1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Polynomial Interpolation (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Polynomial Interpolation (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Polynomial Interpolation (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html" rel="up" title="Polynomial Manipulations">
<link href="Miscellaneous-Functions.html" rel="next" title="Miscellaneous Functions">
<link href="Derivatives-_002f-Integrals-_002f-Transforms.html" rel="prev" title="Derivatives / Integrals / Transforms">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.center {text-align:center}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="section-level-extent" id="Polynomial-Interpolation">
<div class="nav-panel">
<p>
Next: <a href="Miscellaneous-Functions.html" accesskey="n" rel="next">Miscellaneous Functions</a>, Previous: <a href="Derivatives-_002f-Integrals-_002f-Transforms.html" accesskey="p" rel="prev">Derivatives / Integrals / Transforms</a>, Up: <a href="Polynomial-Manipulations.html" accesskey="u" rel="up">Polynomial Manipulations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Polynomial-Interpolation-1"><span>28.5 Polynomial Interpolation<a class="copiable-link" href="#Polynomial-Interpolation-1"> ¶</a></span></h3>
<p>Octave comes with good support for various kinds of interpolation,
most of which are described in <a class="ref" href="Interpolation.html">Interpolation</a>. One simple alternative
to the functions described in the aforementioned chapter, is to fit
a single polynomial, or a piecewise polynomial (spline) to some given
data points. To avoid a highly fluctuating polynomial, one most often
wants to fit a low-order polynomial to data. This usually means that it
is necessary to fit the polynomial in a least-squares sense, which just
is what the <code class="code">polyfit</code> function does.
</p>
<a class="anchor" id="XREFpolyfit"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-polyfit"><span><code class="def-type"><var class="var">p</var> =</code> <strong class="def-name">polyfit</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-polyfit"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-polyfit-1"><span><code class="def-type">[<var class="var">p</var>, <var class="var">s</var>] =</code> <strong class="def-name">polyfit</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-polyfit-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-polyfit-2"><span><code class="def-type">[<var class="var">p</var>, <var class="var">s</var>, <var class="var">mu</var>] =</code> <strong class="def-name">polyfit</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-polyfit-2"> ¶</a></span></dt>
<dd><p>Return the coefficients of a polynomial <var class="var">p</var>(<var class="var">x</var>) of degree <var class="var">n</var>
that minimizes the least-squares-error of the fit to the points
<code class="code">[<var class="var">x</var>(:), <var class="var">y</var>(:)]</code>.
</p>
<p><var class="var">n</var> is typically an integer ≥ 0 specifying the degree of the
approximating polynomial. If <var class="var">n</var> is a logical vector, it is used as a
mask to selectively force the corresponding polynomial coefficients to be
used or ignored.
</p>
<p>The polynomial coefficients are returned in the row vector <var class="var">p</var>. The
output <var class="var">p</var> may be directly used with <code class="code">polyval</code> to estimate values
using the fitted polynomial.
</p>
<p>The optional output <var class="var">s</var> is a structure containing the following fields:
</p>
<dl class="table">
<dt>‘<samp class="samp">yf</samp>’</dt>
<dd><p>The values of the polynomial for each value of <var class="var">x</var>.
</p>
</dd>
<dt>‘<samp class="samp">X</samp>’</dt>
<dd><p>The Vandermonde matrix used to compute the polynomial
coefficients.
</p>
</dd>
<dt>‘<samp class="samp">R</samp>’</dt>
<dd><p>Triangular factor R from the QR decomposition.
</p>
</dd>
<dt>‘<samp class="samp">C</samp>’</dt>
<dd><p>The unscaled covariance matrix, formally equal to the inverse of
<var class="var">x’</var>*<var class="var">x</var>, but computed in a way minimizing roundoff error
propagation.
</p>
</dd>
<dt>‘<samp class="samp">df</samp>’</dt>
<dd><p>The degrees of freedom.
</p>
</dd>
<dt>‘<samp class="samp">normr</samp>’</dt>
<dd><p>The norm of the residuals.
</p></dd>
</dl>
<p>The second output may be used by <code class="code">polyval</code> to calculate the statistical
error limits of the predicted values. In particular, the standard deviation
of <var class="var">p</var> coefficients is given by
</p>
<p><code class="code">sqrt (diag (<var class="var">s.C</var>)/<var class="var">s.df</var>) * <var class="var">s.normr</var></code>.
</p>
<p>When the third output, <var class="var">mu</var>, is present the original data is centered
and scaled which can improve the numerical stability of the fit. The
coefficients <var class="var">p</var> are associated with a polynomial in
</p>
<p><code class="code"><var class="var">xhat</var> = (<var class="var">x</var> - <var class="var">mu</var>(1)) / <var class="var">mu</var>(2)</code> <br>
where <var class="var">mu</var>(1) = mean (<var class="var">x</var>), and <var class="var">mu</var>(2) = std (<var class="var">x</var>).
</p>
<p>Example 1 : logical <var class="var">n</var> and integer <var class="var">n</var>
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">f = @(x) x.^2 + 5; # data-generating function
x = 0:5;
y = f (x);
## Fit data to polynomial A*x^3 + B*x^1
p = polyfit (x, y, logical ([1, 0, 1, 0]))
⇒ p = [ 0.0680, 0, 4.2444, 0 ]
## Fit data to polynomial using all terms up to x^3
p = polyfit (x, y, 3)
⇒ p = [ -4.9608e-17, 1.0000e+00, -3.3813e-15, 5.0000e+00 ]
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="Evaluating-Polynomials.html#XREFpolyval">polyval</a>, <a class="ref" href="Derivatives-_002f-Integrals-_002f-Transforms.html#XREFpolyaffine">polyaffine</a>, <a class="ref" href="Finding-Roots.html#XREFroots">roots</a>, <a class="ref" href="Famous-Matrices.html#XREFvander">vander</a>, <a class="ref" href="Basic-Statistical-Functions.html#XREFzscore">zscore</a>.
</p></dd></dl>
<p>In situations where a single polynomial isn’t good enough, a solution
is to use several polynomials pieced together. The function
<code class="code">splinefit</code> fits a piecewise polynomial (spline) to a set of
data.
</p>
<a class="anchor" id="XREFsplinefit"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-splinefit"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">splinefit</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">breaks</var>)</code><a class="copiable-link" href="#index-splinefit"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-splinefit-1"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">splinefit</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">p</var>)</code><a class="copiable-link" href="#index-splinefit-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-splinefit-2"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">splinefit</strong> <code class="def-code-arguments">(…, "periodic", <var class="var">periodic</var>)</code><a class="copiable-link" href="#index-splinefit-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-splinefit-3"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">splinefit</strong> <code class="def-code-arguments">(…, "robust", <var class="var">robust</var>)</code><a class="copiable-link" href="#index-splinefit-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-splinefit-4"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">splinefit</strong> <code class="def-code-arguments">(…, "beta", <var class="var">beta</var>)</code><a class="copiable-link" href="#index-splinefit-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-splinefit-5"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">splinefit</strong> <code class="def-code-arguments">(…, "order", <var class="var">order</var>)</code><a class="copiable-link" href="#index-splinefit-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-splinefit-6"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">splinefit</strong> <code class="def-code-arguments">(…, "constraints", <var class="var">constraints</var>)</code><a class="copiable-link" href="#index-splinefit-6"> ¶</a></span></dt>
<dd>
<p>Fit a piecewise cubic spline with breaks (knots) <var class="var">breaks</var> to the
noisy data, <var class="var">x</var> and <var class="var">y</var>.
</p>
<p><var class="var">x</var> is a vector, and <var class="var">y</var> is a vector or N-D array. If <var class="var">y</var> is an
N-D array, then <var class="var">x</var>(j) is matched to <var class="var">y</var>(:,…,:,j).
</p>
<p><var class="var">p</var> is a positive integer defining the number of intervals along
<var class="var">x</var>, and <var class="var">p</var>+1 is the number of breaks. The number of points in
each interval differ by no more than 1.
</p>
<p>The optional property <var class="var">periodic</var> is a logical value which specifies
whether a periodic boundary condition is applied to the spline. The
length of the period is <code class="code">max (<var class="var">breaks</var>) - min (<var class="var">breaks</var>)</code>.
The default value is <code class="code">false</code>.
</p>
<p>The optional property <var class="var">robust</var> is a logical value which specifies
if robust fitting is to be applied to reduce the influence of outlying
data points. Three iterations of weighted least squares are performed.
Weights are computed from previous residuals. The sensitivity of outlier
identification is controlled by the property <var class="var">beta</var>. The value of
<var class="var">beta</var> is restricted to the range, 0 < <var class="var">beta</var> < 1. The default
value is <var class="var">beta</var> = 1/2. Values close to 0 give all data equal
weighting. Increasing values of <var class="var">beta</var> reduce the influence of
outlying data. Values close to unity may cause instability or rank
deficiency.
</p>
<p>The fitted spline is returned as a piecewise polynomial, <var class="var">pp</var>, and
may be evaluated using <code class="code">ppval</code>.
</p>
<p>The splines are constructed of polynomials with degree <var class="var">order</var>.
The default is a cubic, <var class="var">order</var>=3. A spline with P pieces has
P+<var class="var">order</var> degrees of freedom. With periodic boundary conditions
the degrees of freedom are reduced to P.
</p>
<p>The optional property, <var class="var">constraints</var>, is a structure specifying linear
constraints on the fit. The structure has three fields, <code class="code">"xc"</code>,
<code class="code">"yc"</code>, and <code class="code">"cc"</code>.
</p>
<dl class="table">
<dt><code class="code">"xc"</code></dt>
<dd><p>Vector of the x-locations of the constraints.
</p>
</dd>
<dt><code class="code">"yc"</code></dt>
<dd><p>Constraining values at the locations <var class="var">xc</var>.
The default is an array of zeros.
</p>
</dd>
<dt><code class="code">"cc"</code></dt>
<dd><p>Coefficients (matrix). The default is an array of ones. The number of
rows is limited to the order of the piecewise polynomials, <var class="var">order</var>.
</p></dd>
</dl>
<p>Constraints are linear combinations of derivatives of order 0 to
<var class="var">order</var>-1 according to
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">cc(1,j) * y(xc(j)) + cc(2,j) * y'(xc(j)) + ... = yc(:,...,:,j).
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="One_002ddimensional-Interpolation.html#XREFinterp1">interp1</a>, <a class="ref" href="#XREFunmkpp">unmkpp</a>, <a class="ref" href="#XREFppval">ppval</a>, <a class="ref" href="One_002ddimensional-Interpolation.html#XREFspline">spline</a>, <a class="ref" href="Signal-Processing.html#XREFpchip">pchip</a>, <a class="ref" href="#XREFppder">ppder</a>, <a class="ref" href="#XREFppint">ppint</a>, <a class="ref" href="#XREFppjumps">ppjumps</a>.
</p></dd></dl>
<p>The number of <var class="var">breaks</var> (or knots) used to construct the piecewise
polynomial is a significant factor in suppressing the noise present in
the input data, <var class="var">x</var> and <var class="var">y</var>. This is demonstrated by the example
below.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">x = 2 * pi * rand (1, 200);
y = sin (x) + sin (2 * x) + 0.2 * randn (size (x));
## Uniform breaks
breaks = linspace (0, 2 * pi, 41); % 41 breaks, 40 pieces
pp1 = splinefit (x, y, breaks);
## Breaks interpolated from data
pp2 = splinefit (x, y, 10); % 11 breaks, 10 pieces
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
plot (x, y, ".", xx, [y1; y2])
axis tight
ylim auto
legend ({"data", "41 breaks, 40 pieces", "11 breaks, 10 pieces"})
</pre></div></div>
<p>The result of which can be seen in <a class="ref" href="#fig_003asplinefit1">Figure 28.1</a>.
</p>
<div class="float" id="fig_003asplinefit1">
<div class="center"><img class="image" src="splinefit1.png" alt="splinefit1">
</div><div class="caption"><p><strong class="strong">Figure 28.1: </strong>Comparison of a fitting a piecewise polynomial with 41 breaks to one
with 11 breaks. The fit with the large number of breaks exhibits a fast ripple
that is not present in the underlying function.</p></div></div>
<p>The piecewise polynomial fit, provided by <code class="code">splinefit</code>, has
continuous derivatives up to the <var class="var">order</var>-1. For example, a cubic fit
has continuous first and second derivatives. This is demonstrated by
the code
</p>
<div class="example">
<pre class="example-preformatted">## Data (200 points)
x = 2 * pi * rand (1, 200);
y = sin (x) + sin (2 * x) + 0.1 * randn (size (x));
## Piecewise constant
pp1 = splinefit (x, y, 8, "order", 0);
## Piecewise linear
pp2 = splinefit (x, y, 8, "order", 1);
## Piecewise quadratic
pp3 = splinefit (x, y, 8, "order", 2);
## Piecewise cubic
pp4 = splinefit (x, y, 8, "order", 3);
## Piecewise quartic
pp5 = splinefit (x, y, 8, "order", 4);
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
y3 = ppval (pp3, xx);
y4 = ppval (pp4, xx);
y5 = ppval (pp5, xx);
plot (x, y, ".", xx, [y1; y2; y3; y4; y5])
axis tight
ylim auto
legend ({"data", "order 0", "order 1", "order 2", "order 3", "order 4"})
</pre></div>
<p>The result of which can be seen in <a class="ref" href="#fig_003asplinefit2">Figure 28.2</a>.
</p>
<div class="float" id="fig_003asplinefit2">
<div class="center"><img class="image" src="splinefit2.png" alt="splinefit2">
</div><div class="caption"><p><strong class="strong">Figure 28.2: </strong>Comparison of a piecewise constant, linear, quadratic, cubic, and
quartic polynomials with 8 breaks to noisy data. The higher order solutions
more accurately represent the underlying function, but come with the
expense of computational complexity.</p></div></div>
<p>When the underlying function to provide a fit to is periodic, <code class="code">splinefit</code>
is able to apply the boundary conditions needed to manifest a periodic fit.
This is demonstrated by the code below.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">## Data (100 points)
x = 2 * pi * [0, (rand (1, 98)), 1];
y = sin (x) - cos (2 * x) + 0.2 * randn (size (x));
## No constraints
pp1 = splinefit (x, y, 10, "order", 5);
## Periodic boundaries
pp2 = splinefit (x, y, 10, "order", 5, "periodic", true);
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
plot (x, y, ".", xx, [y1; y2])
axis tight
ylim auto
legend ({"data", "no constraints", "periodic"})
</pre></div></div>
<p>The result of which can be seen in <a class="ref" href="#fig_003asplinefit3">Figure 28.3</a>.
</p>
<div class="float" id="fig_003asplinefit3">
<div class="center"><img class="image" src="splinefit3.png" alt="splinefit3">
</div><div class="caption"><p><strong class="strong">Figure 28.3: </strong>Comparison of piecewise polynomial fits to a noisy periodic
function with, and without, periodic boundary conditions.</p></div></div>
<p>More complex constraints may be added as well. For example, the code below
illustrates a periodic fit with values that have been clamped at the endpoints,
and a second periodic fit which is hinged at the endpoints.
</p>
<div class="example">
<pre class="example-preformatted">## Data (200 points)
x = 2 * pi * rand (1, 200);
y = sin (2 * x) + 0.1 * randn (size (x));
## Breaks
breaks = linspace (0, 2 * pi, 10);
## Clamped endpoints, y = y' = 0
xc = [0, 0, 2*pi, 2*pi];
cc = [(eye (2)), (eye (2))];
con = struct ("xc", xc, "cc", cc);
pp1 = splinefit (x, y, breaks, "constraints", con);
## Hinged periodic endpoints, y = 0
con = struct ("xc", 0);
pp2 = splinefit (x, y, breaks, "constraints", con, "periodic", true);
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
plot (x, y, ".", xx, [y1; y2])
axis tight
ylim auto
legend ({"data", "clamped", "hinged periodic"})
</pre></div>
<p>The result of which can be seen in <a class="ref" href="#fig_003asplinefit4">Figure 28.4</a>.
</p>
<div class="float" id="fig_003asplinefit4">
<div class="center"><img class="image" src="splinefit4.png" alt="splinefit4">
</div><div class="caption"><p><strong class="strong">Figure 28.4: </strong>Comparison of two periodic piecewise cubic fits to a noisy periodic
signal. One fit has its endpoints clamped and the second has its endpoints
hinged.</p></div></div>
<p>The <code class="code">splinefit</code> function also provides the convenience of a <var class="var">robust</var>
fitting, where the effect of outlying data is reduced. In the example below,
three different fits are provided. Two with differing levels of outlier
suppression and a third illustrating the non-robust solution.
</p>
<div class="example">
<pre class="example-preformatted">## Data
x = linspace (0, 2*pi, 200);
y = sin (x) + sin (2 * x) + 0.05 * randn (size (x));
## Add outliers
x = [x, linspace(0,2*pi,60)];
y = [y, -ones(1,60)];
## Fit splines with hinged conditions
con = struct ("xc", [0, 2*pi]);
## Robust fitting, beta = 0.25
pp1 = splinefit (x, y, 8, "constraints", con, "beta", 0.25);
## Robust fitting, beta = 0.75
pp2 = splinefit (x, y, 8, "constraints", con, "beta", 0.75);
## No robust fitting
pp3 = splinefit (x, y, 8, "constraints", con);
## Plot
xx = linspace (0, 2*pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
y3 = ppval (pp3, xx);
plot (x, y, ".", xx, [y1; y2; y3])
legend ({"data with outliers","robust, beta = 0.25", ...
"robust, beta = 0.75", "no robust fitting"})
axis tight
ylim auto
</pre></div>
<p>The result of which can be seen in <a class="ref" href="#fig_003asplinefit6">Figure 28.5</a>.
</p>
<div class="float" id="fig_003asplinefit6">
<div class="center"><img class="image" src="splinefit6.png" alt="splinefit6">
</div><div class="caption"><p><strong class="strong">Figure 28.5: </strong>Comparison of two different levels of robust fitting (<var class="var">beta</var> = 0.25 and 0.75) to noisy data combined with outlying data. A conventional fit, without
robust fitting (<var class="var">beta</var> = 0) is also included.</p></div></div>
<p>A very specific form of polynomial interpretation is the Padé approximant.
For control systems, a continuous-time delay can be modeled very simply with
the approximant.
</p>
<a class="anchor" id="XREFpadecoef"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-padecoef"><span><code class="def-type">[<var class="var">num</var>, <var class="var">den</var>] =</code> <strong class="def-name">padecoef</strong> <code class="def-code-arguments">(<var class="var">T</var>)</code><a class="copiable-link" href="#index-padecoef"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-padecoef-1"><span><code class="def-type">[<var class="var">num</var>, <var class="var">den</var>] =</code> <strong class="def-name">padecoef</strong> <code class="def-code-arguments">(<var class="var">T</var>, <var class="var">N</var>)</code><a class="copiable-link" href="#index-padecoef-1"> ¶</a></span></dt>
<dd><p>Compute the <var class="var">N</var>th-order Padé approximant of the continuous-time
delay <var class="var">T</var> in transfer function form.
The Padé approximant of <code class="code">exp (-sT)</code> is defined by the
following equation
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> Pn(s)
exp (-sT) ~ -------
Qn(s)
</pre></div></div>
<p>Where both Pn(s) and Qn(s) are <var class="var">N</var>th-order rational functions
defined by the following expressions
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> N (2N - k)!N! k
Pn(s) = SUM --------------- (-sT)
k=0 (2N)!k!(N - k)!
Qn(s) = Pn(-s)
</pre></div></div>
<p>The inputs <var class="var">T</var> and <var class="var">N</var> must be non-negative numeric scalars. If
<var class="var">N</var> is unspecified it defaults to 1.
</p>
<p>The output row vectors <var class="var">num</var> and <var class="var">den</var> contain the numerator and
denominator coefficients in descending powers of s. Both are
<var class="var">N</var>th-order polynomials.
</p>
<p>For example:
</p>
<div class="example smallexample">
<div class="group"><pre class="example-preformatted">t = 0.1;
n = 4;
[num, den] = padecoef (t, n)
⇒ num =
1.0000e-04 -2.0000e-02 1.8000e+00 -8.4000e+01 1.6800e+03
⇒ den =
1.0000e-04 2.0000e-02 1.8000e+00 8.4000e+01 1.6800e+03
</pre></div></div>
</dd></dl>
<p>The function, <code class="code">ppval</code>, evaluates the piecewise polynomials, created
by <code class="code">mkpp</code> or other means, and <code class="code">unmkpp</code> returns detailed
information about the piecewise polynomial.
</p>
<p>The following example shows how to combine two linear functions and a
quadratic into one function. Each of these functions is expressed
on adjoined intervals.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">x = [-2, -1, 1, 2];
p = [ 0, 1, 0;
1, -2, 1;
0, -1, 1 ];
pp = mkpp (x, p);
xi = linspace (-2, 2, 50);
yi = ppval (pp, xi);
plot (xi, yi);
</pre></div></div>
<a class="anchor" id="XREFmkpp"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-mkpp"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">mkpp</strong> <code class="def-code-arguments">(<var class="var">breaks</var>, <var class="var">coefs</var>)</code><a class="copiable-link" href="#index-mkpp"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mkpp-1"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">mkpp</strong> <code class="def-code-arguments">(<var class="var">breaks</var>, <var class="var">coefs</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-mkpp-1"> ¶</a></span></dt>
<dd>
<p>Construct a piecewise polynomial (pp) structure from sample points
<var class="var">breaks</var> and coefficients <var class="var">coefs</var>.
</p>
<p><var class="var">breaks</var> must be a vector of strictly increasing values. The number of
intervals is given by <code class="code"><var class="var">ni</var> = length (<var class="var">breaks</var>) - 1</code>.
</p>
<p>When <var class="var">m</var> is the polynomial order <var class="var">coefs</var> must be of size:
<var class="var">ni</var>-by-(<var class="var">m</var> + 1)<!-- /@w -->.
</p>
<p>The i-th row of <var class="var">coefs</var>, <code class="code"><var class="var">coefs</var>(<var class="var">i</var>,:)</code>, contains the
coefficients for the polynomial over the <var class="var">i</var>-th interval, ordered from
highest (<var class="var">m</var>) to lowest (<var class="var">0</var>) degree.
</p>
<p><var class="var">coefs</var> may also be a multi-dimensional array, specifying a
vector-valued or array-valued polynomial. In that case the polynomial
order <var class="var">m</var> is defined by the length of the last dimension of <var class="var">coefs</var>.
The size of first dimension(s) are given by the scalar or vector <var class="var">d</var>.
If <var class="var">d</var> is not given it is set to <code class="code">1</code>. In this case
<code class="code"><var class="var">p</var>(<var class="var">r</var>, <var class="var">i</var>, :)</code> contains the coefficients for the
<var class="var">r</var>-th polynomial defined on interval <var class="var">i</var>. In any case <var class="var">coefs</var>
is reshaped to a 2-D matrix of size <code class="code">[<var class="var">ni</var>*prod(<var class="var">d</var>) <var class="var">m</var>]</code>.
</p>
<p>Programming Note: <code class="code">ppval</code> evaluates polynomials at
<code class="code"><var class="var">xi</var> - <var class="var">breaks</var>(i)</code>, i.e., it subtracts the lower endpoint of
the current interval from <var class="var">xi</var>. This must be taken into account when
creating piecewise polynomials objects with <code class="code">mkpp</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFunmkpp">unmkpp</a>, <a class="ref" href="#XREFppval">ppval</a>, <a class="ref" href="One_002ddimensional-Interpolation.html#XREFspline">spline</a>, <a class="ref" href="Signal-Processing.html#XREFpchip">pchip</a>, <a class="ref" href="#XREFppder">ppder</a>, <a class="ref" href="#XREFppint">ppint</a>, <a class="ref" href="#XREFppjumps">ppjumps</a>.
</p></dd></dl>
<a class="anchor" id="XREFunmkpp"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-unmkpp"><span><code class="def-type">[<var class="var">x</var>, <var class="var">p</var>, <var class="var">n</var>, <var class="var">k</var>, <var class="var">d</var>] =</code> <strong class="def-name">unmkpp</strong> <code class="def-code-arguments">(<var class="var">pp</var>)</code><a class="copiable-link" href="#index-unmkpp"> ¶</a></span></dt>
<dd>
<p>Extract the components of a piecewise polynomial structure <var class="var">pp</var>.
</p>
<p>This function is the inverse of <code class="code">mkpp</code>: it extracts the inputs to
<code class="code">mkpp</code> needed to create the piecewise polynomial structure <var class="var">pp</var>.
The code below makes this relation explicit:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">[breaks, coefs, numinter, order, dim] = unmkpp (pp);
pp2 = mkpp (breaks, coefs, dim);
</pre></div></div>
<p>The piecewise polynomial structure <code class="code">pp2</code> obtained in this way, is
identical to the original <code class="code">pp</code>. The same can be obtained by directly
accessing the fields of the structure <code class="code">pp</code>.
</p>
<p>The components are:
</p>
<dl class="table">
<dt><var class="var">x</var></dt>
<dd><p>Sample points or breaks.
</p>
</dd>
<dt><var class="var">p</var></dt>
<dd><p>Polynomial coefficients for points in sample interval.
<code class="code"><var class="var">p</var>(<var class="var">i</var>, :)</code> contains the coefficients for the polynomial
over interval <var class="var">i</var> ordered from highest to lowest degree.
If <code class="code"><var class="var">d</var> > 1</code>, then <var class="var">p</var> is a matrix of size
<code class="code">[<var class="var">n</var>*prod(<var class="var">d</var>) <var class="var">m</var>]</code>, where the
<code class="code"><var class="var">i</var> + (1:<var class="var">d</var>)</code> rows are the coefficients of all the <var class="var">d</var>
polynomials in the interval <var class="var">i</var>.
</p>
</dd>
<dt><var class="var">n</var></dt>
<dd><p>Number of polynomial pieces or intervals,
<code class="code"><var class="var">n</var> = length (<var class="var">x</var>) - 1</code>.
</p>
</dd>
<dt><var class="var">k</var></dt>
<dd><p>Order of the polynomial plus 1.
</p>
</dd>
<dt><var class="var">d</var></dt>
<dd><p>Number of polynomials defined for each interval.
</p></dd>
</dl>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmkpp">mkpp</a>, <a class="ref" href="#XREFppval">ppval</a>, <a class="ref" href="One_002ddimensional-Interpolation.html#XREFspline">spline</a>, <a class="ref" href="Signal-Processing.html#XREFpchip">pchip</a>.
</p></dd></dl>
<a class="anchor" id="XREFppval"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ppval"><span><code class="def-type"><var class="var">yi</var> =</code> <strong class="def-name">ppval</strong> <code class="def-code-arguments">(<var class="var">pp</var>, <var class="var">xi</var>)</code><a class="copiable-link" href="#index-ppval"> ¶</a></span></dt>
<dd><p>Evaluate the piecewise polynomial structure <var class="var">pp</var> at the points <var class="var">xi</var>.
</p>
<p>If <var class="var">pp</var> describes a scalar polynomial function, the result is an array
of the same shape as <var class="var">xi</var>. Otherwise, the size of the result is
<code class="code">[pp.dim, length(<var class="var">xi</var>)]</code> if <var class="var">xi</var> is a vector, or
<code class="code">[pp.dim, size(<var class="var">xi</var>)]</code> if it is a multi-dimensional array.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmkpp">mkpp</a>, <a class="ref" href="#XREFunmkpp">unmkpp</a>, <a class="ref" href="One_002ddimensional-Interpolation.html#XREFspline">spline</a>, <a class="ref" href="Signal-Processing.html#XREFpchip">pchip</a>.
</p></dd></dl>
<a class="anchor" id="XREFppder"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ppder"><span><code class="def-type">ppd =</code> <strong class="def-name">ppder</strong> <code class="def-code-arguments">(pp)</code><a class="copiable-link" href="#index-ppder"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ppder-1"><span><code class="def-type">ppd =</code> <strong class="def-name">ppder</strong> <code class="def-code-arguments">(pp, m)</code><a class="copiable-link" href="#index-ppder-1"> ¶</a></span></dt>
<dd><p>Compute the piecewise <var class="var">m</var>-th derivative of a piecewise polynomial
struct <var class="var">pp</var>.
</p>
<p>If <var class="var">m</var> is omitted the first derivative is calculated.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmkpp">mkpp</a>, <a class="ref" href="#XREFppval">ppval</a>, <a class="ref" href="#XREFppint">ppint</a>.
</p></dd></dl>
<a class="anchor" id="XREFppint"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ppint"><span><code class="def-type"><var class="var">ppi</var> =</code> <strong class="def-name">ppint</strong> <code class="def-code-arguments">(<var class="var">pp</var>)</code><a class="copiable-link" href="#index-ppint"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ppint-1"><span><code class="def-type"><var class="var">ppi</var> =</code> <strong class="def-name">ppint</strong> <code class="def-code-arguments">(<var class="var">pp</var>, <var class="var">c</var>)</code><a class="copiable-link" href="#index-ppint-1"> ¶</a></span></dt>
<dd><p>Compute the integral of the piecewise polynomial struct <var class="var">pp</var>.
</p>
<p><var class="var">c</var>, if given, is the constant of integration.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmkpp">mkpp</a>, <a class="ref" href="#XREFppval">ppval</a>, <a class="ref" href="#XREFppder">ppder</a>.
</p></dd></dl>
<a class="anchor" id="XREFppjumps"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ppjumps"><span><code class="def-type"><var class="var">jumps</var> =</code> <strong class="def-name">ppjumps</strong> <code class="def-code-arguments">(<var class="var">pp</var>)</code><a class="copiable-link" href="#index-ppjumps"> ¶</a></span></dt>
<dd><p>Evaluate the boundary jumps of a piecewise polynomial.
</p>
<p>If there are <em class="math">n</em> intervals, and the dimensionality of <var class="var">pp</var> is
<em class="math">d</em>, the resulting array has dimensions <code class="code">[d, n-1]</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmkpp">mkpp</a>.
</p></dd></dl>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Miscellaneous-Functions.html">Miscellaneous Functions</a>, Previous: <a href="Derivatives-_002f-Integrals-_002f-Transforms.html">Derivatives / Integrals / Transforms</a>, Up: <a href="Polynomial-Manipulations.html">Polynomial Manipulations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|