1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Functions of Multiple Variables (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Functions of Multiple Variables (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Functions of Multiple Variables (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Numerical-Integration.html" rel="up" title="Numerical Integration">
<link href="Orthogonal-Collocation.html" rel="prev" title="Orthogonal Collocation">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="section-level-extent" id="Functions-of-Multiple-Variables">
<div class="nav-panel">
<p>
Previous: <a href="Orthogonal-Collocation.html" accesskey="p" rel="prev">Orthogonal Collocation</a>, Up: <a href="Numerical-Integration.html" accesskey="u" rel="up">Numerical Integration</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Functions-of-Multiple-Variables-1"><span>23.3 Functions of Multiple Variables<a class="copiable-link" href="#Functions-of-Multiple-Variables-1"> ¶</a></span></h3>
<p>Octave includes several functions for computing the integral of functions of
multiple variables. This procedure can generally be performed by creating a
function that integrates <em class="math">f</em> with respect to <em class="math">x</em>, and then integrates
that function with respect to <em class="math">y</em>. This procedure can be performed
manually using the following example which integrates the function:
</p>
<div class="example">
<pre class="example-preformatted">f(x, y) = sin(pi*x*y) * sqrt(x*y)
</pre></div>
<p>for <em class="math">x</em> and <em class="math">y</em> between 0 and 1.
</p>
<p>Using <code class="code">quadgk</code> in the example below, a double integration can be
performed. (Note that any of the 1-D quadrature functions can be used in this
fashion except for <code class="code">quad</code> since it is written in Fortran and cannot be
called recursively.)
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">function q = g(y)
q = ones (size (y));
for i = 1:length (y)
f = @(x) sin (pi*x.*y(i)) .* sqrt (x.*y(i));
q(i) = quadgk (f, 0, 1);
endfor
endfunction
I = quadgk ("g", 0, 1)
⇒ 0.30022
</pre></div></div>
<p>The algorithm above is implemented in the function <code class="code">dblquad</code> for integrals
over two variables. The 3-D equivalent of this process is implemented in
<code class="code">triplequad</code> for integrals over three variables. As an example, the
result above can be replicated with a call to <code class="code">dblquad</code> as shown below.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">I = dblquad (@(x, y) sin (pi*x.*y) .* sqrt (x.*y), 0, 1, 0, 1)
⇒ 0.30022
</pre></div></div>
<a class="anchor" id="XREFdblquad"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-dblquad"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">dblquad</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>)</code><a class="copiable-link" href="#index-dblquad"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dblquad-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">dblquad</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">tol</var>)</code><a class="copiable-link" href="#index-dblquad-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dblquad-2"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">dblquad</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">tol</var>, <var class="var">quadf</var>)</code><a class="copiable-link" href="#index-dblquad-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-dblquad-3"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">dblquad</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">tol</var>, <var class="var">quadf</var>, …)</code><a class="copiable-link" href="#index-dblquad-3"> ¶</a></span></dt>
<dd><p>Numerically evaluate the double integral of <var class="var">f</var>.
</p>
<p><var class="var">f</var> is a function handle, inline function, or string containing the name
of the function to evaluate. The function <var class="var">f</var> must have the form
<em class="math">z = f(x,y)</em> where <var class="var">x</var> is a vector and <var class="var">y</var> is a scalar. It
should return a vector of the same length and orientation as <var class="var">x</var>.
</p>
<p><var class="var">xa</var>, <var class="var">ya</var> and <var class="var">xb</var>, <var class="var">yb</var> are the lower and upper limits of
integration for x and y respectively. The underlying integrator determines
whether infinite bounds are accepted.
</p>
<p>The optional argument <var class="var">tol</var> defines the absolute tolerance used to
integrate each sub-integral. The default value is 1e-6.
</p>
<p>The optional argument <var class="var">quadf</var> specifies which underlying integrator
function to use. Any choice but <code class="code">quad</code> is available and the default
is <code class="code">quadcc</code>.
</p>
<p>Additional arguments, are passed directly to <var class="var">f</var>. To use the default
value for <var class="var">tol</var> or <var class="var">quadf</var> one may pass <code class="code">':'</code> or an empty
matrix ([]).
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFintegral2">integral2</a>, <a class="ref" href="#XREFintegral3">integral3</a>, <a class="ref" href="#XREFtriplequad">triplequad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquad">quad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadv">quadv</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadl">quadl</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadgk">quadgk</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadcc">quadcc</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFtrapz">trapz</a>.
</p></dd></dl>
<a class="anchor" id="XREFtriplequad"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-triplequad"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">triplequad</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">za</var>, <var class="var">zb</var>)</code><a class="copiable-link" href="#index-triplequad"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-triplequad-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">triplequad</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">za</var>, <var class="var">zb</var>, <var class="var">tol</var>)</code><a class="copiable-link" href="#index-triplequad-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-triplequad-2"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">triplequad</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">za</var>, <var class="var">zb</var>, <var class="var">tol</var>, <var class="var">quadf</var>)</code><a class="copiable-link" href="#index-triplequad-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-triplequad-3"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">triplequad</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">za</var>, <var class="var">zb</var>, <var class="var">tol</var>, <var class="var">quadf</var>, …)</code><a class="copiable-link" href="#index-triplequad-3"> ¶</a></span></dt>
<dd><p>Numerically evaluate the triple integral of <var class="var">f</var>.
</p>
<p><var class="var">f</var> is a function handle, inline function, or string containing the name
of the function to evaluate. The function <var class="var">f</var> must have the form
<em class="math">w = f(x,y,z)</em> where either <var class="var">x</var> or <var class="var">y</var> is a vector and the
remaining inputs are scalars. It should return a vector of the same length
and orientation as <var class="var">x</var> or <var class="var">y</var>.
</p>
<p><var class="var">xa</var>, <var class="var">ya</var>, <var class="var">za</var> and <var class="var">xb</var>, <var class="var">yb</var>, <var class="var">zb</var> are the lower
and upper limits of integration for x, y, and z respectively. The
underlying integrator determines whether infinite bounds are accepted.
</p>
<p>The optional argument <var class="var">tol</var> defines the absolute tolerance used to
integrate each sub-integral. The default value is 1e-6.
</p>
<p>The optional argument <var class="var">quadf</var> specifies which underlying integrator
function to use. Any choice but <code class="code">quad</code> is available and the default
is <code class="code">quadcc</code>.
</p>
<p>Additional arguments, are passed directly to <var class="var">f</var>. To use the default
value for <var class="var">tol</var> or <var class="var">quadf</var> one may pass <code class="code">':'</code> or an empty
matrix ([]).
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFintegral3">integral3</a>, <a class="ref" href="#XREFintegral2">integral2</a>, <a class="ref" href="#XREFdblquad">dblquad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquad">quad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadv">quadv</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadl">quadl</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadgk">quadgk</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadcc">quadcc</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFtrapz">trapz</a>.
</p></dd></dl>
<p>The recursive algorithm for quadrature presented above is referred to as
<code class="code">"iterated"</code>. A separate 2-D integration method is implemented in the
function <code class="code">quad2d</code>. This function performs a <code class="code">"tiled"</code> integration
by subdividing the integration domain into rectangular regions and performing
separate integrations over those domains. The domains are further subdivided
in areas requiring refinement to reach the desired numerical accuracy. For
certain functions this method can be faster than the 2-D iteration used in the
other functions above.
</p>
<a class="anchor" id="XREFquad2d"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-quad2d"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quad2d</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>)</code><a class="copiable-link" href="#index-quad2d"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-quad2d-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">quad2d</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-quad2d-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-quad2d-2"><span><code class="def-type">[<var class="var">q</var>, <var class="var">err</var>, <var class="var">iter</var>] =</code> <strong class="def-name">quad2d</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-quad2d-2"> ¶</a></span></dt>
<dd>
<p>Numerically evaluate the two-dimensional integral of <var class="var">f</var> using adaptive
quadrature over the two-dimensional domain defined by <var class="var">xa</var>, <var class="var">xb</var>,
<var class="var">ya</var>, <var class="var">yb</var> using tiled integration. Additionally, <var class="var">ya</var> and
<var class="var">yb</var> may be scalar functions of <var class="var">x</var>, allowing for the integration
over non-rectangular domains.
</p>
<p><var class="var">f</var> is a function handle, inline function, or string containing the
name of the function to evaluate. The function <var class="var">f</var> must be of the form
<em class="math">z = f(x,y)</em>, and all operations must be vectorized such that <var class="var">x</var>
and <var class="var">y</var> accept array inputs and return array outputs of the same size.
(It can be assumed that <var class="var">x</var> and <var class="var">y</var> will either be same-size arrays
or one will be a scalar.) The underlying integrators will input arrays of
integration points into <var class="var">f</var> and/or use internal vector expansions to
speed computation that can produce unpredictable results if <var class="var">f</var> is not
restricted to elementwise operations. For integrands where this is
unavoidable, the <code class="code">("Vectorized") option described below may produce</code>
more reliable results.
</p>
<p>Additional optional parameters can be specified using
<code class="code">"<var class="var">property</var>", <var class="var">value</var></code> pairs. Valid properties are:
</p>
<dl class="table">
<dt><code class="code">AbsTol</code></dt>
<dd><p>Define the absolute error tolerance for the quadrature. The default
value is 1e-10 (1e-5 for single).
</p>
</dd>
<dt><code class="code">RelTol</code></dt>
<dd><p>Define the relative error tolerance for the quadrature. The default
value is 1e-6 (1e-4 for single).
</p>
</dd>
<dt><code class="code">MaxFunEvals</code></dt>
<dd><p>The maximum number of function calls to the vectorized function <var class="var">f</var>.
The default value is 5000.
</p>
</dd>
<dt><code class="code">Singular</code></dt>
<dd><p>Enable/disable transforms to weaken singularities on the edge of the
integration domain. The default value is <var class="var">true</var>.
</p>
</dd>
<dt><code class="code">Vectorized</code></dt>
<dd><p>Enable or disable vectorized integration. A value of <code class="code">false</code> forces
Octave to use only scalar inputs when calling the integrand, which enables
integrands <em class="math">f(x,y)</em> that have not been vectorized or only accept
scalar values of <var class="var">x</var> or <var class="var">y</var>. The default value is <code class="code">true</code>.
Note that this is achieved by wrapping <em class="math">f(x,y)</em> with the function
<code class="code">arrayfun</code>, which may significantly decrease computation speed.
</p>
</dd>
<dt><code class="code">FailurePlot</code></dt>
<dd><p>If <code class="code">quad2d</code> fails to converge to the desired error tolerance before
MaxFunEvals is reached, a plot of the areas that still need refinement
is created. The default value is <var class="var">false</var>.
</p></dd>
</dl>
<p>Adaptive quadrature is used to minimize the estimate of error until the
following is satisfied:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> <var class="var">error</var> <= max (<var class="var">AbsTol</var>, <var class="var">RelTol</var>*|<var class="var">q</var>|)
</pre></div></div>
<p>The optional output <var class="var">err</var> is an approximate bound on the error in the
integral <code class="code">abs (<var class="var">q</var> - <var class="var">I</var>)</code>, where <var class="var">I</var> is the exact value
of the integral. The optional output <var class="var">iter</var> is the number of vectorized
function calls to the function <var class="var">f</var> that were used.
</p>
<p>Example 1 : integrate a rectangular region in x-y plane
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) 2*ones (size (<var class="var">x</var>));
<var class="var">q</var> = quad2d (<var class="var">f</var>, 0, 1, 0, 1)
⇒ <var class="var">q</var> = 2
</pre></div></div>
<p>The result is a volume, which for this constant-value integrand, is just
<code class="code"><var class="var">Length</var> * <var class="var">Width</var> * <var class="var">Height</var></code>.
</p>
<p>Example 2 : integrate a triangular region in x-y plane
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) 2*ones (size (<var class="var">x</var>));
<var class="var">ymax</var> = @(<var class="var">x</var>) 1 - <var class="var">x</var>;
<var class="var">q</var> = quad2d (<var class="var">f</var>, 0, 1, 0, <var class="var">ymax</var>)
⇒ <var class="var">q</var> = 1
</pre></div></div>
<p>The result is a volume, which for this constant-value integrand
<em class="math"><var class="var">f</var> = 2</em><!-- /@w -->, is the Triangle Area x Height or
<code class="code">1/2 * <var class="var">Base</var> * <var class="var">Width</var> * <var class="var">Height</var></code><!-- /@w -->.
</p>
<p>Example 3 : integrate a non-vectorized function over a square region
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) sinc (<var class="var">x</var>) * sinc (<var class="var">y</var>));
<var class="var">q</var> = quad2d (<var class="var">f</var>, -1, 1, -1, 1)
⇒ <var class="var">q</var> = 12.328 (incorrect)
<var class="var">q</var> = quad2d (<var class="var">f</var>, -1, 1, -1, 1, "Vectorized", false)
⇒ <var class="var">q</var> = 1.390 (correct)
<var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) sinc (<var class="var">x</var>) .* sinc (<var class="var">y</var>);
<var class="var">q</var> = quad2d (<var class="var">f</var>, -1, 1, -1, 1)
⇒ <var class="var">q</var> = 1.390 (correct)
</pre></div></div>
<p>The first result is incorrect as the non-elementwise operator between the
sinc functions in <var class="var">f</var> create unintended matrix multiplications between
the internal integration arrays used by <code class="code">quad2d</code>. In the second
result, setting <code class="code">"Vectorized"</code> to false forces <code class="code">quad2d</code> to
perform scalar internal operations to compute the integral, resulting in
the correct numerical result at the cost of about a 20x increase in
computation time. In the third result, vectorizing the integrand <var class="var">f</var>
using the elementwise multiplication operator gets the correct result
without increasing computation time.
</p>
<p>Programming Notes: If there are singularities within the integration region
it is best to split the integral and place the singularities on the
boundary.
</p>
<p>Known <small class="sc">MATLAB</small> incompatibility: If tolerances are left unspecified, and
any integration limits are of type <code class="code">single</code>, then Octave’s integral
functions automatically reduce the default absolute and relative error
tolerances as specified above. If tighter tolerances are desired they
must be specified. <small class="sc">MATLAB</small> leaves the tighter tolerances appropriate
for <code class="code">double</code> inputs in place regardless of the class of the
integration limits.
</p>
<p>Reference: L.F. Shampine,
<cite class="cite"><small class="sc">MATLAB</small> program for quadrature in 2D</cite>, Applied Mathematics and
Computation, pp. 266–274, Vol 1, 2008.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFintegral2">integral2</a>, <a class="ref" href="#XREFdblquad">dblquad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFintegral">integral</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquad">quad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadgk">quadgk</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadv">quadv</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadl">quadl</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadcc">quadcc</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFtrapz">trapz</a>, <a class="ref" href="#XREFintegral3">integral3</a>, <a class="ref" href="#XREFtriplequad">triplequad</a>.
</p></dd></dl>
<p>Finally, the functions <code class="code">integral2</code> and <code class="code">integral3</code> are provided
as general 2-D and 3-D integration functions. They will auto-select between
iterated and tiled integration methods and, unlike <code class="code">dblquad</code> and
<code class="code">triplequad</code>, will work with non-rectangular integration domains.
</p>
<a class="anchor" id="XREFintegral2"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-integral2"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">integral2</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>)</code><a class="copiable-link" href="#index-integral2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-integral2-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">integral2</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-integral2-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-integral2-2"><span><code class="def-type">[<var class="var">q</var>, <var class="var">err</var>] =</code> <strong class="def-name">integral2</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-integral2-2"> ¶</a></span></dt>
<dd>
<p>Numerically evaluate the two-dimensional integral of <var class="var">f</var> using adaptive
quadrature over the two-dimensional domain defined by <var class="var">xa</var>, <var class="var">xb</var>,
<var class="var">ya</var>, <var class="var">yb</var> (scalars may be finite or infinite). Additionally,
<var class="var">ya</var> and <var class="var">yb</var> may be scalar functions of <var class="var">x</var>, allowing for
integration over non-rectangular domains.
</p>
<p><var class="var">f</var> is a function handle, inline function, or string containing the
name of the function to evaluate. The function <var class="var">f</var> must be of the form
<em class="math">z = f(x,y)</em>, and all operations must be vectorized such that <var class="var">x</var>
and <var class="var">y</var> accept array inputs and return array outputs of the same size.
(It can be assumed that <var class="var">x</var> and <var class="var">y</var> will either be same-size arrays
or one will be a scalar.) The underlying integrators will input arrays of
integration points into <var class="var">f</var> and/or use internal vector expansions to
speed computation that can produce unpredictable results if <var class="var">f</var> is not
restricted to elementwise operations. For integrands where this is
unavoidable, the <code class="code">("Vectorized") option described below may produce</code>
more reliable results.
</p>
<p>Additional optional parameters can be specified using
<code class="code">"<var class="var">property</var>", <var class="var">value</var></code> pairs. Valid properties are:
</p>
<dl class="table">
<dt><code class="code">AbsTol</code></dt>
<dd><p>Define the absolute error tolerance for the quadrature. The default
value is 1e-10 (1e-5 for single).
</p>
</dd>
<dt><code class="code">RelTol</code></dt>
<dd><p>Define the relative error tolerance for the quadrature. The default
value is 1e-6 (1e-4 for single).
</p>
</dd>
<dt><code class="code">Method</code></dt>
<dd><p>Specify the two-dimensional integration method to be used, with valid
options being <code class="code">"auto"</code> (default), <code class="code">"tiled"</code>, or
<code class="code">"iterated"</code>. When using <code class="code">"auto"</code>, Octave will choose the
<code class="code">"tiled"</code> method unless any of the integration limits are infinite.
</p>
</dd>
<dt><code class="code">Vectorized</code></dt>
<dd><p>Enable or disable vectorized integration. A value of <code class="code">false</code> forces
Octave to use only scalar inputs when calling the integrand, which enables
integrands <em class="math">f(x,y)</em> that have not been vectorized or only accept
scalar values of <var class="var">x</var> or <var class="var">y</var>. The default value is <code class="code">true</code>.
Note that this is achieved by wrapping <em class="math">f(x,y)</em> with the function
<code class="code">arrayfun</code>, which may significantly decrease computation speed.
</p></dd>
</dl>
<p>Adaptive quadrature is used to minimize the estimate of error until the
following is satisfied:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> <var class="var">error</var> <= max (<var class="var">AbsTol</var>, <var class="var">RelTol</var>*|<var class="var">q</var>|)
</pre></div></div>
<p><var class="var">err</var> is an approximate bound on the error in the integral
<code class="code">abs (<var class="var">q</var> - <var class="var">I</var>)</code>, where <var class="var">I</var> is the exact value of the
integral.
</p>
<p>Example 1 : integrate a rectangular region in x-y plane
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) 2*ones (size (<var class="var">x</var>));
<var class="var">q</var> = integral2 (<var class="var">f</var>, 0, 1, 0, 1)
⇒ <var class="var">q</var> = 2
</pre></div></div>
<p>The result is a volume, which for this constant-value integrand, is just
<code class="code"><var class="var">Length</var> * <var class="var">Width</var> * <var class="var">Height</var></code><!-- /@w -->.
</p>
<p>Example 2 : integrate a triangular region in x-y plane
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) 2*ones (size (<var class="var">x</var>));
<var class="var">ymax</var> = @(<var class="var">x</var>) 1 - <var class="var">x</var>;
<var class="var">q</var> = integral2 (<var class="var">f</var>, 0, 1, 0, <var class="var">ymax</var>)
⇒ <var class="var">q</var> = 1
</pre></div></div>
<p>The result is a volume, which for this constant-value integrand
<em class="math"><var class="var">f</var> = 2</em><!-- /@w -->, is the Triangle Area x Height or
<code class="code">1/2 * <var class="var">Base</var> * <var class="var">Width</var> * <var class="var">Height</var></code><!-- /@w -->.
</p>
<p>Example 3 : integrate a non-vectorized function over a square region
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) sinc (<var class="var">x</var>) * sinc (<var class="var">y</var>));
<var class="var">q</var> = integral2 (<var class="var">f</var>, -1, 1, -1, 1)
⇒ <var class="var">q</var> = 12.328 (incorrect)
<var class="var">q</var> = integral2 (<var class="var">f</var>, -1, 1, -1, 1, "Vectorized", false)
⇒ <var class="var">q</var> = 1.390 (correct)
<var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) sinc (<var class="var">x</var>) .* sinc (<var class="var">y</var>);
<var class="var">q</var> = integral2 (<var class="var">f</var>, -1, 1, -1, 1)
⇒ <var class="var">q</var> = 1.390 (correct)
</pre></div></div>
<p>The first result is incorrect as the non-elementwise operator between the
sinc functions in <var class="var">f</var> create unintended matrix multiplications between
the internal integration arrays used by <code class="code">integral2</code>. In the second
result, setting <code class="code">"Vectorized"</code> to false forces <code class="code">integral2</code> to
perform scalar internal operations to compute the integral, resulting in
the correct numerical result at the cost of about a 20x increase in
computation time. In the third result, vectorizing the integrand <var class="var">f</var>
using the elementwise multiplication operator gets the correct result
without increasing computation time.
</p>
<p>Programming Notes: If there are singularities within the integration region
it is best to split the integral and place the singularities on the
boundary.
</p>
<p>Known <small class="sc">MATLAB</small> incompatibility: If tolerances are left unspecified, and
any integration limits are of type <code class="code">single</code>, then Octave’s integral
functions automatically reduce the default absolute and relative error
tolerances as specified above. If tighter tolerances are desired they
must be specified. <small class="sc">MATLAB</small> leaves the tighter tolerances appropriate
for <code class="code">double</code> inputs in place regardless of the class of the
integration limits.
</p>
<p>Reference: L.F. Shampine,
<cite class="cite"><small class="sc">MATLAB</small> program for quadrature in 2D</cite>, Applied Mathematics and
Computation, pp. 266–274, Vol 1, 2008.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFquad2d">quad2d</a>, <a class="ref" href="#XREFdblquad">dblquad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFintegral">integral</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquad">quad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadgk">quadgk</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadv">quadv</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadl">quadl</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadcc">quadcc</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFtrapz">trapz</a>, <a class="ref" href="#XREFintegral3">integral3</a>, <a class="ref" href="#XREFtriplequad">triplequad</a>.
</p></dd></dl>
<a class="anchor" id="XREFintegral3"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-integral3"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">integral3</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">za</var>, <var class="var">zb</var>)</code><a class="copiable-link" href="#index-integral3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-integral3-1"><span><code class="def-type"><var class="var">q</var> =</code> <strong class="def-name">integral3</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">za</var>, <var class="var">zb</var>, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-integral3-1"> ¶</a></span></dt>
<dd>
<p>Numerically evaluate the three-dimensional integral of <var class="var">f</var> using
adaptive quadrature over the three-dimensional domain defined by
<var class="var">xa</var>, <var class="var">xb</var>, <var class="var">ya</var>, <var class="var">yb</var>, <var class="var">za</var>, <var class="var">zb</var> (scalars may
be finite or infinite). Additionally, <var class="var">ya</var> and <var class="var">yb</var> may be
scalar functions of <var class="var">x</var> and <var class="var">za</var>, and <var class="var">zb</var> maybe be scalar
functions of <var class="var">x</var> and <var class="var">y</var>, allowing for integration over
non-rectangular domains.
</p>
<p><var class="var">f</var> is a function handle, inline function, or string containing the
name of the function to evaluate. The function <var class="var">f</var> must be of the form
<em class="math">z = f(x,y,z)</em>, and all operations must be vectorized such that
<var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var> accept array inputs and return array outputs
of the same size. (It can be assumed that <var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var>
will either be same-size arrays or scalars.) The underlying integrators
will input arrays of integration points into <var class="var">f</var> and/or use internal
vector expansions to speed computation that can produce unpredictable
results if <var class="var">f</var> is not restricted to elementwise operations. For
integrands where this is unavoidable, the <code class="code">("Vectorized") option</code>
described below may produce more reliable results.
</p>
<p>Additional optional parameters can be specified using
<code class="code">"<var class="var">property</var>", <var class="var">value</var></code> pairs. Valid properties are:
</p>
<dl class="table">
<dt><code class="code">AbsTol</code></dt>
<dd><p>Define the absolute error tolerance for the quadrature. The default
value is 1e-10 (1e-5 for single).
</p>
</dd>
<dt><code class="code">RelTol</code></dt>
<dd><p>Define the relative error tolerance for the quadrature. The default
value is 1e-6 (1e-4 for single).
</p>
</dd>
<dt><code class="code">Method</code></dt>
<dd><p>Specify the two-dimensional integration method to be used, with valid
options being <code class="code">"auto"</code> (default), <code class="code">"tiled"</code>, or
<code class="code">"iterated"</code>. When using <code class="code">"auto"</code>, Octave will choose the
<code class="code">"tiled"</code> method unless any of the integration limits are infinite.
</p>
</dd>
<dt><code class="code">Vectorized</code></dt>
<dd><p>Enable or disable vectorized integration. A value of <code class="code">false</code> forces
Octave to use only scalar inputs when calling the integrand, which enables
integrands <em class="math">f(x,y,z)</em> that have not been vectorized or only accept
scalar values of <var class="var">x</var>, <var class="var">y</var>, or <var class="var">z</var>. The default value is
<code class="code">true</code>. Note that this is achieved by wrapping <em class="math">f(x,y,z)</em> with
the function <code class="code">arrayfun</code>, which may significantly decrease computation
speed.
</p></dd>
</dl>
<p>Adaptive quadrature is used to minimize the estimate of error until the
following is satisfied:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> <var class="var">error</var> <= max (<var class="var">AbsTol</var>, <var class="var">RelTol</var>*|<var class="var">q</var>|)
</pre></div></div>
<p><var class="var">err</var> is an approximate bound on the error in the integral
<code class="code">abs (<var class="var">q</var> - <var class="var">I</var>)</code>, where <var class="var">I</var> is the exact value of the
integral.
</p>
<p>Example 1 : integrate over a rectangular volume
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>,<var class="var">z</var>) ones (size (<var class="var">x</var>));
<var class="var">q</var> = integral3 (<var class="var">f</var>, 0, 1, 0, 1, 0, 1)
⇒ <var class="var">q</var> = 1.00000
</pre></div></div>
<p>For this constant-value integrand, the result is a volume which is just
<code class="code"><var class="var">Length</var> * <var class="var">Width</var> * <var class="var">Height</var></code>.
</p>
<p>Example 2 : integrate over a spherical volume
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) ones (size (<var class="var">x</var>));
<var class="var">ymax</var> = @(<var class="var">x</var>) sqrt (1 - <var class="var">x</var>.^2);
<var class="var">zmax</var> = @(<var class="var">x</var>,<var class="var">y</var>) sqrt (1 - <var class="var">x</var>.^2 - <var class="var">y</var>.^2);
<var class="var">q</var> = integral3 (<var class="var">f</var>, 0, 1, 0, <var class="var">ymax</var>, 0, <var class="var">zmax</var>)
⇒ <var class="var">q</var> = 0.52360
</pre></div></div>
<p>For this constant-value integrand, the result is a volume which is 1/8th
of a unit sphere or <code class="code">1/8 * 4/3 * pi</code>.
</p>
<p>Example 3 : integrate a non-vectorized function over a cubic volume
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>) sinc (<var class="var">x</var>) * sinc (<var class="var">y</var>), * sinc (<var class="var">z</var>);
<var class="var">q</var> = integral3 (<var class="var">f</var>, -1, 1, -1, 1, -1, 1)
⇒ <var class="var">q</var> = 14.535 (incorrect)
<var class="var">q</var> = integral3 (<var class="var">f</var>, -1, 1, -1, 1, -1, 1, "Vectorized", false)
⇒ <var class="var">q</var> = 1.6388 (correct)
<var class="var">f</var> = @(<var class="var">x</var>,<var class="var">y</var>,<var class="var">z</var>) sinc (<var class="var">x</var>) .* sinc (<var class="var">y</var>), .* sinc (<var class="var">z</var>);
<var class="var">q</var> = integral3 (<var class="var">f</var>, -1, 1, -1, 1, -1, 1)
⇒ <var class="var">q</var> = 1.6388 (correct)
</pre></div></div>
<p>The first result is incorrect as the non-elementwise operator between the
sinc functions in <var class="var">f</var> create unintended matrix multiplications between
the internal integration arrays used by <code class="code">integral3</code>. In the second
result, setting <code class="code">"Vectorized"</code> to false forces <code class="code">integral3</code> to
perform scalar internal operations to compute the integral, resulting in
the correct numerical result at the cost of about a 30x increase in
computation time. In the third result, vectorizing the integrand <var class="var">f</var>
using the elementwise multiplication operator gets the correct result
without increasing computation time.
</p>
<p>Programming Notes: If there are singularities within the integration region
it is best to split the integral and place the singularities on the
boundary.
</p>
<p>Known <small class="sc">MATLAB</small> incompatibility: If tolerances are left unspecified, and
any integration limits are of type <code class="code">single</code>, then Octave’s integral
functions automatically reduce the default absolute and relative error
tolerances as specified above. If tighter tolerances are desired they
must be specified. <small class="sc">MATLAB</small> leaves the tighter tolerances appropriate
for <code class="code">double</code> inputs in place regardless of the class of the
integration limits.
</p>
<p>Reference: L.F. Shampine,
<cite class="cite"><small class="sc">MATLAB</small> program for quadrature in 2D</cite>, Applied Mathematics and
Computation, pp. 266–274, Vol 1, 2008.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFtriplequad">triplequad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFintegral">integral</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquad">quad</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadgk">quadgk</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadv">quadv</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadl">quadl</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFquadcc">quadcc</a>, <a class="ref" href="Functions-of-One-Variable.html#XREFtrapz">trapz</a>, <a class="ref" href="#XREFintegral2">integral2</a>, <a class="ref" href="#XREFquad2d">quad2d</a>, <a class="ref" href="#XREFdblquad">dblquad</a>.
</p></dd></dl>
<p>The above integrations can be fairly slow, and that problem increases
exponentially with the dimensionality of the integral. Another possible
solution for 2-D integration is to use Orthogonal Collocation as described in
the previous section (see <a class="pxref" href="Orthogonal-Collocation.html">Orthogonal Collocation</a>). The integral of a
function <em class="math">f(x,y)</em> for <em class="math">x</em> and <em class="math">y</em> between 0 and 1 can be
approximated using <em class="math">n</em> points by
the sum over <code class="code">i=1:n</code> and <code class="code">j=1:n</code> of <code class="code">q(i)*q(j)*f(r(i),r(j))</code>,
where <em class="math">q</em> and <em class="math">r</em> is as returned by <code class="code">colloc (n)</code>. The
generalization to more than two variables is straight forward. The
following code computes the studied integral using <em class="math">n=8</em> points.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">f = @(x,y) sin (pi*x*y') .* sqrt (x*y');
n = 8;
[t, ~, ~, q] = colloc (n);
I = q'*f(t,t)*q;
⇒ 0.30022
</pre></div></div>
<p>It should be noted that the number of points determines the quality
of the approximation. If the integration needs to be performed between
<em class="math">a</em> and <em class="math">b</em>, instead of 0 and 1, then a change of variables is needed.
</p>
</div>
<hr>
<div class="nav-panel">
<p>
Previous: <a href="Orthogonal-Collocation.html">Orthogonal Collocation</a>, Up: <a href="Numerical-Integration.html">Numerical Integration</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|