1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Descriptive Statistics (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Descriptive Statistics (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Descriptive Statistics (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html" rel="up" title="Statistics">
<link href="Statistics-on-Sliding-Windows-of-Data.html" rel="next" title="Statistics on Sliding Windows of Data">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
ul.mark-bullet {list-style-type: disc}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="section-level-extent" id="Descriptive-Statistics">
<div class="nav-panel">
<p>
Next: <a href="Statistics-on-Sliding-Windows-of-Data.html" accesskey="n" rel="next">Statistics on Sliding Windows of Data</a>, Up: <a href="Statistics.html" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Descriptive-Statistics-1"><span>26.1 Descriptive Statistics<a class="copiable-link" href="#Descriptive-Statistics-1"> ¶</a></span></h3>
<p>One principal goal of descriptive statistics is to represent the essence of a
large data set concisely. Octave provides the mean, median, and mode functions
which all summarize a data set with just a single number corresponding to
the central tendency of the data.
</p>
<a class="anchor" id="XREFmean"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-mean"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-mean"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-mean-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-2"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-mean-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-3"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(<var class="var">x</var>, "all")</code><a class="copiable-link" href="#index-mean-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-4"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(…, <var class="var">nanflag</var>)</code><a class="copiable-link" href="#index-mean-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mean-5"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mean</strong> <code class="def-code-arguments">(…, <var class="var">outtype</var>)</code><a class="copiable-link" href="#index-mean-5"> ¶</a></span></dt>
<dd><p>Compute the mean of the elements of <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is a vector, then <code class="code">mean (<var class="var">x</var>)</code> returns the mean of the
elements in <var class="var">x</var> defined as
</p>
<div class="example">
<pre class="example-preformatted">mean (<var class="var">x</var>) = SUM_i <var class="var">x</var>(i) / N
</pre></div>
<p>where <em class="math">N</em> is the number of elements in <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is an array, then <code class="code">mean(<var class="var">x</var>)</code> computes the mean along
the first non-singleton dimension of <var class="var">x</var>.
</p>
<p>The optional variable <var class="var">dim</var> forces <code class="code">mean</code> to operate over the
specified dimension, which must be a positive integer-valued number.
Specifying any singleton dimension in <var class="var">x</var>, including any dimension
exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in a mean equal to <var class="var">x</var>.
</p>
<p>Specifying the dimensions as <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the mean over the array slice defined by
<var class="var">vecdim</var>. If <var class="var">vecdim</var> indexes all dimensions of <var class="var">x</var>, then it is
equivalent to the option <code class="code">"all"</code>. Any dimension in <var class="var">vecdim</var>
greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">"all"</code> will force <code class="code">mean</code> to operate
on all elements of <var class="var">x</var>, and is equivalent to <code class="code">mean (<var class="var">x</var>(:))</code>.
</p>
<p>The optional input <var class="var">outtype</var> specifies the data type that is returned.
<var class="var">outtype</var> can take the following values:
</p>
<dl class="table">
<dt><code class="code">'default'</code> : Output is of type double, unless the input is</dt>
<dd><p>single in which case the output is of type single.
</p>
</dd>
<dt><code class="code">'double'</code> : Output is of type double.</dt>
<dt><code class="code">'native'</code> : Output is of the same type as the input as reported</dt>
<dd><p>by (<code class="code">class (<var class="var">x</var>)</code>), unless the input is logical in which case the
output is of type double.
</p></dd>
</dl>
<p>The optional variable <var class="var">nanflag</var> specifies whether to include or exclude
NaN values from the calculation using any of the previously specified input
argument combinations. The default value for <var class="var">nanflag</var> is
<code class="code">"includenan"</code> which keeps NaN values in the calculation. To exclude
NaN values set the value of <var class="var">nanflag</var> to <code class="code">"omitnan"</code>. The output
will still contain NaN values if <var class="var">x</var> consists of all NaN values in the
operating dimension.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmedian">median</a>, <a class="ref" href="#XREFmode">mode</a>, <a class="ref" href="Statistics-on-Sliding-Windows-of-Data.html#XREFmovmean">movmean</a>.
</p></dd></dl>
<a class="anchor" id="XREFmedian"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-median"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-median"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-median-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-2"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-median-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-3"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(<var class="var">x</var>, "all")</code><a class="copiable-link" href="#index-median-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-4"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(…, <var class="var">nanflag</var>)</code><a class="copiable-link" href="#index-median-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-median-5"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">median</strong> <code class="def-code-arguments">(…, <var class="var">outtype</var>)</code><a class="copiable-link" href="#index-median-5"> ¶</a></span></dt>
<dd><p>Compute the median value of the elements of <var class="var">x</var>.
</p>
<p>When the elements of <var class="var">x</var> are sorted, say
<code class="code"><var class="var">s</var> = sort (<var class="var">x</var>)</code>, the median is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> | <var class="var">s</var>(ceil (N/2)) N odd
median (<var class="var">x</var>) = |
| (<var class="var">s</var>(N/2) + <var class="var">s</var>(N/2+1))/2 N even
</pre></div></div>
<p>If <var class="var">x</var> is an array, then <code class="code">median (<var class="var">x</var>)</code> operates along the
first non-singleton dimension of <var class="var">x</var>.
</p>
<p>The optional variable <var class="var">dim</var> forces <code class="code">median</code> to operate over the
specified dimension, which must be a positive integer-valued number.
Specifying any singleton dimension in <var class="var">x</var>, including any dimension
exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in a median equal to <var class="var">x</var>.
</p>
<p>Specifying the dimensions as <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the median over the array slice defined by
<var class="var">vecdim</var>. If <var class="var">vecdim</var> indexes all dimensions of <var class="var">x</var>, then it is
equivalent to the option <code class="code">"all"</code>. Any dimension in <var class="var">vecdim</var>
greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">"all"</code> will force <code class="code">median</code> to
operate on all elements of <var class="var">x</var>, and is equivalent to
<code class="code">median (<var class="var">x</var>(:))</code>.
</p>
<p><code class="code">median (…, <var class="var">outtype</var>)</code> returns the median with a specified
data type, using any of the input arguments in the previous syntaxes.
<var class="var">outtype</var> can take the following values:
</p>
<dl class="table">
<dt><code class="code">"default"</code></dt>
<dd><p>Output is of type double, unless the input is single in which case the
output is of type single.
</p>
</dd>
<dt><code class="code">"double"</code></dt>
<dd><p>Output is of type double.
</p>
</dd>
<dt><code class="code">"native"</code>.</dt>
<dd><p>Output is of the same type as the input (<code class="code">class (<var class="var">x</var>)</code>), unless the
input is logical in which case the output is of type double.
</p></dd>
</dl>
<p>The optional variable <var class="var">nanflag</var> specifies whether to include or exclude
NaN values from the calculation using any of the previously specified input
argument combinations. The default value for <var class="var">nanflag</var> is
<code class="code">"includenan"</code> which keeps NaN values in the calculation. To
exclude NaN values set the value of <var class="var">nanflag</var> to <code class="code">"omitnan"</code>.
The output will still contain NaN values if <var class="var">x</var> consists of all NaN
values in the operating dimension.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFmode">mode</a>, <a class="ref" href="Statistics-on-Sliding-Windows-of-Data.html#XREFmovmedian">movmedian</a>.
</p></dd></dl>
<a class="anchor" id="XREFmode"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-mode"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mode</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-mode"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mode-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mode</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-mode-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mode-2"><span><code class="def-type">[<var class="var">m</var>, <var class="var">f</var>, <var class="var">c</var>] =</code> <strong class="def-name">mode</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-mode-2"> ¶</a></span></dt>
<dd><p>Compute the most frequently occurring value in a dataset (mode).
</p>
<p><code class="code">mode</code> determines the frequency of values along the first non-singleton
dimension and returns the value with the highest frequency. If two, or
more, values have the same frequency <code class="code">mode</code> returns the smallest.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p>The return variable <var class="var">f</var> is the number of occurrences of the mode in
the dataset.
</p>
<p>The cell array <var class="var">c</var> contains all of the elements with the maximum
frequency.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFmedian">median</a>.
</p></dd></dl>
<p>Using just one number, such as the mean, to represent an entire data set may
not give an accurate picture of the data. One way to characterize the fit is
to measure the dispersion of the data. Octave provides several functions for
measuring dispersion.
</p>
<a class="anchor" id="XREFbounds"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-bounds"><span><code class="def-type">[<var class="var">s</var>, <var class="var">l</var>] =</code> <strong class="def-name">bounds</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-bounds"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-bounds-1"><span><code class="def-type">[<var class="var">s</var>, <var class="var">l</var>] =</code> <strong class="def-name">bounds</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-bounds-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-bounds-2"><span><code class="def-type">[<var class="var">s</var>, <var class="var">l</var>] =</code> <strong class="def-name">bounds</strong> <code class="def-code-arguments">(…, "nanflag")</code><a class="copiable-link" href="#index-bounds-2"> ¶</a></span></dt>
<dd><p>Return the smallest and largest values of the input data <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is a vector, the bounds are calculated over the elements of
<var class="var">x</var>. If <var class="var">x</var> is a matrix, the bounds are calculated for each column.
For a multi-dimensional array, the bounds are calculated over the first
non-singleton dimension.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p>The optional argument <code class="code">"nanflag"</code> defaults to <code class="code">"omitnan"</code> which
does not include NaN values in the result. If the argument
<code class="code">"includenan"</code> is given, and there is a NaN present, then the result
for both smallest (<var class="var">s</var>) and largest (<var class="var">l</var>) elements will be NaN.
</p>
<p>The bounds are a quickly computed measure of the dispersion of a data set,
but are less accurate than <code class="code">iqr</code> if there are outlying data points.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFrange">range</a>, <a class="ref" href="#XREFiqr">iqr</a>, <a class="ref" href="#XREFmad">mad</a>, <a class="ref" href="#XREFstd">std</a>.
</p></dd></dl>
<a class="anchor" id="XREFrange"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-range"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">range</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-range"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-range-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">range</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-range-1"> ¶</a></span></dt>
<dd><p>Return the range, i.e., the difference between the maximum and the minimum
of the input data.
</p>
<p>If <var class="var">x</var> is a vector, the range is calculated over the elements of
<var class="var">x</var>. If <var class="var">x</var> is a matrix, the range is calculated over each column
of <var class="var">x</var>.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p>The range is a quickly computed measure of the dispersion of a data set, but
is less accurate than <code class="code">iqr</code> if there are outlying data points.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFbounds">bounds</a>, <a class="ref" href="#XREFiqr">iqr</a>, <a class="ref" href="#XREFmad">mad</a>, <a class="ref" href="#XREFstd">std</a>.
</p></dd></dl>
<a class="anchor" id="XREFiqr"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-iqr"><span><code class="def-type"><var class="var">Z</var> =</code> <strong class="def-name">iqr</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-iqr"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-iqr-1"><span><code class="def-type"><var class="var">Z</var> =</code> <strong class="def-name">iqr</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-iqr-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-iqr-2"><span><code class="def-type"><var class="var">Z</var> =</code> <strong class="def-name">iqr</strong> <code class="def-code-arguments">(<var class="var">x</var>, <code class="code">"ALL"</code>)</code><a class="copiable-link" href="#index-iqr-2"> ¶</a></span></dt>
<dd><p>Return the interquartile range of <var class="var">x</var>, defined as the distance between
the 25th and 75th percentile values of <var class="var">x</var> calculated using:
quantile (x, [0.25 0.75])
</p>
<p>If <var class="var">x</var> is a vector, <code class="code">iqr (<var class="var">x</var>)</code> will operate on the data in
<var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is a matrix, <code class="code">iqr (<var class="var">x</var>)</code> will operate independently on
each column in <var class="var">x</var> returning a row vector <var class="var">Z</var>.
</p>
<p>If <var class="var">x</var> is a n-dimensional array, <code class="code">iqr (<var class="var">x</var>)</code> will operate
independently on the first non-singleton dimension in <var class="var">x</var>, returning an
array <var class="var">Z</var> the same shape as <var class="var">x</var> with the non-singleton dimenion
reduced to 1.
</p>
<p>The optional variable <var class="var">dim</var> can be used to force <code class="code">iqr</code> to operate
over the specified dimension. <var class="var">dim</var> can either be a scalar dimension or
a vector of non-repeating dimensions over which to operate. In either case
<var class="var">dim</var> must be positive integers. A vector <var class="var">dim</var> concatenates all
specified dimensions for independent operation by <code class="code">iqr</code>.
</p>
<p>Specifying dimension <code class="code">"ALL"</code> will force <code class="code">iqr</code> to operate
on all elements of <var class="var">x</var>, and is equivalent to <code class="code">iqr (<var class="var">x</var>(:))</code>.
Similarly, specifying a vector dimension including all non-singleton
dimensions of <var class="var">x</var> is equivalent to <code class="code">iqr (<var class="var">x</var>, <code class="code">"ALL"</code>)</code>.
</p>
<p>If <var class="var">x</var> is a scalar, or only singleton dimensions are specified for
<var class="var">dim</var>, the output will be <code class="code">zeros (size (<var class="var">x</var>))</code>.
</p>
<p>As a measure of dispersion, the interquartile range is less affected by
outliers than either <code class="code">range</code> or <code class="code">std</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFbounds">bounds</a>, <a class="ref" href="#XREFmad">mad</a>, <a class="ref" href="#XREFrange">range</a>, <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFprctile">prctile</a>, <a class="ref" href="#XREFquantile">quantile</a>.
</p></dd></dl>
<a class="anchor" id="XREFmad"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-mad"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-mad"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mad-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">opt</var>)</code><a class="copiable-link" href="#index-mad-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mad-2"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">opt</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-mad-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mad-3"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">opt</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-mad-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mad-4"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">mad</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">opt</var>, "all")</code><a class="copiable-link" href="#index-mad-4"> ¶</a></span></dt>
<dd><p>Compute the mean or median absolute deviation (MAD) of the elements of
<var class="var">x</var>.
</p>
<p>The mean absolute deviation is defined as
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">mad</var> = mean (abs (<var class="var">x</var> - mean (<var class="var">x</var>)))
</pre></div>
<p>The median absolute deviation is defined as
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">mad</var> = median (abs (<var class="var">x</var> - median (<var class="var">x</var>)))
</pre></div>
<p>If <var class="var">x</var> is a vector, compute <code class="code">mad</code> for each element in <var class="var">x</var>. If
<var class="var">x</var> is an array the calculation is performed over the first
non-singleton dimension.
</p>
<p><code class="code">mad</code> excludes NaN values from calculation similar to using the
<code class="code">omitnan</code> option in <code class="code">var</code>, <code class="code">mean</code>, and <code class="code">median</code>.
</p>
<p>The optional argument <var class="var">opt</var> determines whether mean or median absolute
deviation is calculated. The default is 0 which corresponds to mean
absolute deviation; a value of 1 corresponds to median absolute deviation.
Passing an empty input [] defaults to mean absolute deviation
(<var class="var">opt</var> = 0).
</p>
<p>The optional argument <var class="var">dim</var> forces <code class="code">mad</code> to operate along the
specified dimension. Specifying any singleton dimension in <var class="var">x</var>,
including any dimension exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in
an output of 0.
</p>
<p>Specifying the dimension as <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the <code class="code">mad</code> over the array slice defined by
<var class="var">vecdim</var>. If <var class="var">vecdim</var> indexes all dimensions of <var class="var">x</var>, then it is
equivalent to the option <code class="code">"all"</code>. Any dimension included in
<var class="var">vecdim</var> greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">"all"</code> will force <code class="code">mad</code> to operate
on all elements of <var class="var">x</var>, and is equivalent to <code class="code">mad (<var class="var">x</var>(:))</code>.
</p>
<p>As a measure of dispersion, <code class="code">mad</code> is less affected by outliers than
<code class="code">std</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFbounds">bounds</a>, <a class="ref" href="#XREFrange">range</a>, <a class="ref" href="#XREFiqr">iqr</a>, <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFmedian">median</a>.
</p></dd></dl>
<a class="anchor" id="XREFmeansq"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-meansq"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">meansq</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-meansq"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meansq-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">meansq</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-meansq-1"> ¶</a></span></dt>
<dd><p>Compute the mean square of the elements of the vector <var class="var">x</var>.
</p>
<p>The mean square is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">meansq (<var class="var">x</var>) = 1/N SUM_i <var class="var">x</var>(i)^2
</pre></div></div>
<p>where <em class="math">N</em> is the length of the <var class="var">x</var> vector.
</p>
<p>If <var class="var">x</var> is a matrix, return a row vector containing the mean square
of each column.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFmoment">moment</a>.
</p></dd></dl>
<a class="anchor" id="XREFstd"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-std"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-std"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-1"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>)</code><a class="copiable-link" href="#index-std-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-2"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-std-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-3"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-std-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-4"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <code class="code">"ALL"</code>)</code><a class="copiable-link" href="#index-std-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-5"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(…, <var class="var">nanflag</var>)</code><a class="copiable-link" href="#index-std-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-std-6"><span><code class="def-type">[<var class="var">s</var>, <var class="var">m</var>] =</code> <strong class="def-name">std</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-std-6"> ¶</a></span></dt>
<dd><p>Compute the standard deviation of the elements of the vector <var class="var">x</var>.
</p>
<p>The standard deviation is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">std (<var class="var">x</var>) = sqrt ((1 / (N-1)) * SUM_i ((<var class="var">x</var>(i) - mean(<var class="var">x</var>))^2))
</pre></div></div>
<p>where <em class="math">N</em> is the number of elements of <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is an array, compute the standard deviation along the first
non-singleton dimensions of <var class="var">x</var>.
</p>
<p>The optional argument <var class="var">w</var> determines the weighting scheme to use. Valid
values are:
</p>
<dl class="table">
<dt>0 [default]:</dt>
<dd><p>Normalize with <em class="math">N-1</em> (population standard deviation). This provides
the square root of the best unbiased estimator of the standard deviation.
</p>
</dd>
<dt>1:</dt>
<dd><p>Normalize with <em class="math">N</em> (sample standard deviation). This provides the
square root of the second moment around the mean.
</p>
</dd>
<dt>a vector:</dt>
<dd><p>Compute the weighted standard deviation with non-negative weights.
The length of <var class="var">w</var> must equal the size of <var class="var">x</var> in the operating
dimension. NaN values are permitted in <var class="var">w</var>, will be multiplied with the
associated values in <var class="var">x</var>, and can be excluded by the <var class="var">nanflag</var>
option.
</p>
</dd>
<dt>an array:</dt>
<dd><p>Similar to vector weights, but <var class="var">w</var> must be the same size as <var class="var">x</var>. If
the operating dimension is supplied as <var class="var">vecdim</var> or <code class="code">"all"</code> and
<var class="var">w</var> is not a scalar, <var class="var">w</var> must be an same-sized array.
</p></dd>
</dl>
<p>Note: <var class="var">w</var> must always be specified before specifying any of the
following dimension options. To use the default value for <var class="var">w</var> you
may pass an empty input argument [].
</p>
<p>The optional variable <var class="var">dim</var> forces <code class="code">std</code> to operate over the
specified dimension, which must be a positive integer-valued number.
Specifying any singleton dimension in <var class="var">x</var>, including any dimension
exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in a standard deviation of 0.
</p>
<p>Specifying the dimensions as <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the standard deviation calculated over the array
slice defined by <var class="var">vecdim</var>. If <var class="var">vecdim</var> indexes all dimensions of
<var class="var">x</var>, then it is equivalent to the option <code class="code">"all"</code>. Any
dimension in <var class="var">vecdim</var> greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">"all"</code> will force <code class="code">std</code> to
operate on all elements of <var class="var">x</var>, and is equivalent to
<code class="code">std (<var class="var">x</var>(:))</code>.
</p>
<p>The optional variable <var class="var">nanflag</var> specifies whether to include or exclude
NaN values from the calculation using any of the previously specified input
argument combinations. The default value for <var class="var">nanflag</var> is
<code class="code">"includenan"</code> which keeps NaN values in the calculation. To
exclude NaN values set the value of <var class="var">nanflag</var> to <code class="code">"omitnan"</code>.
The output will still contain NaN values if <var class="var">x</var> consists of all NaN
values in the operating dimension.
</p>
<p>The optional second output variable <var class="var">m</var> contains the mean of the
elements of <var class="var">x</var> used to calculate the standard deviation. If <var class="var">v</var> is
the weighted standard deviation, then <var class="var">m</var> is also the weighted mean.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFbounds">bounds</a>, <a class="ref" href="#XREFmad">mad</a>, <a class="ref" href="#XREFrange">range</a>, <a class="ref" href="#XREFiqr">iqr</a>, <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFmedian">median</a>.
</p></dd></dl>
<p>In addition to knowing the size of a dispersion it is useful to know the shape
of the data set. For example, are data points massed to the left or right
of the mean? Octave provides several common measures to describe the shape
of the data set. Octave can also calculate moments allowing arbitrary shape
measures to be developed.
</p>
<a class="anchor" id="XREFvar"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-var"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-var"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-1"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>)</code><a class="copiable-link" href="#index-var-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-2"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-var-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-3"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <var class="var">vecdim</var>)</code><a class="copiable-link" href="#index-var-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-4"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">w</var>, <code class="code">"all"</code>)</code><a class="copiable-link" href="#index-var-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-5"><span><code class="def-type"><var class="var">v</var> =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(…, <var class="var">nanflag</var>)</code><a class="copiable-link" href="#index-var-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-var-6"><span><code class="def-type">[<var class="var">v</var>, <var class="var">m</var>] =</code> <strong class="def-name">var</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-var-6"> ¶</a></span></dt>
<dd><p>Compute the variance of the elements of the vector <var class="var">x</var>.
</p>
<p>The variance is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">var (<var class="var">x</var>) = (1 / (N-1)) * SUM_i ((<var class="var">x</var>(i) - mean(<var class="var">x</var>))^2)
</pre></div></div>
<p>where <em class="math">N</em> is the number of elements of <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is an array, compute the variance along the first non-singleton
dimensions of <var class="var">x</var>.
</p>
<p>The optional argument <var class="var">w</var> determines the weighting scheme to use. Valid
values are:
</p>
<dl class="table">
<dt>0 [default]:</dt>
<dd><p>Normalize with <em class="math">N-1</em> (population variance). This provides the square
root of the best unbiased estimator of the variance.
</p>
</dd>
<dt>1:</dt>
<dd><p>Normalize with <em class="math">N</em> (sample variance). This provides the square root of
the second moment around the mean.
</p>
</dd>
<dt>a vector:</dt>
<dd><p>Compute the weighted variance with non-negative weights. The length of
<var class="var">w</var> must equal the size of <var class="var">x</var> in the operating dimension. NaN
values are permitted in <var class="var">w</var>, will be multiplied with the associated
values in <var class="var">x</var>, and can be excluded by the <var class="var">nanflag</var> option.
</p>
</dd>
<dt>an array:</dt>
<dd><p>Similar to vector weights, but <var class="var">w</var> must be the same size as <var class="var">x</var>. If
the operating dimension is supplied as <var class="var">vecdim</var> or <code class="code">"all"</code> and
<var class="var">w</var> is not a scalar, <var class="var">w</var> must be an same-sized array.
</p></dd>
</dl>
<p>Note: <var class="var">w</var> must always be specified before specifying any of the
following dimension options. To use the default value for <var class="var">w</var> you
may pass an empty input argument [].
</p>
<p>The optional variable <var class="var">dim</var> forces <code class="code">var</code> to operate over the
specified dimension, which must be a positive integer-valued number.
Specifying any singleton dimension in <var class="var">x</var>, including any dimension
exceeding <code class="code">ndims (<var class="var">x</var>)</code>, will result in a variance of 0.
</p>
<p>Specifying the dimensions as <var class="var">vecdim</var>, a vector of non-repeating
dimensions, will return the variance calculated over the array slice defined
by <var class="var">vecdim</var>. If <var class="var">vecdim</var> indexes all dimensions of <var class="var">x</var>, then it
is equivalent to the option <code class="code">"all"</code>. Any dimension in <var class="var">vecdim</var>
greater than <code class="code">ndims (<var class="var">x</var>)</code> is ignored.
</p>
<p>Specifying the dimension as <code class="code">"all"</code> will force <code class="code">var</code> to
operate on all elements of <var class="var">x</var>, and is equivalent to <code class="code">var
(<var class="var">x</var>(:))</code>.
</p>
<p>The optional variable <var class="var">nanflag</var> specifies whether to include or exclude
NaN values from the calculation using any of the previously specified input
argument combinations. The default value for <var class="var">nanflag</var> is
<code class="code">"includenan"</code> which keeps NaN values in the calculation. To
exclude NaN values set the value of <var class="var">nanflag</var> to <code class="code">"omitnan"</code>.
The output will still contain NaN values if <var class="var">x</var> consists of all NaN
values in the operating dimension.
</p>
<p>The optional second output variable <var class="var">m</var> contains the mean of the
elements of <var class="var">x</var> used to calculate the variance. If <var class="var">v</var> is the
weighted variance, then <var class="var">m</var> is also the weighted mean.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="Correlation-and-Regression-Analysis.html#XREFcov">cov</a>, <a class="ref" href="#XREFskewness">skewness</a>, <a class="ref" href="#XREFkurtosis">kurtosis</a>, <a class="ref" href="#XREFmoment">moment</a>.
</p></dd></dl>
<a class="anchor" id="XREFskewness"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-skewness"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">skewness</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-skewness"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-skewness-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">skewness</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">flag</var>)</code><a class="copiable-link" href="#index-skewness-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-skewness-2"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">skewness</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">flag</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-skewness-2"> ¶</a></span></dt>
<dd><p>Compute the sample skewness of the elements of <var class="var">x</var>.
</p>
<p>The sample skewness is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> mean ((<var class="var">x</var> - mean (<var class="var">x</var>)).^3)
skewness (<var class="var">X</var>) = ------------------------.
std (<var class="var">x</var>).^3
</pre></div></div>
<p>The optional argument <var class="var">flag</var> controls which normalization is used.
If <var class="var">flag</var> is equal to 1 (default value, used when <var class="var">flag</var> is omitted
or empty), return the sample skewness as defined above. If <var class="var">flag</var> is
equal to 0, return the adjusted skewness coefficient instead:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> sqrt (N*(N-1)) mean ((<var class="var">x</var> - mean (<var class="var">x</var>)).^3)
skewness (<var class="var">X</var>, 0) = -------------- * ------------------------.
(N - 2) std (<var class="var">x</var>).^3
</pre></div></div>
<p>where <em class="math">N</em> is the length of the <var class="var">x</var> vector.
</p>
<p>The adjusted skewness coefficient is obtained by replacing the sample second
and third central moments by their bias-corrected versions.
</p>
<p>If <var class="var">x</var> is a matrix, or more generally a multi-dimensional array, return
the skewness along the first non-singleton dimension. If the optional
<var class="var">dim</var> argument is given, operate along this dimension.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFkurtosis">kurtosis</a>, <a class="ref" href="#XREFmoment">moment</a>.
</p></dd></dl>
<a class="anchor" id="XREFkurtosis"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-kurtosis"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">kurtosis</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-kurtosis"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-kurtosis-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">kurtosis</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">flag</var>)</code><a class="copiable-link" href="#index-kurtosis-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-kurtosis-2"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">kurtosis</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">flag</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-kurtosis-2"> ¶</a></span></dt>
<dd><p>Compute the sample kurtosis of the elements of <var class="var">x</var>.
</p>
<p>The sample kurtosis is defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> mean ((<var class="var">x</var> - mean (<var class="var">x</var>)).^4)
k1 = ------------------------
std (<var class="var">x</var>).^4
</pre></div></div>
<p>The optional argument <var class="var">flag</var> controls which normalization is used.
If <var class="var">flag</var> is equal to 1 (default value, used when <var class="var">flag</var> is omitted
or empty), return the sample kurtosis as defined above. If <var class="var">flag</var> is
equal to 0, return the "bias-corrected"<!-- /@w --> kurtosis coefficient instead:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> N - 1
k0 = 3 + -------------- * ((N + 1) * k1 - 3 * (N - 1))
(N - 2)(N - 3)
</pre></div></div>
<p>where <em class="math">N</em> is the length of the <var class="var">x</var> vector.
</p>
<p>The bias-corrected kurtosis coefficient is obtained by replacing the sample
second and fourth central moments by their unbiased versions. It is an
unbiased estimate of the population kurtosis for normal populations.
</p>
<p>If <var class="var">x</var> is a matrix, or more generally a multi-dimensional array, return
the kurtosis along the first non-singleton dimension. If the optional
<var class="var">dim</var> argument is given, operate along this dimension.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFskewness">skewness</a>, <a class="ref" href="#XREFmoment">moment</a>.
</p></dd></dl>
<a class="anchor" id="XREFmoment"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-moment"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>)</code><a class="copiable-link" href="#index-moment"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-moment-1"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">type</var>)</code><a class="copiable-link" href="#index-moment-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-moment-2"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-moment-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-moment-3"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">type</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-moment-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-moment-4"><span><code class="def-type"><var class="var">m</var> =</code> <strong class="def-name">moment</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>, <var class="var">type</var>)</code><a class="copiable-link" href="#index-moment-4"> ¶</a></span></dt>
<dd><p>Compute the <var class="var">p</var>-th central moment of the vector <var class="var">x</var>.
</p>
<p>The <var class="var">p</var>-th central moment of <var class="var">x</var> is defined as:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">1/N SUM_i (<var class="var">x</var>(i) - mean(<var class="var">x</var>))^<var class="var">p</var>
</pre></div></div>
<p>where <em class="math">N</em> is the length of the <var class="var">x</var> vector.
</p>
<p>If <var class="var">x</var> is a matrix, return the row vector containing the <var class="var">p</var>-th
central moment of each column.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p>The optional string <var class="var">type</var> specifies the type of moment to be computed.
Valid options are:
</p>
<dl class="table">
<dt><code class="code">"c"</code></dt>
<dd><p>Central Moment (default).
</p>
</dd>
<dt><code class="code">"a"</code></dt>
<dt><code class="code">"ac"</code></dt>
<dd><p>Absolute Central Moment. The moment about the mean ignoring sign
defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">1/N SUM_i (abs (<var class="var">x</var>(i) - mean(<var class="var">x</var>)))^<var class="var">p</var>
</pre></div></div>
</dd>
<dt><code class="code">"r"</code></dt>
<dd><p>Raw Moment. The moment about zero defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">moment (<var class="var">x</var>) = 1/N SUM_i <var class="var">x</var>(i)^<var class="var">p</var>
</pre></div></div>
</dd>
<dt><code class="code">"ar"</code></dt>
<dd><p>Absolute Raw Moment. The moment about zero ignoring sign defined as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">1/N SUM_i ( abs (<var class="var">x</var>(i)) )^<var class="var">p</var>
</pre></div></div>
</dd>
</dl>
<p>If both <var class="var">type</var> and <var class="var">dim</var> are given they may appear in any order.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvar">var</a>, <a class="ref" href="#XREFskewness">skewness</a>, <a class="ref" href="#XREFkurtosis">kurtosis</a>.
</p></dd></dl>
<a class="anchor" id="XREFquantile"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-quantile"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quantile</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-quantile"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-quantile-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quantile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>)</code><a class="copiable-link" href="#index-quantile-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-quantile-2"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quantile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-quantile-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-quantile-3"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quantile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>, <var class="var">method</var>)</code><a class="copiable-link" href="#index-quantile-3"> ¶</a></span></dt>
<dd><p>For a sample, <var class="var">x</var>, calculate the quantiles, <var class="var">q</var>, corresponding to
the cumulative probability values in <var class="var">p</var>. All non-numeric values (NaNs)
of <var class="var">x</var> are ignored.
</p>
<p>If <var class="var">x</var> is a matrix, compute the quantiles for each column and
return them in a matrix, such that the i-th row of <var class="var">q</var> contains
the <var class="var">p</var>(i)th quantiles of each column of <var class="var">x</var>.
</p>
<p>If <var class="var">p</var> is unspecified, return the quantiles for
<code class="code">[0.00 0.25 0.50 0.75 1.00]</code>.
The optional argument <var class="var">dim</var> determines the dimension along which
the quantiles are calculated. If <var class="var">dim</var> is omitted it defaults to
the first non-singleton dimension.
</p>
<p>The methods available to calculate sample quantiles are the nine methods
used by R (<a class="url" href="https://www.r-project.org/">https://www.r-project.org/</a>). The default value is
<var class="var">method</var> = 5<!-- /@w -->.
</p>
<p>Discontinuous sample quantile methods 1, 2, and 3
</p>
<ol class="enumerate">
<li> Method 1: Inverse of empirical distribution function.
</li><li> Method 2: Similar to method 1 but with averaging at discontinuities.
</li><li> Method 3: SAS definition: nearest even order statistic.
</li></ol>
<p>Continuous sample quantile methods 4 through 9, where
<var class="var">p</var>(k)
is the linear
interpolation function respecting each method’s representative cdf.
</p>
<ol class="enumerate" start="4">
<li> Method 4:
<var class="var">p</var>(k) = k / N.
That is, linear interpolation of the empirical cdf, where <em class="math">N</em> is the
length of <var class="var">P</var>.
</li><li> Method 5:
<var class="var">p</var>(k) = (k - 0.5) / N.
That is, a piecewise linear function where the knots are the values midway
through the steps of the empirical cdf.
</li><li> Method 6:
<var class="var">p</var>(k) = k / (N + 1).
</li><li> Method 7:
<var class="var">p</var>(k) = (k - 1) / (N - 1).
</li><li> Method 8:
<var class="var">p</var>(k) = (k - 1/3) / (N + 1/3).
The resulting quantile estimates are approximately median-unbiased
regardless of the distribution of <var class="var">x</var>.
</li><li> Method 9:
<var class="var">p</var>(k) = (k - 3/8) / (N + 1/4).
The resulting quantile estimates are approximately unbiased for the
expected order statistics if <var class="var">x</var> is normally distributed.
</li></ol>
<p>Hyndman and Fan (1996) recommend method 8. Maxima, S, and R
(versions prior to 2.0.0) use 7 as their default. Minitab and SPSS
use method 6. <small class="sc">MATLAB</small> uses method 5.
</p>
<p>References:
</p>
<ul class="itemize mark-bullet">
<li>Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
The New S Language. Wadsworth & Brooks/Cole.
</li><li>Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in
statistical packages, American Statistician, 50, 361–365.
</li><li>R: A Language and Environment for Statistical Computing;
<a class="url" href="https://cran.r-project.org/doc/manuals/fullrefman.pdf">https://cran.r-project.org/doc/manuals/fullrefman.pdf</a>.
</li></ul>
<p>Examples:
</p>
<div class="example smallexample">
<div class="group"><pre class="example-preformatted">x = randi (1000, [10, 1]); # Create empirical data in range 1-1000
q = quantile (x, [0, 1]); # Return minimum, maximum of distribution
q = quantile (x, [0.25 0.5 0.75]); # Return quartiles of distribution
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFprctile">prctile</a>.
</p></dd></dl>
<a class="anchor" id="XREFprctile"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-prctile"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">prctile</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-prctile"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-prctile-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">prctile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>)</code><a class="copiable-link" href="#index-prctile-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-prctile-2"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">prctile</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-prctile-2"> ¶</a></span></dt>
<dd><p>For a sample <var class="var">x</var>, compute the quantiles, <var class="var">q</var>, corresponding
to the cumulative probability values, <var class="var">p</var>, in percent.
</p>
<p>If <var class="var">x</var> is a matrix, compute the percentiles for each column and return
them in a matrix, such that the i-th row of <var class="var">q</var> contains the
<var class="var">p</var>(i)th percentiles of each column of <var class="var">x</var>.
</p>
<p>If <var class="var">p</var> is unspecified, return the quantiles for <code class="code">[0 25 50 75 100]</code>.
</p>
<p>The optional argument <var class="var">dim</var> determines the dimension along which the
percentiles are calculated. If <var class="var">dim</var> is omitted it defaults to the
first non-singleton dimension.
</p>
<p>Programming Note: All non-numeric values (NaNs) of <var class="var">x</var> are ignored.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFquantile">quantile</a>.
</p></dd></dl>
<p>A summary view of a data set can be generated quickly with the
<code class="code">statistics</code> function.
</p>
<a class="anchor" id="XREFstatistics"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-statistics"><span><code class="def-type"><var class="var">stats</var> =</code> <strong class="def-name">statistics</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-statistics"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-statistics-1"><span><code class="def-type"><var class="var">stats</var> =</code> <strong class="def-name">statistics</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-statistics-1"> ¶</a></span></dt>
<dd><p>Return a vector with the minimum, first quartile, median, third quartile,
maximum, mean, standard deviation, skewness, and kurtosis of the elements of
the vector <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is a matrix, calculate statistics over the first non-singleton
dimension.
</p>
<p>If the optional argument <var class="var">dim</var> is given, operate along this dimension.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Utility-Functions.html#XREFmin">min</a>, <a class="ref" href="Utility-Functions.html#XREFmax">max</a>, <a class="ref" href="#XREFmedian">median</a>, <a class="ref" href="#XREFmean">mean</a>, <a class="ref" href="#XREFstd">std</a>, <a class="ref" href="#XREFskewness">skewness</a>, <a class="ref" href="#XREFkurtosis">kurtosis</a>.
</p></dd></dl>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Statistics-on-Sliding-Windows-of-Data.html">Statistics on Sliding Windows of Data</a>, Up: <a href="Statistics.html">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|