre></div></div>


<p>The optional argument <var class="var">flag</var> controls which normalization is used.
If <var class="var">flag</var> is equal to 1 (default value, used when <var class="var">flag</var> is omitted
or empty), return the sample kurtosis as defined above.  If <var class="var">flag</var> is
equal to 0, return the &quot;bias-corrected&quot;<!-- /@w -->&nbsp;kurtosis coefficient instead:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">              N - 1
k0 = 3 + -------------- * ((N + 1) * k1 - 3 * (N - 1))
         (N - 2)(N - 3)
</pre></div></div>

<p>where <em class="math">N</em> is the length of the <var class="var">x</var> vector.
</p>
<p>The bias-corrected kurtosis coefficient is obtained by replacing the sample
second and fourth central moments by their unbiased versions.  It is an
unbiased estimate of the population kurtosis for normal populations.
</p>
<p>If <var class="var">x</var> is a matrix, or more generally a multi-dimensional array, return
the kurtosis along the first non-singleton dimension.  If the optional
<var class="var">dim</var> argument is given, operate along this dimension.
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFskewness">skewness</a>, <a class="ref" href="#XREFmoment">moment</a>.
</p></dd></dl>


<a class="anchor" id="XREFmoment"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-moment"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>)</code><a class="copiable-link" href="#index-moment"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-moment-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">type</var>)</code><a class="copiable-link" href="#index-moment-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-moment-2"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-moment-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-moment-3"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">type</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-moment-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-moment-4"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>, <var class="var">type</var>)</code><a class="copiable-link" href="#index-moment-4"> &para;</a></span></dt>
<dd><p>Compute the <var class="var">p</var>-th central moment of the vector <var class="var">x</var>.
</p>
<p>The <var class="var">p</var>-th central moment of <var class="var">x</var> is defined as:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">1/N SUM_i (<var class="var">x</var>(i) - mean(<var class="var">x</var>))^<var class="var">p</var>
</pre></div></div>

<p>where <em class="math">N</em> is the length of the <var class="var">x</var> vector.
</p>

<p>If <var class="var">x</var> is a matrix, return the row vector containing the <var class="var">p</var>-th
central moment of each column.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p>The optional string <var class="var">type</var> specifies the type of moment to be computed.
Valid options are:
</p>
<dl class="table">
<dt><code class="code">&quot;c&quot;</code></dt>
<dd><p>Central Moment (default).
</p>
</dd>
<dt><code class="code">&quot;a&quot;</code></dt>
<dt><code class="code">&quot;ac&quot;</code></dt>
<dd><p>Absolute Central Moment.  The moment about the mean ignoring sign
defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">1/N SUM_i (abs (<var class="var">x</var>(i) - mean(<var class="var">x</var>)))^<var class="var">p</var>
</pre></div></div>


</dd>
<dt><code class="code">&quot;r&quot;</code></dt>
<dd><p>Raw Moment.  The moment about zero defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">moment (<var class="var">x</var>) = 1/N SUM_i <var class="var">x</var>(i)^<var class="var">p</var>
</pre></div></div>


</dd>
<dt><code class="code">&quot;ar&quot;</code></dt>
<dd><p>Absolute Raw Moment.  The moment about zero ignoring sign defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">1/N SUM_i ( abs (<var class="var">x</var>(i)) )^<var class="var">p</var>
</pre></div></div>

</dd>
</dl>

<p>If both <var class="var">type</var> and <var class="var">dim</var> are given they may appear in any order.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFskewness">skewness</a>, <a class="ref" href="#XREFkurtosis">kurtosis</a>.
</p></dd></dl>


<a class="anchor" id="XREFquantile"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-quantile"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quantile</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-quantile"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-quantile-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quantile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>)</code><a class="copiable-link" href="#index-quantile-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-quantile-2"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quantile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-quantile-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-quantile-3"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quantile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>, <var class="var">method</var>)</code><a class="copiable-link" href="#index-quantile-3"> &para;</a></span></dt>
<dd><p>For a sample, <var class="var">x</var>, calculate the quantiles, <var class="var">q</var>, corresponding to
the cumulative probability values in <var class="var">p</var>.  All non-numeric values (NaNs)
of <var class="var">x</var> are ignored.
</p>
<p>If <var class="var">x</var> is a matrix, compute the quantiles for each column and
return them in a matrix, such that the i-th row of <var class="var">q</var> contains
the <var class="var">p</var>(i)th quantiles of each column of <var class="var">x</var>.
</p>
<p>If <var class="var">p</var> is unspecified, return the quantiles for
<code class="code">[0.00 0.25 0.50 0.75 1.00]</code>.
The optional argument <var class="var">dim</var> determines the dimension along which
the quantiles are calculated.  If <var class="var">dim</var> is omitted it defaults to
the first non-singleton dimension.
</p>
<p>The methods available to calculate sample quantiles are the nine methods
used by R (<a class="url" href="https://www.r-project.org/">https://www.r-project.org/</a>).  The default value is
<var class="var">method</var>&nbsp;=&nbsp;5<!-- /@w -->.
</p>
<p>Discontinuous sample quantile methods 1, 2, and 3
</p>
<ol class="enumerate">
<li> Method 1: Inverse of empirical distribution function.

</li><li> Method 2: Similar to method 1 but with averaging at discontinuities.

</li><li> Method 3: SAS definition: nearest even order statistic.
</li></ol>

<p>Continuous sample quantile methods 4 through 9, where
<var class="var">p</var>(k)
is the linear
interpolation function respecting each method&rsquo;s representative cdf.
</p>
<ol class="enumerate" start="4">
<li> Method 4:
<var class="var">p</var>(k) = k / N.
That is, linear interpolation of the empirical cdf, where <em class="math">N</em> is the
length of <var class="var">P</var>.

</li><li> Method 5:
<var class="var">p</var>(k) = (k - 0.5) / N.
That is, a piecewise linear function where the knots are the values midway
through the steps of the empirical cdf.

</li><li> Method 6:
<var class="var">p</var>(k) = k / (N + 1).

</li><li> Method 7:
<var class="var">p</var>(k) = (k - 1) / (N - 1).

</li><li> Method 8:
<var class="var">p</var>(k) = (k - 1/3) / (N + 1/3).
The resulting quantile estimates are approximately median-unbiased
regardless of the distribution of <var class="var">x</var>.

</li><li> Method 9:
<var class="var">p</var>(k) = (k - 3/8) / (N + 1/4).
The resulting quantile estimates are approximately unbiased for the
expected order statistics if <var class="var">x</var> is normally distributed.
</li></ol>

<p>Hyndman and Fan (1996) recommend method 8.  Maxima, S, and R
(versions prior to 2.0.0) use 7 as their default.  Minitab and SPSS
use method 6.  <small class="sc">MATLAB</small> uses method 5.
</p>
<p>References:
</p>
<ul class="itemize mark-bullet">
<li>Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
The New S Language.  Wadsworth &amp; Brooks/Cole.

</li><li>Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in
statistical packages, American Statistician, 50, 361&ndash;365.

</li><li>R: A Language and Environment for Statistical Computing;
<a class="url" href="https://cran.r-project.org/doc/manuals/fullrefman.pdf">https://cran.r-project.org/doc/manuals/fullrefman.pdf</a>.
</li></ul>

<p>Examples:
</p>
<div class="example smallexample">
<div class="group"><pre class="example-preformatted">x = randi (1000, [10, 1]);  # Create empirical data in range 1-1000
q = quantile (x, [0, 1]);   # Return minimum, maximum of distribution
q = quantile (x, [0.25 0.5 0.75]); # Return quartiles of distribution
</pre></div></div>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFprctile">prctile</a>.
</p></dd></dl>


<a class="anchor" id="XREFprctile"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-prctile"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">prctile</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-prctile"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-prctile-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">prctile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>)</code><a class="copiable-link" href="#index-prctile-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-prctile-2"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">prctile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-prctile-2"> &para;</a></span></dt>
<dd><p>For a sample <var class="var">x</var>, compute the quantiles, <var class="var">q</var>, corresponding
to the cumulative probability values, <var class="var">p</var>, in percent.
</p>
<p>If <var class="var">x</var> is a matrix, compute the percentiles for each column and return
them in a matrix, such that the i-th row of <var class="var">q</var> contains the
<var class="var">p</var>(i)th percentiles of each column of <var class="var">x</var>.
</p>
<p>If <var class="var">p</var> is unspecified, return the quantiles for <code class="code">[0 25 50 75 100]</code>.
</p>
<p>The optional argument <var class="var">dim</var> determines the dimension along which the
percentiles are calculated.  If <var class="var">dim</var> is omitted it defaults to the
first non-singleton dimension.
</p>
<p>Programming Note: All non-numeric values (NaNs) of <var class="var">x</var> are ignored.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFquantile">quantile</a>.
</p></dd></dl>


<p>A summary view of a data set can be generated quickly with the
<code class="code">statistics</code> function.
</p>
<a class="anchor" id="XREFstatistics"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-statistics"><span><code class="def-type"><var class="var">stats</var> =</code> <strong class="def-name">statistics</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-statistics"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-statistics-1"><span><code class="def-type"><var class="var">stats</var> =</code> <strong class="def-name">statistics</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-statistics-1"> &para;</a></span></dt>
<dd><p>Return a vector with the minimum, first quartile, median, third quartile,
maximum, mean, standard deviation, skewness, and kurtosis of the elements of
the vector <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is a matrix, calculate statistics over the first non-singleton
dimension.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Utility-Functions.html#XREFmin">min</a>, <a class="ref" href="Utility-Functions.html#XREFmax">max</a>, <a class="ref" href="#XREFmedian">median</a>, <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFskewness">skewness</a>, <a class="ref" href="#XREFkurtosis">kurtosis</a>.
</p></dd></dl>


</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Statistics-on-Sliding-Windows-of-Data.html">Statistics on Sliding Windows of Data</a>, Up: <a href="Statistics.html">Statistics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>