File: Differential_002dAlgebraic-Equations.html

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (715 lines) | stat: -rw-r--r-- 35,365 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Differential-Algebraic Equations (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Differential-Algebraic Equations (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Differential-Algebraic Equations (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Differential-Equations.html" rel="up" title="Differential Equations">
<link href="Matlab_002dcompatible-solvers.html" rel="next" title="Matlab-compatible solvers">
<link href="Ordinary-Differential-Equations.html" rel="prev" title="Ordinary Differential Equations">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="section-level-extent" id="Differential_002dAlgebraic-Equations">
<div class="nav-panel">
<p>
Next: <a href="Matlab_002dcompatible-solvers.html" accesskey="n" rel="next">Matlab-compatible solvers</a>, Previous: <a href="Ordinary-Differential-Equations.html" accesskey="p" rel="prev">Ordinary Differential Equations</a>, Up: <a href="Differential-Equations.html" accesskey="u" rel="up">Differential Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Differential_002dAlgebraic-Equations-1"><span>24.2 Differential-Algebraic Equations<a class="copiable-link" href="#Differential_002dAlgebraic-Equations-1"> &para;</a></span></h3>

<p>The function <code class="code">daspk</code> can be used to solve DAEs of the form
</p>
<div class="example">
<pre class="example-preformatted">0 = f (x-dot, x, t),    x(t=0) = x_0, x-dot(t=0) = x-dot_0
</pre></div>


<p>where
<em class="math">x-dot</em>
is the derivative of <em class="math">x</em>.  The equation is solved using
Petzold&rsquo;s DAE solver <small class="sc">DASPK</small>.
</p>
<a class="anchor" id="XREFdaspk"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-daspk"><span><code class="def-type">[<var class="var">x</var>, <var class="var">xdot</var>, <var class="var">istate</var>, <var class="var">msg</var>] =</code> <strong class="def-name">daspk</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">x_0</var>, <var class="var">xdot_0</var>, <var class="var">t</var>, <var class="var">t_crit</var>)</code><a class="copiable-link" href="#index-daspk"> &para;</a></span></dt>
<dd><p>Solve a set of differential-algebraic equations.
</p>
<p><code class="code">daspk</code> solves the set of equations
</p>
<div class="example">
<pre class="example-preformatted">0 = f (x, xdot, t)
</pre></div>

<p>with
</p>
<div class="example">
<pre class="example-preformatted">x(t_0) = x_0, xdot(t_0) = xdot_0
</pre></div>

<p>The solution is returned in the matrices <var class="var">x</var> and <var class="var">xdot</var>,
with each row in the result matrices corresponding to one of the
elements in the vector <var class="var">t</var>.  The first element of <var class="var">t</var>
should be <em class="math">t_0</em> and correspond to the initial state of the
system <var class="var">x_0</var> and its derivative <var class="var">xdot_0</var>, so that the first
row of the output <var class="var">x</var> is <var class="var">x_0</var> and the first row
of the output <var class="var">xdot</var> is <var class="var">xdot_0</var>.
</p>
<p>The first argument, <var class="var">fcn</var>, is a string, inline, or function handle
that names the function <em class="math">f</em> to call to compute the vector of
residuals for the set of equations.  It must have the form
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">res</var> = f (<var class="var">x</var>, <var class="var">xdot</var>, <var class="var">t</var>)
</pre></div>

<p>in which <var class="var">x</var>, <var class="var">xdot</var>, and <var class="var">res</var> are vectors, and <var class="var">t</var> is a
scalar.
</p>
<p>If <var class="var">fcn</var> is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function <em class="math">f</em> described above, and the second element names a
function to compute the modified Jacobian
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">      df       df
jac = -- + c ------
      dx     d xdot
</pre></div></div>


<p>The modified Jacobian function must have the form
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">

<var class="var">jac</var> = j (<var class="var">x</var>, <var class="var">xdot</var>, <var class="var">t</var>, <var class="var">c</var>)

</pre></div></div>

<p>The second and third arguments to <code class="code">daspk</code> specify the initial
condition of the states and their derivatives, and the fourth argument
specifies a vector of output times at which the solution is desired,
including the time corresponding to the initial condition.
</p>
<p>The set of initial states and derivatives are not strictly required to
be consistent.  If they are not consistent, you must use the
<code class="code">daspk_options</code> function to provide additional information so
that <code class="code">daspk</code> can compute a consistent starting point.
</p>
<p>The fifth argument is optional, and may be used to specify a set of
times that the DAE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.
</p>
<p>After a successful computation, the value of <var class="var">istate</var> will be
greater than zero (consistent with the Fortran version of <small class="sc">DASPK</small>).
</p>
<p>If the computation is not successful, the value of <var class="var">istate</var> will be
less than zero and <var class="var">msg</var> will contain additional information.
</p>
<p>You can use the function <code class="code">daspk_options</code> to set optional
parameters for <code class="code">daspk</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFdassl">dassl</a>.
</p></dd></dl>


<a class="anchor" id="XREFdaspk_005foptions"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-daspk_005foptions"><span><strong class="def-name">daspk_options</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-daspk_005foptions"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-daspk_005foptions-1"><span><code class="def-type">val =</code> <strong class="def-name">daspk_options</strong> <code class="def-code-arguments">(<var class="var">opt</var>)</code><a class="copiable-link" href="#index-daspk_005foptions-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-daspk_005foptions-2"><span><strong class="def-name">daspk_options</strong> <code class="def-code-arguments">(<var class="var">opt</var>, <var class="var">val</var>)</code><a class="copiable-link" href="#index-daspk_005foptions-2"> &para;</a></span></dt>
<dd><p>Query or set options for the function <code class="code">daspk</code>.
</p>
<p>When called with no arguments, the names of all available options and
their current values are displayed.
</p>
<p>Given one argument, return the value of the option <var class="var">opt</var>.
</p>
<p>When called with two arguments, <code class="code">daspk_options</code> sets the option
<var class="var">opt</var> to value <var class="var">val</var>.
</p>
<p>Options include
</p>
<dl class="table">
<dt><code class="code">&quot;absolute tolerance&quot;</code></dt>
<dd><p>Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.
</p>
</dd>
<dt><code class="code">&quot;relative tolerance&quot;</code></dt>
<dd><p>Relative tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.
</p>
<p>The local error test applied at each integration step is
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">  abs (local error in x(i))
       &lt;= rtol(i) * abs (Y(i)) + atol(i)
</pre></div></div>

</dd>
<dt><code class="code">&quot;compute consistent initial condition&quot;</code></dt>
<dd><p>Denoting the differential variables in the state vector by &lsquo;<samp class="samp">Y_d</samp>&rsquo;
and the algebraic variables by &lsquo;<samp class="samp">Y_a</samp>&rsquo;, <code class="code">ddaspk</code> can solve
one of two initialization problems:
</p>
<ol class="enumerate">
<li> Given Y_d, calculate Y_a and Y&rsquo;_d

</li><li> Given Y&rsquo;, calculate Y.
</li></ol>

<p>In either case, initial values for the given components are input, and
initial guesses for the unknown components must also be provided as
input.  Set this option to 1 to solve the first problem, or 2 to solve
the second (the default is 0, so you must provide a set of
initial conditions that are consistent).
</p>
<p>If this option is set to a nonzero value, you must also set the
<code class="code">&quot;algebraic variables&quot;</code> option to declare which variables in the
problem are algebraic.
</p>
</dd>
<dt><code class="code">&quot;use initial condition heuristics&quot;</code></dt>
<dd><p>Set to a nonzero value to use the initial condition heuristics options
described below.
</p>
</dd>
<dt><code class="code">&quot;initial condition heuristics&quot;</code></dt>
<dd><p>A vector of the following parameters that can be used to control the
initial condition calculation.
</p>
<dl class="table">
<dt><code class="code">MXNIT</code></dt>
<dd><p>Maximum number of Newton iterations (default is 5).
</p>
</dd>
<dt><code class="code">MXNJ</code></dt>
<dd><p>Maximum number of Jacobian evaluations (default is 6).
</p>
</dd>
<dt><code class="code">MXNH</code></dt>
<dd><p>Maximum number of values of the artificial stepsize parameter to be
tried if the <code class="code">&quot;compute consistent initial condition&quot;</code> option has
been set to 1 (default is 5).
</p>
<p>Note that the maximum total number of Newton iterations allowed is
<code class="code">MXNIT*MXNJ*MXNH</code> if the <code class="code">&quot;compute consistent initial
condition&quot;</code> option has been set to 1 and <code class="code">MXNIT*MXNJ</code> if it is
set to 2.
</p>
</dd>
<dt><code class="code">LSOFF</code></dt>
<dd><p>Set to a nonzero value to disable the linesearch algorithm (default is
0).
</p>
</dd>
<dt><code class="code">STPTOL</code></dt>
<dd><p>Minimum scaled step in linesearch algorithm (default is eps^(2/3)).
</p>
</dd>
<dt><code class="code">EPINIT</code></dt>
<dd><p>Swing factor in the Newton iteration convergence test.  The test is
applied to the residual vector, premultiplied by the approximate
Jacobian.  For convergence, the weighted RMS norm of this vector
(scaled by the error weights) must be less than <code class="code">EPINIT*EPCON</code>,
where <code class="code">EPCON</code> = 0.33 is the analogous test constant used in the
time steps.  The default is <code class="code">EPINIT</code> = 0.01.
</p></dd>
</dl>

</dd>
<dt><code class="code">&quot;print initial condition info&quot;</code></dt>
<dd><p>Set this option to a nonzero value to display detailed information
about the initial condition calculation (default is 0).
</p>
</dd>
<dt><code class="code">&quot;exclude algebraic variables from error test&quot;</code></dt>
<dd><p>Set to a nonzero value to exclude algebraic variables from the error
test.  You must also set the <code class="code">&quot;algebraic variables&quot;</code> option to
declare which variables in the problem are algebraic (default is 0).
</p>
</dd>
<dt><code class="code">&quot;algebraic variables&quot;</code></dt>
<dd><p>A vector of the same length as the state vector.  A nonzero element
indicates that the corresponding element of the state vector is an
algebraic variable (i.e., its derivative does not appear explicitly
in the equation set).
</p>
<p>This option is required by the
<code class="code">&quot;compute consistent initial condition&quot;</code> and
<code class="code">&quot;exclude algebraic variables from error test&quot;</code> options.
</p>
</dd>
<dt><code class="code">&quot;enforce inequality constraints&quot;</code></dt>
<dd><p>Set to one of the following values to enforce the inequality
constraints specified by the <code class="code">&quot;inequality constraint types&quot;</code>
option (default is 0).
</p>
<ol class="enumerate">
<li> To have constraint checking only in the initial condition calculation.

</li><li> To enforce constraint checking during the integration.

</li><li> To enforce both options 1 and 2.
</li></ol>

</dd>
<dt><code class="code">&quot;inequality constraint types&quot;</code></dt>
<dd><p>A vector of the same length as the state specifying the type of
inequality constraint.  Each element of the vector corresponds to an
element of the state and should be assigned one of the following
codes
</p>
<dl class="table">
<dt>-2</dt>
<dd><p>Less than zero.
</p>
</dd>
<dt>-1</dt>
<dd><p>Less than or equal to zero.
</p>
</dd>
<dt>0</dt>
<dd><p>Not constrained.
</p>
</dd>
<dt>1</dt>
<dd><p>Greater than or equal to zero.
</p>
</dd>
<dt>2</dt>
<dd><p>Greater than zero.
</p></dd>
</dl>

<p>This option only has an effect if the
<code class="code">&quot;enforce inequality constraints&quot;</code> option is nonzero.
</p>
</dd>
<dt><code class="code">&quot;initial step size&quot;</code></dt>
<dd><p>Differential-algebraic problems may occasionally suffer from severe
scaling difficulties on the first step.  If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize (default is computed
automatically).
</p>
</dd>
<dt><code class="code">&quot;maximum order&quot;</code></dt>
<dd><p>Restrict the maximum order of the solution method.  This option must
be between 1 and 5, inclusive (default is 5).
</p>
</dd>
<dt><code class="code">&quot;maximum step size&quot;</code></dt>
<dd><p>Setting the maximum stepsize will avoid passing over very large
regions (default is not specified).
</p></dd>
</dl>
</dd></dl>


<p>Octave also includes <small class="sc">DASSL</small>, an earlier version of <small class="sc">DASPK</small>,
and <small class="sc">DASRT</small>, which can be used to solve DAEs with constraints
(stopping conditions).
</p>
<a class="anchor" id="XREFdassl"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-dassl"><span><code class="def-type">[<var class="var">x</var>, <var class="var">xdot</var>, <var class="var">istate</var>, <var class="var">msg</var>] =</code> <strong class="def-name">dassl</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">x_0</var>, <var class="var">xdot_0</var>, <var class="var">t</var>, <var class="var">t_crit</var>)</code><a class="copiable-link" href="#index-dassl"> &para;</a></span></dt>
<dd><p>Solve a set of differential-algebraic equations.
</p>
<p><code class="code">dassl</code> solves the set of equations
</p>
<div class="example">
<pre class="example-preformatted">0 = f (x, xdot, t)
</pre></div>

<p>with
</p>
<div class="example">
<pre class="example-preformatted">x(t_0) = x_0, xdot(t_0) = xdot_0
</pre></div>

<p>The solution is returned in the matrices <var class="var">x</var> and <var class="var">xdot</var>,
with each row in the result matrices corresponding to one of the
elements in the vector <var class="var">t</var>.  The first element of <var class="var">t</var>
should be <em class="math">t_0</em> and correspond to the initial state of the
system <var class="var">x_0</var> and its derivative <var class="var">xdot_0</var>, so that the first
row of the output <var class="var">x</var> is <var class="var">x_0</var> and the first row
of the output <var class="var">xdot</var> is <var class="var">xdot_0</var>.
</p>
<p>The first argument, <var class="var">fcn</var>, is a string, inline, or function handle
that names the function <em class="math">f</em> to call to compute the vector of
residuals for the set of equations.  It must have the form
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">res</var> = f (<var class="var">x</var>, <var class="var">xdot</var>, <var class="var">t</var>)
</pre></div>

<p>in which <var class="var">x</var>, <var class="var">xdot</var>, and <var class="var">res</var> are vectors, and <var class="var">t</var> is a
scalar.
</p>
<p>If <var class="var">fcn</var> is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function <em class="math">f</em> described above, and the second element names a
function to compute the modified Jacobian
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">      df       df
jac = -- + c ------
      dx     d xdot
</pre></div></div>


<p>The modified Jacobian function must have the form
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">

<var class="var">jac</var> = j (<var class="var">x</var>, <var class="var">xdot</var>, <var class="var">t</var>, <var class="var">c</var>)

</pre></div></div>

<p>The second and third arguments to <code class="code">dassl</code> specify the initial
condition of the states and their derivatives, and the fourth argument
specifies a vector of output times at which the solution is desired,
including the time corresponding to the initial condition.
</p>
<p>The set of initial states and derivatives are not strictly required to
be consistent.  In practice, however, <small class="sc">DASSL</small> is not very good at
determining a consistent set for you, so it is best if you ensure that
the initial values result in the function evaluating to zero.
</p>
<p>The fifth argument is optional, and may be used to specify a set of
times that the DAE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.
</p>
<p>After a successful computation, the value of <var class="var">istate</var> will be
greater than zero (consistent with the Fortran version of <small class="sc">DASSL</small>).
</p>
<p>If the computation is not successful, the value of <var class="var">istate</var> will be
less than zero and <var class="var">msg</var> will contain additional information.
</p>
<p>You can use the function <code class="code">dassl_options</code> to set optional
parameters for <code class="code">dassl</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFdaspk">daspk</a>, <a class="ref" href="#XREFdasrt">dasrt</a>, <a class="ref" href="Ordinary-Differential-Equations.html#XREFlsode">lsode</a>.
</p></dd></dl>


<a class="anchor" id="XREFdassl_005foptions"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-dassl_005foptions"><span><strong class="def-name">dassl_options</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-dassl_005foptions"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dassl_005foptions-1"><span><code class="def-type">val =</code> <strong class="def-name">dassl_options</strong> <code class="def-code-arguments">(<var class="var">opt</var>)</code><a class="copiable-link" href="#index-dassl_005foptions-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dassl_005foptions-2"><span><strong class="def-name">dassl_options</strong> <code class="def-code-arguments">(<var class="var">opt</var>, <var class="var">val</var>)</code><a class="copiable-link" href="#index-dassl_005foptions-2"> &para;</a></span></dt>
<dd><p>Query or set options for the function <code class="code">dassl</code>.
</p>
<p>When called with no arguments, the names of all available options and
their current values are displayed.
</p>
<p>Given one argument, return the value of the option <var class="var">opt</var>.
</p>
<p>When called with two arguments, <code class="code">dassl_options</code> sets the option
<var class="var">opt</var> to value <var class="var">val</var>.
</p>
<p>Options include
</p>
<dl class="table">
<dt><code class="code">&quot;absolute tolerance&quot;</code></dt>
<dd><p>Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.
</p>
</dd>
<dt><code class="code">&quot;relative tolerance&quot;</code></dt>
<dd><p>Relative tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.
</p>
<p>The local error test applied at each integration step is
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">  abs (local error in x(i))
       &lt;= rtol(i) * abs (Y(i)) + atol(i)
</pre></div></div>

</dd>
<dt><code class="code">&quot;compute consistent initial condition&quot;</code></dt>
<dd><p>If nonzero, <code class="code">dassl</code> will attempt to compute a consistent set of initial
conditions.  This is generally not reliable, so it is best to provide
a consistent set and leave this option set to zero.
</p>
</dd>
<dt><code class="code">&quot;enforce nonnegativity constraints&quot;</code></dt>
<dd><p>If you know that the solutions to your equations will always be
non-negative, it may help to set this parameter to a nonzero
value.  However, it is probably best to try leaving this option set to
zero first, and only setting it to a nonzero value if that doesn&rsquo;t
work very well.
</p>
</dd>
<dt><code class="code">&quot;initial step size&quot;</code></dt>
<dd><p>Differential-algebraic problems may occasionally suffer from severe
scaling difficulties on the first step.  If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize.
</p>
</dd>
<dt><code class="code">&quot;maximum order&quot;</code></dt>
<dd><p>Restrict the maximum order of the solution method.  This option must
be between 1 and 5, inclusive.
</p>
</dd>
<dt><code class="code">&quot;maximum step size&quot;</code></dt>
<dd><p>Setting the maximum stepsize will avoid passing over very large
regions  (default is not specified).
</p>
</dd>
<dt><code class="code">&quot;step limit&quot;</code></dt>
<dd><p>Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.
</p></dd>
</dl>
</dd></dl>


<a class="anchor" id="XREFdasrt"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-dasrt"><span><code class="def-type">[<var class="var">x</var>, <var class="var">xdot</var>, <var class="var">t_out</var>, <var class="var">istat</var>, <var class="var">msg</var>] =</code> <strong class="def-name">dasrt</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">g</var>, <var class="var">x_0</var>, <var class="var">xdot_0</var>, <var class="var">t</var>)</code><a class="copiable-link" href="#index-dasrt"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dasrt-1"><span><code class="def-type">&hellip; =</code> <strong class="def-name">dasrt</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">g</var>, <var class="var">x_0</var>, <var class="var">xdot_0</var>, <var class="var">t</var>, <var class="var">t_crit</var>)</code><a class="copiable-link" href="#index-dasrt-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dasrt-2"><span><code class="def-type">&hellip; =</code> <strong class="def-name">dasrt</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">x_0</var>, <var class="var">xdot_0</var>, <var class="var">t</var>)</code><a class="copiable-link" href="#index-dasrt-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dasrt-3"><span><code class="def-type">&hellip; =</code> <strong class="def-name">dasrt</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">x_0</var>, <var class="var">xdot_0</var>, <var class="var">t</var>, <var class="var">t_crit</var>)</code><a class="copiable-link" href="#index-dasrt-3"> &para;</a></span></dt>
<dd><p>Solve a set of differential-algebraic equations.
</p>
<p><code class="code">dasrt</code> solves the set of equations
</p>
<div class="example">
<pre class="example-preformatted">0 = f (x, xdot, t)
</pre></div>

<p>with
</p>
<div class="example">
<pre class="example-preformatted">x(t_0) = x_0, xdot(t_0) = xdot_0
</pre></div>

<p>with functional stopping criteria (root solving).
</p>
<p>The solution is returned in the matrices <var class="var">x</var> and <var class="var">xdot</var>,
with each row in the result matrices corresponding to one of the
elements in the vector <var class="var">t_out</var>.  The first element of <var class="var">t</var>
should be <em class="math">t_0</em> and correspond to the initial state of the
system <var class="var">x_0</var> and its derivative <var class="var">xdot_0</var>, so that the first
row of the output <var class="var">x</var> is <var class="var">x_0</var> and the first row
of the output <var class="var">xdot</var> is <var class="var">xdot_0</var>.
</p>
<p>The vector <var class="var">t</var> provides an upper limit on the length of the
integration.  If the stopping condition is met, the vector
<var class="var">t_out</var> will be shorter than <var class="var">t</var>, and the final element of
<var class="var">t_out</var> will be the point at which the stopping condition was met,
and may not correspond to any element of the vector <var class="var">t</var>.
</p>
<p>The first argument, <var class="var">fcn</var>, is a string, inline, or function handle
that names the function <em class="math">f</em> to call to compute the vector of
residuals for the set of equations.  It must have the form
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">res</var> = f (<var class="var">x</var>, <var class="var">xdot</var>, <var class="var">t</var>)
</pre></div>

<p>in which <var class="var">x</var>, <var class="var">xdot</var>, and <var class="var">res</var> are vectors, and <var class="var">t</var> is a
scalar.
</p>
<p>If <var class="var">fcn</var> is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function <em class="math">f</em> described above, and the second element names a
function to compute the modified Jacobian
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">      df       df
jac = -- + c ------
      dx     d xdot
</pre></div></div>


<p>The modified Jacobian function must have the form
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">

<var class="var">jac</var> = j (<var class="var">x</var>, <var class="var">xdot</var>, <var class="var">t</var>, <var class="var">c</var>)

</pre></div></div>

<p>The optional second argument names a function that defines the
constraint functions whose roots are desired during the integration.
This function must have the form
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">g_out</var> = g (<var class="var">x</var>, <var class="var">t</var>)
</pre></div>

<p>and return a vector of the constraint function values.
If the value of any of the constraint functions changes sign, <small class="sc">DASRT</small>
will attempt to stop the integration at the point of the sign change.
</p>
<p>If the name of the constraint function is omitted, <code class="code">dasrt</code> solves
the same problem as <code class="code">daspk</code> or <code class="code">dassl</code>.
</p>
<p>Note that because of numerical errors in the constraint functions
due to round-off and integration error, <small class="sc">DASRT</small> may return false
roots, or return the same root at two or more nearly equal values of
<var class="var">T</var>.  If such false roots are suspected, the user should consider
smaller error tolerances or higher precision in the evaluation of the
constraint functions.
</p>
<p>If a root of some constraint function defines the end of the problem,
the input to <small class="sc">DASRT</small> should nevertheless allow integration to a
point slightly past that root, so that <small class="sc">DASRT</small> can locate the root
by interpolation.
</p>
<p>The third and fourth arguments to <code class="code">dasrt</code> specify the initial
condition of the states and their derivatives, and the fourth argument
specifies a vector of output times at which the solution is desired,
including the time corresponding to the initial condition.
</p>
<p>The set of initial states and derivatives are not strictly required to
be consistent.  In practice, however, <small class="sc">DASSL</small> is not very good at
determining a consistent set for you, so it is best if you ensure that
the initial values result in the function evaluating to zero.
</p>
<p>The sixth argument is optional, and may be used to specify a set of
times that the DAE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.
</p>
<p>After a successful computation, the value of <var class="var">istate</var> will be
greater than zero (consistent with the Fortran version of <small class="sc">DASSL</small>).
</p>
<p>If the computation is not successful, the value of <var class="var">istate</var> will be
less than zero and <var class="var">msg</var> will contain additional information.
</p>
<p>You can use the function <code class="code">dasrt_options</code> to set optional
parameters for <code class="code">dasrt</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFdasrt_005foptions">dasrt_options</a>, <a class="ref" href="#XREFdaspk">daspk</a>, <a class="ref" href="#XREFdasrt">dasrt</a>, <a class="ref" href="Ordinary-Differential-Equations.html#XREFlsode">lsode</a>.
</p></dd></dl>


<a class="anchor" id="XREFdasrt_005foptions"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-dasrt_005foptions"><span><strong class="def-name">dasrt_options</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-dasrt_005foptions"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dasrt_005foptions-1"><span><code class="def-type">val =</code> <strong class="def-name">dasrt_options</strong> <code class="def-code-arguments">(<var class="var">opt</var>)</code><a class="copiable-link" href="#index-dasrt_005foptions-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dasrt_005foptions-2"><span><strong class="def-name">dasrt_options</strong> <code class="def-code-arguments">(<var class="var">opt</var>, <var class="var">val</var>)</code><a class="copiable-link" href="#index-dasrt_005foptions-2"> &para;</a></span></dt>
<dd><p>Query or set options for the function <code class="code">dasrt</code>.
</p>
<p>When called with no arguments, the names of all available options and
their current values are displayed.
</p>
<p>Given one argument, return the value of the option <var class="var">opt</var>.
</p>
<p>When called with two arguments, <code class="code">dasrt_options</code> sets the option
<var class="var">opt</var> to value <var class="var">val</var>.
</p>
<p>Options include
</p>
<dl class="table">
<dt><code class="code">&quot;absolute tolerance&quot;</code></dt>
<dd><p>Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.
</p>
</dd>
<dt><code class="code">&quot;relative tolerance&quot;</code></dt>
<dd><p>Relative tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.
</p>
<p>The local error test applied at each integration step is
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">  abs (local error in x(i)) &lt;= ...
      rtol(i) * abs (Y(i)) + atol(i)
</pre></div></div>

</dd>
<dt><code class="code">&quot;initial step size&quot;</code></dt>
<dd><p>Differential-algebraic problems may occasionally suffer from severe
scaling difficulties on the first step.  If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize.
</p>
</dd>
<dt><code class="code">&quot;maximum order&quot;</code></dt>
<dd><p>Restrict the maximum order of the solution method.  This option must
be between 1 and 5, inclusive.
</p>
</dd>
<dt><code class="code">&quot;maximum step size&quot;</code></dt>
<dd><p>Setting the maximum stepsize will avoid passing over very large
regions.
</p>
</dd>
<dt><code class="code">&quot;step limit&quot;</code></dt>
<dd><p>Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.
</p></dd>
</dl>
</dd></dl>


<p>See K. E. Brenan, et al., <cite class="cite">Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations</cite>, North-Holland (1989),
DOI: <a class="url" href="https://doi.org/10.1137/1.9781611971224">https://doi.org/10.1137/1.9781611971224</a>,
for more information about the implementation of <small class="sc">DASSL</small>.
</p>

</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Matlab_002dcompatible-solvers.html">Matlab-compatible solvers</a>, Previous: <a href="Ordinary-Differential-Equations.html">Ordinary Differential Equations</a>, Up: <a href="Differential-Equations.html">Differential Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>