File: Example-Code.html

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (96 lines) | stat: -rw-r--r-- 3,852 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Example Code (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Example Code (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Example Code (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Diagonal-and-Permutation-Matrices.html" rel="up" title="Diagonal and Permutation Matrices">
<link href="Zeros-Treatment.html" rel="next" title="Zeros Treatment">
<link href="Function-Support.html" rel="prev" title="Function Support">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="section-level-extent" id="Example-Code">
<div class="nav-panel">
<p>
Next: <a href="Zeros-Treatment.html" accesskey="n" rel="next">Differences in Treatment of Zero Elements</a>, Previous: <a href="Function-Support.html" accesskey="p" rel="prev">Functions That Are Aware of These Matrices</a>, Up: <a href="Diagonal-and-Permutation-Matrices.html" accesskey="u" rel="up">Diagonal and Permutation Matrices</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Examples-of-Usage"><span>21.4 Examples of Usage<a class="copiable-link" href="#Examples-of-Usage"> &para;</a></span></h3>

<p>The following can be used to solve a linear system <code class="code">A*x = b</code>
using the pivoted LU&nbsp;factorization:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">  [L, U, P] = lu (A); ## now L*U = P*A
  x = U \ (L \ P) * b;
</pre></div></div>

<p>This is one way to normalize columns of a matrix <var class="var">X</var> to unit norm:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">  s = norm (X, &quot;columns&quot;);
  X /= diag (s);
</pre></div></div>

<p>The same can also be accomplished with broadcasting (see <a class="pxref" href="Broadcasting.html">Broadcasting</a>):
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">  s = norm (X, &quot;columns&quot;);
  X ./= s;
</pre></div></div>

<p>The following expression is a way to efficiently calculate the sign of a
permutation, given by a permutation vector <var class="var">p</var>.  It will also work
in earlier versions of Octave, but slowly.
</p>
<div class="example">
<pre class="example-preformatted">  det (eye (length (p))(p, :))
</pre></div>

<p>Finally, here&rsquo;s how to solve a linear system <code class="code">A*x = b</code>
with Tikhonov regularization (ridge regression) using SVD (a skeleton
only):
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">  m = rows (A); n = columns (A);
  [U, S, V] = svd (A);
  ## determine the regularization factor alpha
  ## alpha = ...
  ## transform to orthogonal basis
  b = U'*b;
  ## Use the standard formula, replacing A with S.
  ## S is diagonal, so the following will be very fast and accurate.
  x = (S'*S + alpha^2 * eye (n)) \ (S' * b);
  ## transform to solution basis
  x = V*x;
</pre></div></div>


</div>



</body>
</html>