File: Functions-of-a-Matrix.html

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (252 lines) | stat: -rw-r--r-- 15,138 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Functions of a Matrix (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Functions of a Matrix (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Functions of a Matrix (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Linear-Algebra.html" rel="up" title="Linear Algebra">
<link href="Specialized-Solvers.html" rel="next" title="Specialized Solvers">
<link href="Matrix-Factorizations.html" rel="prev" title="Matrix Factorizations">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="section-level-extent" id="Functions-of-a-Matrix">
<div class="nav-panel">
<p>
Next: <a href="Specialized-Solvers.html" accesskey="n" rel="next">Specialized Solvers</a>, Previous: <a href="Matrix-Factorizations.html" accesskey="p" rel="prev">Matrix Factorizations</a>, Up: <a href="Linear-Algebra.html" accesskey="u" rel="up">Linear Algebra</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Functions-of-a-Matrix-1"><span>18.4 Functions of a Matrix<a class="copiable-link" href="#Functions-of-a-Matrix-1"> &para;</a></span></h3>
<a class="index-entry-id" id="index-matrix_002c-functions-of"></a>

<a class="anchor" id="XREFexpm"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-expm"><span><code class="def-type"><var class="var">r</var> =</code> <strong class="def-name">expm</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-expm"> &para;</a></span></dt>
<dd><p>Return the exponential of a matrix.
</p>
<p>The matrix exponential is defined as the infinite Taylor series
</p>
<div class="example">
<pre class="example-preformatted">expm (A) = I + A + A^2/2! + A^3/3! + ...
</pre></div>

<p>However, the Taylor series is <em class="emph">not</em> the way to compute the matrix
exponential; see Moler and Van Loan, <cite class="cite">Nineteen Dubious Ways
to Compute the Exponential of a Matrix</cite>, SIAM Review, 1978.  This routine
uses Ward&rsquo;s diagonal Pad&eacute; approximation method with three step
preconditioning (SIAM Journal on Numerical Analysis, 1977).  Diagonal
Pad&eacute; approximations are rational polynomials of matrices
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">     -1
D (A)   N (A)
</pre></div></div>

<p>whose Taylor series matches the first
<code class="code">2q+1</code>
terms of the Taylor series above; direct evaluation of the Taylor series
(with the same preconditioning steps) may be desirable in lieu of the
Pad&eacute; approximation when
<code class="code">Dq(A)</code>
is ill-conditioned.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFlogm">logm</a>, <a class="ref" href="#XREFsqrtm">sqrtm</a>.
</p></dd></dl>


<a class="anchor" id="XREFlogm"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-logm"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">logm</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-logm"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-logm-1"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">logm</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">opt_iters</var>)</code><a class="copiable-link" href="#index-logm-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-logm-2"><span><code class="def-type">[<var class="var">s</var>, <var class="var">iters</var>] =</code> <strong class="def-name">logm</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-logm-2"> &para;</a></span></dt>
<dd><p>Compute the matrix logarithm of the square matrix <var class="var">A</var>.
</p>
<p>The implementation utilizes a Pad&eacute; approximant and the identity
</p>
<div class="example">
<pre class="example-preformatted">logm (<var class="var">A</var>) = 2^k * logm (<var class="var">A</var>^(1 / 2^k))
</pre></div>

<p>The optional input <var class="var">opt_iters</var> is the maximum number of square roots
to compute and defaults to 100.
</p>
<p>The optional output <var class="var">iters</var> is the number of square roots actually
computed.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFexpm">expm</a>, <a class="ref" href="#XREFsqrtm">sqrtm</a>.
</p></dd></dl>


<a class="anchor" id="XREFsqrtm"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sqrtm"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">sqrtm</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-sqrtm"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-sqrtm-1"><span><code class="def-type">[<var class="var">s</var>, <var class="var">error_estimate</var>] =</code> <strong class="def-name">sqrtm</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-sqrtm-1"> &para;</a></span></dt>
<dd><p>Compute the matrix square root of the square matrix <var class="var">A</var>.
</p>
<p>Ref: N.J. Higham.  <cite class="cite">A New sqrtm for <small class="sc">MATLAB</small></cite>.  Numerical
Analysis Report No. 336, Manchester Centre for Computational
Mathematics, Manchester, England, January 1999.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFexpm">expm</a>, <a class="ref" href="#XREFlogm">logm</a>.
</p></dd></dl>


<a class="anchor" id="XREFkron"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-kron"><span><code class="def-type"><var class="var">C</var> =</code> <strong class="def-name">kron</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>)</code><a class="copiable-link" href="#index-kron"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-kron-1"><span><code class="def-type"><var class="var">C</var> =</code> <strong class="def-name">kron</strong> <code class="def-code-arguments">(<var class="var">A1</var>, <var class="var">A2</var>, &hellip;)</code><a class="copiable-link" href="#index-kron-1"> &para;</a></span></dt>
<dd><p>Form the Kronecker product of two or more matrices.
</p>
<p>This is defined block by block as
</p>
<div class="example">
<pre class="example-preformatted">c = [ a(i,j)*b ]
</pre></div>

<p>For example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">kron (1:4, ones (3, 1))
     &rArr;  1  2  3  4
         1  2  3  4
         1  2  3  4
</pre></div></div>

<p>If there are more than two input arguments <var class="var">A1</var>, <var class="var">A2</var>, &hellip;,
<var class="var">An</var> the Kronecker product is computed as
</p>
<div class="example">
<pre class="example-preformatted">kron (kron (<var class="var">A1</var>, <var class="var">A2</var>), ..., <var class="var">An</var>)
</pre></div>

<p>Since the Kronecker product is associative, this is well-defined.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFtensorprod">tensorprod</a>.
</p></dd></dl>


<a class="anchor" id="XREFtensorprod"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-tensorprod"><span><code class="def-type"><var class="var">C</var> =</code> <strong class="def-name">tensorprod</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>, <var class="var">dimA</var>, <var class="var">dimB</var>)</code><a class="copiable-link" href="#index-tensorprod"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-tensorprod-1"><span><code class="def-type"><var class="var">C</var> =</code> <strong class="def-name">tensorprod</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-tensorprod-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-tensorprod-2"><span><code class="def-type"><var class="var">C</var> =</code> <strong class="def-name">tensorprod</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>)</code><a class="copiable-link" href="#index-tensorprod-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-tensorprod-3"><span><code class="def-type"><var class="var">C</var> =</code> <strong class="def-name">tensorprod</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>, &quot;all&quot;)</code><a class="copiable-link" href="#index-tensorprod-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-tensorprod-4"><span><code class="def-type"><var class="var">C</var> =</code> <strong class="def-name">tensorprod</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>, &hellip;, &quot;NumDimensionsA&quot;, <var class="var">value</var>)</code><a class="copiable-link" href="#index-tensorprod-4"> &para;</a></span></dt>
<dd><p>Compute the tensor product between numeric tensors <var class="var">A</var> and <var class="var">B</var>.
</p>
<p>The dimensions of <var class="var">A</var> and <var class="var">B</var> that are contracted are defined by
<var class="var">dimA</var> and <var class="var">dimB</var>, respectively.  <var class="var">dimA</var> and <var class="var">dimB</var> are
scalars or equal length vectors that define the dimensions to match up.
The matched dimensions of <var class="var">A</var> and <var class="var">B</var> must have the same number of
elements.
</p>
<p>When only <var class="var">dim</var> is used, it is equivalent to
<code class="code"><var class="var">dimA</var> = <var class="var">dimB</var> = <var class="var">dim</var></code>.
</p>
<p>When no dimensions are specified, <code class="code"><var class="var">dimA</var> = <var class="var">dimB</var> = []</code>.  This
computes the outer product between <var class="var">A</var> and <var class="var">B</var>.
</p>
<p>Using the <code class="code">&quot;all&quot;</code> option results in the inner product between <var class="var">A</var>
and <var class="var">B</var>.  This requires <code class="code">size (<var class="var">A</var>) == size (<var class="var">B</var>)</code>.
</p>
<p>Use the property-value pair with the property name
<code class="code">&quot;NumDimensionsA&quot;</code> when <var class="var">A</var> has trailing singleton
dimensions that should be transferred to <var class="var">C</var>.  The specified <var class="var">value</var>
should be the total number of dimensions of <var class="var">A</var>.
</p>
<p><small class="sc">MATLAB</small> Compatibility: Octave does not currently support the
<code class="code">&quot;<var class="var">property_name</var>=<var class="var">value</var>&quot;</code> syntax for the
<code class="code">&quot;NumDimensionsA&quot;</code> parameter.
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFkron">kron</a>, <a class="ref" href="Utility-Functions.html#XREFdot">dot</a>, <a class="ref" href="Arithmetic-Ops.html#XREFmtimes">mtimes</a>.
</p></dd></dl>


<a class="anchor" id="XREFblkmm"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-blkmm"><span><code class="def-type"><var class="var">C</var> =</code> <strong class="def-name">blkmm</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>)</code><a class="copiable-link" href="#index-blkmm"> &para;</a></span></dt>
<dd><p>Compute products of matrix blocks.
</p>
<p>The blocks are given as 2-dimensional subarrays of the arrays <var class="var">A</var>,
<var class="var">B</var>.  The size of <var class="var">A</var> must have the form <code class="code">[m,k,&hellip;]</code> and
size of <var class="var">B</var> must be <code class="code">[k,n,&hellip;]</code>.  The result is then of size
<code class="code">[m,n,&hellip;]</code> and is computed as follows:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">for i = 1:prod (size (<var class="var">A</var>)(3:end))
  <var class="var">C</var>(:,:,i) = <var class="var">A</var>(:,:,i) * <var class="var">B</var>(:,:,i)
endfor
</pre></div></div>
</dd></dl>


<a class="anchor" id="XREFsylvester"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sylvester"><span><code class="def-type"><var class="var">X</var> =</code> <strong class="def-name">sylvester</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>, <var class="var">C</var>)</code><a class="copiable-link" href="#index-sylvester"> &para;</a></span></dt>
<dd><p>Solve the Sylvester equation.
</p>
<p>The Sylvester equation is defined as:
</p>
<div class="example">
<pre class="example-preformatted">A X + X B = C
</pre></div>

<p>The solution is computed using standard <small class="sc">LAPACK</small> subroutines.
</p>
<p>For example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
   &rArr; [ 0.50000, 0.66667; 0.66667, 0.50000 ]
</pre></div></div>
</dd></dl>


</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Specialized-Solvers.html">Specialized Solvers</a>, Previous: <a href="Matrix-Factorizations.html">Matrix Factorizations</a>, Up: <a href="Linear-Algebra.html">Linear Algebra</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>