1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Signal Processing (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Signal Processing (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Signal Processing (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="index.html" rel="up" title="Top">
<link href="Image-Processing.html" rel="next" title="Image Processing">
<link href="Geometry.html" rel="prev" title="Geometry">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="chapter-level-extent" id="Signal-Processing">
<div class="nav-panel">
<p>
Next: <a href="Image-Processing.html" accesskey="n" rel="next">Image Processing</a>, Previous: <a href="Geometry.html" accesskey="p" rel="prev">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h2 class="chapter" id="Signal-Processing-1"><span>31 Signal Processing<a class="copiable-link" href="#Signal-Processing-1"> ¶</a></span></h2>
<p>This chapter describes the signal processing and fast Fourier
transform functions available in Octave. Fast Fourier transforms are
computed with the <small class="sc">FFTW</small> or <small class="sc">FFTPACK</small> libraries depending on how
Octave is built.
</p>
<a class="anchor" id="XREFfft"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fft"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">fft</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-fft"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fft-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">fft</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-fft-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fft-2"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">fft</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">n</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-fft-2"> ¶</a></span></dt>
<dd><p>Compute the discrete Fourier transform of <var class="var">x</var> using
a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The FFT is calculated along the first non-singleton dimension of the
array. Thus if <var class="var">x</var> is a matrix, <code class="code">fft (<var class="var">x</var>)</code> computes the
FFT for each column of <var class="var">x</var>.
</p>
<p>If called with two arguments, <var class="var">n</var> is expected to be an integer
specifying the number of elements of <var class="var">x</var> to use, or an empty
matrix to specify that its value should be ignored. If <var class="var">n</var> is
larger than the dimension along which the FFT is calculated, then
<var class="var">x</var> is resized and padded with zeros. Otherwise, if <var class="var">n</var> is
smaller than the dimension along which the FFT is calculated, then
<var class="var">x</var> is truncated.
</p>
<p>If called with three arguments, <var class="var">dim</var> is an integer specifying the
dimension of the matrix along which the FFT is performed.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFifft">ifft</a>, <a class="ref" href="#XREFfft2">fft2</a>, <a class="ref" href="#XREFfftn">fftn</a>, <a class="ref" href="#XREFfftw">fftw</a>.
</p></dd></dl>
<a class="anchor" id="XREFifft"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ifft"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">ifft</strong> <code class="def-code-arguments">(<var class="var">y</var>)</code><a class="copiable-link" href="#index-ifft"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ifft-1"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">ifft</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-ifft-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ifft-2"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">ifft</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">n</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-ifft-2"> ¶</a></span></dt>
<dd><p>Compute the inverse discrete Fourier transform of <var class="var">y</var>
using a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The inverse FFT is calculated along the first non-singleton dimension
of the array. Thus if <var class="var">y</var> is a matrix, <code class="code">ifft (<var class="var">y</var>)</code> computes
the inverse FFT for each column of <var class="var">y</var>.
</p>
<p>If called with two arguments, <var class="var">n</var> is expected to be an integer
specifying the number of elements of <var class="var">y</var> to use, or an empty
matrix to specify that its value should be ignored. If <var class="var">n</var> is
larger than the dimension along which the inverse FFT is calculated, then
<var class="var">y</var> is resized and padded with zeros. Otherwise, if <var class="var">n</var> is
smaller than the dimension along which the inverse FFT is calculated,
then <var class="var">y</var> is truncated.
</p>
<p>If called with three arguments, <var class="var">dim</var> is an integer specifying the
dimension of the matrix along which the inverse FFT is performed.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfft">fft</a>, <a class="ref" href="#XREFifft2">ifft2</a>, <a class="ref" href="#XREFifftn">ifftn</a>, <a class="ref" href="#XREFfftw">fftw</a>.
</p></dd></dl>
<a class="anchor" id="XREFfft2"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fft2"><span><code class="def-type"><var class="var">B</var> =</code> <strong class="def-name">fft2</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-fft2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fft2-1"><span><code class="def-type"><var class="var">B</var> =</code> <strong class="def-name">fft2</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-fft2-1"> ¶</a></span></dt>
<dd><p>Compute the two-dimensional discrete Fourier transform of <var class="var">A</var> using
a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The optional arguments <var class="var">m</var> and <var class="var">n</var> may be used specify the number of
rows and columns of <var class="var">A</var> to use. If either of these is larger than the
size of <var class="var">A</var>, <var class="var">A</var> is resized and padded with zeros.
</p>
<p>If <var class="var">A</var> is a multi-dimensional matrix, each two-dimensional sub-matrix
of <var class="var">A</var> is treated separately.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFifft2">ifft2</a>, <a class="ref" href="#XREFfft">fft</a>, <a class="ref" href="#XREFfftn">fftn</a>, <a class="ref" href="#XREFfftw">fftw</a>.
</p></dd></dl>
<a class="anchor" id="XREFifft2"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ifft2"><span><code class="def-type"><var class="var">A</var> =</code> <strong class="def-name">ifft2</strong> <code class="def-code-arguments">(<var class="var">B</var>)</code><a class="copiable-link" href="#index-ifft2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ifft2-1"><span><code class="def-type"><var class="var">A</var> =</code> <strong class="def-name">ifft2</strong> <code class="def-code-arguments">(<var class="var">B</var>, <var class="var">m</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-ifft2-1"> ¶</a></span></dt>
<dd><p>Compute the inverse two-dimensional discrete Fourier transform of <var class="var">B</var>
using a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The optional arguments <var class="var">m</var> and <var class="var">n</var> may be used specify the number of
rows and columns of <var class="var">B</var> to use. If either of these is larger than the
size of <var class="var">B</var>, <var class="var">B</var> is resized and padded with zeros.
</p>
<p>If <var class="var">B</var> is a multi-dimensional matrix, each two-dimensional sub-matrix
of <var class="var">B</var> is treated separately.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfft2">fft2</a>, <a class="ref" href="#XREFifft">ifft</a>, <a class="ref" href="#XREFifftn">ifftn</a>, <a class="ref" href="#XREFfftw">fftw</a>.
</p></dd></dl>
<a class="anchor" id="XREFfftn"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fftn"><span><code class="def-type"><var class="var">B</var> =</code> <strong class="def-name">fftn</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-fftn"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fftn-1"><span><code class="def-type"><var class="var">B</var> =</code> <strong class="def-name">fftn</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">size</var>)</code><a class="copiable-link" href="#index-fftn-1"> ¶</a></span></dt>
<dd><p>Compute the N-dimensional discrete Fourier transform of <var class="var">A</var> using
a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The optional vector argument <var class="var">size</var> may be used specify the dimensions
of the array to be used. If an element of <var class="var">size</var> is smaller than the
corresponding dimension of <var class="var">A</var>, then the dimension of <var class="var">A</var> is
truncated prior to performing the FFT. Otherwise, if an element of
<var class="var">size</var> is larger than the corresponding dimension then <var class="var">A</var> is
resized and padded with zeros.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFifftn">ifftn</a>, <a class="ref" href="#XREFfft">fft</a>, <a class="ref" href="#XREFfft2">fft2</a>, <a class="ref" href="#XREFfftw">fftw</a>.
</p></dd></dl>
<a class="anchor" id="XREFifftn"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ifftn"><span><code class="def-type"><var class="var">A</var> =</code> <strong class="def-name">ifftn</strong> <code class="def-code-arguments">(<var class="var">B</var>)</code><a class="copiable-link" href="#index-ifftn"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ifftn-1"><span><code class="def-type"><var class="var">A</var> =</code> <strong class="def-name">ifftn</strong> <code class="def-code-arguments">(<var class="var">B</var>, <var class="var">size</var>)</code><a class="copiable-link" href="#index-ifftn-1"> ¶</a></span></dt>
<dd><p>Compute the inverse N-dimensional discrete Fourier transform of <var class="var">B</var>
using a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The optional vector argument <var class="var">size</var> may be used specify the dimensions
of the array to be used. If an element of <var class="var">size</var> is smaller than the
corresponding dimension of <var class="var">B</var>, then the dimension of <var class="var">B</var> is
truncated prior to performing the inverse FFT. Otherwise, if an element of
<var class="var">size</var> is larger than the corresponding dimension then <var class="var">B</var> is
resized and padded with zeros.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfftn">fftn</a>, <a class="ref" href="#XREFifft">ifft</a>, <a class="ref" href="#XREFifft2">ifft2</a>, <a class="ref" href="#XREFfftw">fftw</a>.
</p></dd></dl>
<p>Octave uses the <small class="sc">FFTW</small> libraries to perform FFT computations. When Octave
starts up and initializes the <small class="sc">FFTW</small> libraries, they read a system wide
file (on a Unix system, it is typically <samp class="file">/etc/fftw/wisdom</samp>) that
contains information useful to speed up FFT computations. This
information is called the <em class="emph">wisdom</em>. The system-wide file allows
wisdom to be shared between all applications using the <small class="sc">FFTW</small> libraries.
</p>
<p>Use the <code class="code">fftw</code> function to generate and save wisdom. Using the
utilities provided together with the <small class="sc">FFTW</small> libraries
(<code class="command">fftw-wisdom</code> on Unix systems), you can even add wisdom
generated by Octave to the system-wide wisdom file.
</p>
<a class="anchor" id="XREFfftw"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fftw"><span><code class="def-type"><var class="var">method</var> =</code> <strong class="def-name">fftw</strong> <code class="def-code-arguments">("planner")</code><a class="copiable-link" href="#index-fftw"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fftw-1"><span><strong class="def-name">fftw</strong> <code class="def-code-arguments">("planner", <var class="var">method</var>)</code><a class="copiable-link" href="#index-fftw-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fftw-2"><span><code class="def-type"><var class="var">wisdom</var> =</code> <strong class="def-name">fftw</strong> <code class="def-code-arguments">("dwisdom")</code><a class="copiable-link" href="#index-fftw-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fftw-3"><span><strong class="def-name">fftw</strong> <code class="def-code-arguments">("dwisdom", <var class="var">wisdom</var>)</code><a class="copiable-link" href="#index-fftw-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fftw-4"><span><code class="def-type"><var class="var">nthreads</var> =</code> <strong class="def-name">fftw</strong> <code class="def-code-arguments">("threads")</code><a class="copiable-link" href="#index-fftw-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fftw-5"><span><strong class="def-name">fftw</strong> <code class="def-code-arguments">("threads", <var class="var">nthreads</var>)</code><a class="copiable-link" href="#index-fftw-5"> ¶</a></span></dt>
<dd>
<p>Manage <small class="sc">FFTW</small> wisdom data.
</p>
<p>Wisdom data can be used to significantly accelerate the calculation of the
FFTs, but implies an initial cost in its calculation. When the <small class="sc">FFTW</small>
libraries are initialized, they read a system wide wisdom file (typically in
<samp class="file">/etc/fftw/wisdom</samp>), allowing wisdom to be shared between applications
other than Octave. Alternatively, the <code class="code">fftw</code> function can be used to
import wisdom. For example,
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">wisdom</var> = fftw ("dwisdom")
</pre></div>
<p>will save the existing wisdom used by Octave to the string <var class="var">wisdom</var>.
This string can then be saved to a file and restored using the <code class="code">save</code>
and <code class="code">load</code> commands respectively. This existing wisdom can be
re-imported as follows
</p>
<div class="example">
<pre class="example-preformatted">fftw ("dwisdom", <var class="var">wisdom</var>)
</pre></div>
<p>If <var class="var">wisdom</var> is an empty string, then the wisdom used is cleared.
</p>
<p>During the calculation of Fourier transforms further wisdom is generated.
The fashion in which this wisdom is generated is also controlled by
the <code class="code">fftw</code> function. There are five different manners in which the
wisdom can be treated:
</p>
<dl class="table">
<dt><code class="code">"estimate"</code></dt>
<dd><p>Specifies that no run-time measurement of the optimal means of
calculating a particular is performed, and a simple heuristic is used
to pick a (probably sub-optimal) plan. The advantage of this method is
that there is little or no overhead in the generation of the plan, which
is appropriate for a Fourier transform that will be calculated once.
</p>
</dd>
<dt><code class="code">"measure"</code></dt>
<dd><p>In this case a range of algorithms to perform the transform is considered
and the best is selected based on their execution time.
</p>
</dd>
<dt><code class="code">"patient"</code></dt>
<dd><p>Similar to <code class="code">"measure"</code>, but a wider range of algorithms is
considered.
</p>
</dd>
<dt><code class="code">"exhaustive"</code></dt>
<dd><p>Like <code class="code">"measure"</code>, but all possible algorithms that may be used to
treat the transform are considered.
</p>
</dd>
<dt><code class="code">"hybrid"</code></dt>
<dd><p>As run-time measurement of the algorithm can be expensive, this is a
compromise where <code class="code">"measure"</code> is used for transforms up to the size
of 8192 and beyond that the <code class="code">"estimate"</code> method is used.
</p></dd>
</dl>
<p>The default method is <code class="code">"estimate"</code>. The current method can
be queried with
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">method</var> = fftw ("planner")
</pre></div>
<p>or set by using
</p>
<div class="example">
<pre class="example-preformatted">fftw ("planner", <var class="var">method</var>)
</pre></div>
<p>Note that calculated wisdom will be lost when restarting Octave. However,
the wisdom data can be reloaded if it is saved to a file as described
above. Saved wisdom files should not be used on different platforms since
they will not be efficient and the point of calculating the wisdom is lost.
</p>
<p>The number of threads used for computing the plans and executing the
transforms can be set with
</p>
<div class="example">
<pre class="example-preformatted">fftw ("threads", <var class="var">NTHREADS</var>)
</pre></div>
<p>Note that Octave must be compiled with multi-threaded <small class="sc">FFTW</small> support for
this feature. By default, the number of (logical) processors available to the
current process or <var class="var">3</var> is used (whichever is smaller).
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfft">fft</a>, <a class="ref" href="#XREFifft">ifft</a>, <a class="ref" href="#XREFfft2">fft2</a>, <a class="ref" href="#XREFifft2">ifft2</a>, <a class="ref" href="#XREFfftn">fftn</a>, <a class="ref" href="#XREFifftn">ifftn</a>.
</p></dd></dl>
<a class="anchor" id="XREFfftconv"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fftconv"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">fftconv</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>)</code><a class="copiable-link" href="#index-fftconv"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fftconv-1"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">fftconv</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-fftconv-1"> ¶</a></span></dt>
<dd><p>Convolve two vectors using the FFT for computation.
</p>
<p><code class="code">c = fftconv (<var class="var">x</var>, <var class="var">y</var>)</code> returns a vector of length equal to
<code class="code">length (<var class="var">x</var>) + length (<var class="var">y</var>) - 1</code>. If <var class="var">x</var> and <var class="var">y</var>
are the coefficient vectors of two polynomials, the returned value is the
coefficient vector of the product polynomial.
</p>
<p>The computation uses the FFT by calling the function <code class="code">fftfilt</code>. If
the optional argument <var class="var">n</var> is specified, an N-point FFT is used.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Products-of-Polynomials.html#XREFdeconv">deconv</a>, <a class="ref" href="Products-of-Polynomials.html#XREFconv">conv</a>, <a class="ref" href="Products-of-Polynomials.html#XREFconv2">conv2</a>.
</p></dd></dl>
<a class="anchor" id="XREFfftfilt"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fftfilt"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">fftfilt</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">x</var>)</code><a class="copiable-link" href="#index-fftfilt"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fftfilt-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">fftfilt</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">x</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-fftfilt-1"> ¶</a></span></dt>
<dd><p>Filter <var class="var">x</var> with the FIR filter <var class="var">b</var> using the FFT.
</p>
<p>If <var class="var">x</var> is a matrix, filter each column of the matrix.
</p>
<p>Given the optional third argument, <var class="var">n</var>, <code class="code">fftfilt</code> uses the
overlap-add method to filter <var class="var">x</var> with <var class="var">b</var> using an N-point FFT.
The FFT size must be an even power of 2 and must be greater than or equal to
the length of <var class="var">b</var>. If the specified <var class="var">n</var> does not meet these
criteria, it is automatically adjusted to the nearest value that does.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfilter">filter</a>, <a class="ref" href="#XREFfilter2">filter2</a>.
</p></dd></dl>
<a class="anchor" id="XREFfilter"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-filter"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">filter</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">a</var>, <var class="var">x</var>)</code><a class="copiable-link" href="#index-filter"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-filter-1"><span><code class="def-type">[<var class="var">y</var>, <var class="var">sf</var>] =</code> <strong class="def-name">filter</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">a</var>, <var class="var">x</var>, <var class="var">si</var>)</code><a class="copiable-link" href="#index-filter-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-filter-2"><span><code class="def-type">[<var class="var">y</var>, <var class="var">sf</var>] =</code> <strong class="def-name">filter</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">a</var>, <var class="var">x</var>, [], <var class="var">dim</var>)</code><a class="copiable-link" href="#index-filter-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-filter-3"><span><code class="def-type">[<var class="var">y</var>, <var class="var">sf</var>] =</code> <strong class="def-name">filter</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">a</var>, <var class="var">x</var>, <var class="var">si</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-filter-3"> ¶</a></span></dt>
<dd><p>Apply a 1-D digital filter to the data <var class="var">x</var>.
</p>
<p><code class="code">filter</code> returns the solution to the following linear, time-invariant
difference equation:
</p>
<div class="example smallexample">
<div class="group"><pre class="example-preformatted"> N M
SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k) for 1<=n<=length(x)
k=0 k=0
</pre></div></div>
<p>where
N=length(a)-1 and M=length(b)-1.
The result is calculated over the first non-singleton dimension of <var class="var">x</var>
or over <var class="var">dim</var> if supplied.
</p>
<p>An equivalent form of the equation is:
</p>
<div class="example smallexample">
<div class="group"><pre class="example-preformatted"> N M
y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k) for 1<=n<=length(x)
k=1 k=0
</pre></div></div>
<p>where
c = a/a(1) and d = b/a(1).
</p>
<p>If the fourth argument <var class="var">si</var> is provided, it is taken as the
initial state of the system and the final state is returned as
<var class="var">sf</var>. The state vector is a column vector whose length is
equal to the length of the longest coefficient vector minus one.
If <var class="var">si</var> is not supplied, the initial state vector is set to all
zeros.
</p>
<p>In terms of the Z Transform, <var class="var">y</var> is the result of passing the
discrete-time signal <var class="var">x</var> through a system characterized by the following
rational system function:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"> M
SUM d(k+1) z^(-k)
k=0
H(z) = ---------------------
N
1 + SUM c(k+1) z^(-k)
k=1
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfilter2">filter2</a>, <a class="ref" href="#XREFfftfilt">fftfilt</a>, <a class="ref" href="#XREFfreqz">freqz</a>.
</p></dd></dl>
<a class="anchor" id="XREFfilter2"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-filter2"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">filter2</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">x</var>)</code><a class="copiable-link" href="#index-filter2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-filter2-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">filter2</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">x</var>, <var class="var">shape</var>)</code><a class="copiable-link" href="#index-filter2-1"> ¶</a></span></dt>
<dd><p>Apply the 2-D FIR filter <var class="var">b</var> to <var class="var">x</var>.
</p>
<p>If the argument <var class="var">shape</var> is specified, return an array of the desired
shape. Possible values are:
</p>
<dl class="table">
<dt><code class="code">"full"</code></dt>
<dd><p>pad <var class="var">x</var> with zeros on all sides before filtering.
</p>
</dd>
<dt><code class="code">"same"</code></dt>
<dd><p>unpadded <var class="var">x</var> (default)
</p>
</dd>
<dt><code class="code">"valid"</code></dt>
<dd><p>trim <var class="var">x</var> after filtering so edge effects are no included.
</p></dd>
</dl>
<p>Note this is just a variation on convolution, with the parameters reversed
and <var class="var">b</var> rotated 180 degrees.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Products-of-Polynomials.html#XREFconv2">conv2</a>.
</p></dd></dl>
<a class="anchor" id="XREFfreqz"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-freqz"><span><code class="def-type">[<var class="var">h</var>, <var class="var">w</var>] =</code> <strong class="def-name">freqz</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">a</var>, <var class="var">n</var>, "whole")</code><a class="copiable-link" href="#index-freqz"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-freqz-1"><span><code class="def-type">[<var class="var">h</var>, <var class="var">w</var>] =</code> <strong class="def-name">freqz</strong> <code class="def-code-arguments">(<var class="var">b</var>)</code><a class="copiable-link" href="#index-freqz-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-freqz-2"><span><code class="def-type">[<var class="var">h</var>, <var class="var">w</var>] =</code> <strong class="def-name">freqz</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">a</var>)</code><a class="copiable-link" href="#index-freqz-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-freqz-3"><span><code class="def-type">[<var class="var">h</var>, <var class="var">w</var>] =</code> <strong class="def-name">freqz</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">a</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-freqz-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-freqz-4"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">freqz</strong> <code class="def-code-arguments">(<var class="var">b</var>, <var class="var">a</var>, <var class="var">w</var>)</code><a class="copiable-link" href="#index-freqz-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-freqz-5"><span><code class="def-type">[<var class="var">h</var>, <var class="var">w</var>] =</code> <strong class="def-name">freqz</strong> <code class="def-code-arguments">(…, <var class="var">Fs</var>)</code><a class="copiable-link" href="#index-freqz-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-freqz-6"><span><strong class="def-name">freqz</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-freqz-6"> ¶</a></span></dt>
<dd>
<p>Return the complex frequency response <var class="var">h</var> of the rational IIR filter
whose numerator and denominator coefficients are <var class="var">b</var> and <var class="var">a</var>,
respectively.
</p>
<p>The response is evaluated at <var class="var">n</var> angular frequencies between 0 and
2*pi.
</p>
<p>The output value <var class="var">w</var> is a vector of the frequencies.
</p>
<p>If <var class="var">a</var> is omitted, the denominator is assumed to be 1 (this
corresponds to a simple FIR filter).
</p>
<p>If <var class="var">n</var> is omitted, a value of 512 is assumed. For fastest computation,
<var class="var">n</var> should factor into a small number of small primes.
</p>
<p>If the fourth argument, <code class="code">"whole"</code>, is omitted the response is
evaluated at frequencies between 0 and
pi.
</p>
<p><code class="code">freqz (<var class="var">b</var>, <var class="var">a</var>, <var class="var">w</var>)</code>
</p>
<p>Evaluate the response at the specific frequencies in the vector <var class="var">w</var>.
The values for <var class="var">w</var> are measured in radians.
</p>
<p><code class="code">[…] = freqz (…, <var class="var">Fs</var>)</code>
</p>
<p>Return frequencies in Hz instead of radians assuming a sampling rate
<var class="var">Fs</var>. If you are evaluating the response at specific frequencies
<var class="var">w</var>, those frequencies should be requested in Hz rather than radians.
</p>
<p><code class="code">freqz (…)</code>
</p>
<p>Plot the magnitude and phase response of <var class="var">h</var> rather than returning them.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfreqz_005fplot">freqz_plot</a>.
</p></dd></dl>
<a class="anchor" id="XREFfreqz_005fplot"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-freqz_005fplot"><span><strong class="def-name">freqz_plot</strong> <code class="def-code-arguments">(<var class="var">w</var>, <var class="var">h</var>)</code><a class="copiable-link" href="#index-freqz_005fplot"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-freqz_005fplot-1"><span><strong class="def-name">freqz_plot</strong> <code class="def-code-arguments">(<var class="var">w</var>, <var class="var">h</var>, <var class="var">freq_norm</var>)</code><a class="copiable-link" href="#index-freqz_005fplot-1"> ¶</a></span></dt>
<dd><p>Plot the magnitude and phase response of <var class="var">h</var>.
</p>
<p>If the optional <var class="var">freq_norm</var> argument is true, the frequency vector
<var class="var">w</var> is in units of normalized radians. If <var class="var">freq_norm</var> is false, or
not given, then <var class="var">w</var> is measured in Hertz.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfreqz">freqz</a>.
</p></dd></dl>
<a class="anchor" id="XREFsinc"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sinc"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">sinc</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-sinc"> ¶</a></span></dt>
<dd><p>Compute the sinc function.
</p>
<p>Return
sin (pi*x) / (pi*x).
</p></dd></dl>
<a class="anchor" id="XREFunwrap"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-unwrap"><span><code class="def-type"><var class="var">b</var> =</code> <strong class="def-name">unwrap</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-unwrap"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-unwrap-1"><span><code class="def-type"><var class="var">b</var> =</code> <strong class="def-name">unwrap</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">tol</var>)</code><a class="copiable-link" href="#index-unwrap-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-unwrap-2"><span><code class="def-type"><var class="var">b</var> =</code> <strong class="def-name">unwrap</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">tol</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-unwrap-2"> ¶</a></span></dt>
<dd><p>Unwrap radian phases by adding or subtracting multiples of 2*pi as
appropriate to remove jumps greater than <var class="var">tol</var>.
</p>
<p><var class="var">tol</var> defaults to pi.
</p>
<p><code class="code">unwrap</code> will work along the dimension <var class="var">dim</var>. If <var class="var">dim</var>
is unspecified it defaults to the first non-singleton dimension.
</p>
<p><code class="code">unwrap</code> ignores all non-finite input values (Inf, NaN, NA).
</p>
</dd></dl>
<a class="anchor" id="XREFarch_005ffit"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-arch_005ffit"><span><code class="def-type">[<var class="var">a</var>, <var class="var">b</var>] =</code> <strong class="def-name">arch_fit</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">x</var>, <var class="var">p</var>, <var class="var">iter</var>, <var class="var">gamma</var>, <var class="var">a0</var>, <var class="var">b0</var>)</code><a class="copiable-link" href="#index-arch_005ffit"> ¶</a></span></dt>
<dd><p>Fit an ARCH regression model to the time series <var class="var">y</var> using the scoring
algorithm in Engle’s original ARCH paper.
</p>
<p>The model is
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2
</pre></div></div>
<p>in which <em class="math">e(t)</em> is <em class="math">N(0, h(t))</em>, given a time-series vector
<var class="var">y</var> up to time <em class="math">t-1</em> and a matrix of (ordinary) regressors <var class="var">x</var>
up to <em class="math">t</em>. The order of the regression of the residual variance is
specified by <var class="var">p</var>.
</p>
<p>If invoked as <code class="code">arch_fit (<var class="var">y</var>, <var class="var">k</var>, <var class="var">p</var>)</code> with a positive
integer <var class="var">k</var>, fit an ARCH(<var class="var">k</var>, <var class="var">p</var>) process, i.e., do the above
with the <em class="math">t</em>-th row of <var class="var">x</var> given by
</p>
<div class="example">
<pre class="example-preformatted">[1, y(t-1), ..., y(t-k)]
</pre></div>
<p>Optionally, one can specify the number of iterations <var class="var">iter</var>, the
updating factor <var class="var">gamma</var>, and initial values <em class="math">a0</em> and <em class="math">b0</em>
for the scoring algorithm.
</p></dd></dl>
<a class="anchor" id="XREFarch_005frnd"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-arch_005frnd"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">arch_rnd</strong> <code class="def-code-arguments">(<var class="var">a</var>, <var class="var">b</var>, <var class="var">t</var>)</code><a class="copiable-link" href="#index-arch_005frnd"> ¶</a></span></dt>
<dd><p>Simulate an ARCH sequence of length <var class="var">t</var> with AR coefficients <var class="var">b</var> and
CH coefficients <var class="var">a</var>.
</p>
<p>The result <em class="math">y(t)</em> follows the model
</p>
<div class="example smallexample">
<pre class="example-preformatted">y(t) = b(1) + b(2) * y(t-1) + ... + b(lb) * y(t-lb+1) + e(t),
</pre></div>
<p>where <em class="math">e(t)</em>, given <var class="var">y</var> up to time <em class="math">t-1</em>, is
<em class="math">N(0, h(t))</em>, with
</p>
<div class="example smallexample">
<pre class="example-preformatted">h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(la) * e(t-la+1)^2
</pre></div>
</dd></dl>
<a class="anchor" id="XREFarch_005ftest"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-arch_005ftest"><span><code class="def-type">[<var class="var">pval</var>, <var class="var">lm</var>] =</code> <strong class="def-name">arch_test</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">x</var>, <var class="var">p</var>)</code><a class="copiable-link" href="#index-arch_005ftest"> ¶</a></span></dt>
<dd><p>For a linear regression model
</p>
<div class="example">
<pre class="example-preformatted">y = x * b + e
</pre></div>
<p>perform a Lagrange Multiplier (LM) test of the null hypothesis of no
conditional heteroscedascity against the alternative of CH(<var class="var">p</var>).
</p>
<p>I.e., the model is
</p>
<div class="example">
<pre class="example-preformatted">y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
</pre></div>
<p>given <var class="var">y</var> up to <em class="math">t-1</em> and <var class="var">x</var> up to <em class="math">t</em>,
<em class="math">e</em>(t) is <em class="math">N(0, h(t))</em> with
</p>
<div class="example">
<pre class="example-preformatted">h(t) = v + a(1) * e(t-1)^2 + ... + a(p) * e(t-p)^2,
</pre></div>
<p>and the null is <em class="math">a(1)</em> == … == <em class="math">a(p)</em> == 0.
</p>
<p>If the second argument is a scalar integer, <em class="math">k</em>, perform the same
test in a linear autoregression model of order <em class="math">k</em>, i.e., with
</p>
<div class="example">
<pre class="example-preformatted">[1, y(t-1), ..., y(t-<var class="var">k</var>)]
</pre></div>
<p>as the <em class="math">t</em>-th row of <var class="var">x</var>.
</p>
<p>Under the null, LM approximately has a chisquare distribution with
<var class="var">p</var> degrees of freedom and <var class="var">pval</var> is the <em class="math">p</em>-value (1
minus the CDF of this distribution at LM) of the test.
</p>
<p>If no output argument is given, the <em class="math">p</em>-value is displayed.
</p></dd></dl>
<a class="anchor" id="XREFarma_005frnd"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-arma_005frnd"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">arma_rnd</strong> <code class="def-code-arguments">(<var class="var">a</var>, <var class="var">b</var>, <var class="var">v</var>, <var class="var">t</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-arma_005frnd"> ¶</a></span></dt>
<dd><p>Return a simulation of the ARMA model.
</p>
<p>The ARMA model is defined by
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">x(n) = a(1) * x(n-1) + ... + a(k) * x(n-k)
+ e(n) + b(1) * e(n-1) + ... + b(l) * e(n-l)
</pre></div></div>
<p>in which <var class="var">k</var> is the length of vector <var class="var">a</var>, <var class="var">l</var> is the length of
vector <var class="var">b</var> and <var class="var">e</var> is Gaussian white noise with variance <var class="var">v</var>.
The function returns a vector of length <var class="var">t</var>.
</p>
<p>The optional parameter <var class="var">n</var> gives the number of dummy <var class="var">x</var>(<var class="var">i</var>)
used for initialization, i.e., a sequence of length <var class="var">t</var>+<var class="var">n</var> is
generated and <var class="var">x</var>(<var class="var">n</var>+1:<var class="var">t</var>+<var class="var">n</var>) is returned. If <var class="var">n</var>
is omitted, <var class="var">n</var> = 100 is used.
</p></dd></dl>
<a class="anchor" id="XREFautoreg_005fmatrix"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-autoreg_005fmatrix"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">autoreg_matrix</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">k</var>)</code><a class="copiable-link" href="#index-autoreg_005fmatrix"> ¶</a></span></dt>
<dd><p>Given a time series (vector) <var class="var">y</var>, return a matrix with ones in the first
column and the first <var class="var">k</var> lagged values of <var class="var">y</var> in the other columns.
</p>
<p>In other words, for <var class="var">t</var> > <var class="var">k</var>,
<code class="code">[1, <var class="var">y</var>(<var class="var">t</var>-1), …, <var class="var">y</var>(<var class="var">t</var>-<var class="var">k</var>)]</code> is the
t-th row of the result.
</p>
<p>The resulting matrix may be used as a regressor matrix in autoregressions.
</p></dd></dl>
<a class="anchor" id="XREFbartlett"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-bartlett"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">bartlett</strong> <code class="def-code-arguments">(<var class="var">m</var>)</code><a class="copiable-link" href="#index-bartlett"> ¶</a></span></dt>
<dd><p>Return the filter coefficients of a Bartlett (triangular) window of length
<var class="var">m</var>.
</p>
<p>For a definition of the Bartlett window see, e.g.,
A.V. Oppenheim & R. W. Schafer,
<cite class="cite">Discrete-Time Signal Processing</cite>.
</p></dd></dl>
<a class="anchor" id="XREFblackman"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-blackman"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">blackman</strong> <code class="def-code-arguments">(<var class="var">m</var>)</code><a class="copiable-link" href="#index-blackman"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-blackman-1"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">blackman</strong> <code class="def-code-arguments">(<var class="var">m</var>, "periodic")</code><a class="copiable-link" href="#index-blackman-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-blackman-2"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">blackman</strong> <code class="def-code-arguments">(<var class="var">m</var>, "symmetric")</code><a class="copiable-link" href="#index-blackman-2"> ¶</a></span></dt>
<dd><p>Return the filter coefficients of a Blackman window of length
<var class="var">m</var>.
</p>
<p>If the optional argument <code class="code">"periodic"</code> is given, the periodic form
of the window is returned. This is equivalent to the window of length
<var class="var">m</var>+1 with the last coefficient removed. The optional argument
<code class="code">"symmetric"</code> is equivalent to not specifying a second argument.
</p>
<p>For a definition of the Blackman window, see, e.g.,
A.V. Oppenheim & R. W. Schafer,
<cite class="cite">Discrete-Time Signal Processing</cite>.
</p></dd></dl>
<a class="anchor" id="XREFdetrend"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-detrend"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">detrend</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">p</var>)</code><a class="copiable-link" href="#index-detrend"> ¶</a></span></dt>
<dd><p>If <var class="var">x</var> is a vector, <code class="code">detrend (<var class="var">x</var>, <var class="var">p</var>)</code> removes the
best fit of a polynomial of order <var class="var">p</var> from the data <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is a matrix, <code class="code">detrend (<var class="var">x</var>, <var class="var">p</var>)</code> does the same
for each column in <var class="var">x</var>.
</p>
<p>The second argument <var class="var">p</var> is optional. If it is not specified, a value of
1 is assumed. This corresponds to removing a linear trend.
</p>
<p>The order of the polynomial can also be given as a string, in which case
<var class="var">p</var> must be either <code class="code">"constant"</code> (corresponds to <code class="code"><var class="var">p</var>=0</code>)
or <code class="code">"linear"</code> (corresponds to <code class="code"><var class="var">p</var>=1</code>).
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Polynomial-Interpolation.html#XREFpolyfit">polyfit</a>.
</p></dd></dl>
<a class="anchor" id="XREFdiffpara"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-diffpara"><span><code class="def-type">[<var class="var">d</var>, <var class="var">dd</var>] =</code> <strong class="def-name">diffpara</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">a</var>, <var class="var">b</var>)</code><a class="copiable-link" href="#index-diffpara"> ¶</a></span></dt>
<dd><p>Return the estimator <var class="var">d</var> for the differencing parameter of an
integrated time series.
</p>
<p>The frequencies from <em class="math">[2*pi*a/t, 2*pi*b/T]</em> are used for the
estimation. If <var class="var">b</var> is omitted, the interval
<em class="math">[2*pi/T, 2*pi*a/T]</em> is used. If both <var class="var">b</var> and <var class="var">a</var> are omitted
then <em class="math">a = 0.5 * sqrt (T)</em> and <em class="math">b = 1.5 * sqrt (T)</em> is used, where
<em class="math">T</em> is the sample size. If <var class="var">x</var> is a matrix, the differencing
parameter of each column is estimated.
</p>
<p>The estimators for all frequencies in the intervals described above is
returned in <var class="var">dd</var>.
</p>
<p>The value of <var class="var">d</var> is simply the mean of <var class="var">dd</var>.
</p>
<p>Reference: P.J. Brockwell & R.A. Davis. <cite class="cite">Time Series:
Theory and Methods</cite>. Springer 1987.
</p></dd></dl>
<a class="anchor" id="XREFdurbinlevinson"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-durbinlevinson"><span><code class="def-type">[<var class="var">newphi</var>, <var class="var">newv</var>] =</code> <strong class="def-name">durbinlevinson</strong> <code class="def-code-arguments">(<var class="var">c</var>, <var class="var">oldphi</var>, <var class="var">oldv</var>)</code><a class="copiable-link" href="#index-durbinlevinson"> ¶</a></span></dt>
<dd><p>Perform one step of the Durbin-Levinson algorithm.
</p>
<p>The vector <var class="var">c</var> specifies the autocovariances
<code class="code">[gamma_0, …, gamma_t]</code> from lag 0 to <var class="var">t</var>, <var class="var">oldphi</var>
specifies the coefficients based on <var class="var">c</var>(<var class="var">t</var>-1) and <var class="var">oldv</var>
specifies the corresponding error.
</p>
<p>If <var class="var">oldphi</var> and <var class="var">oldv</var> are omitted, all steps from 1 to <var class="var">t</var> of
the algorithm are performed.
</p></dd></dl>
<a class="anchor" id="XREFfftshift"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fftshift"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">fftshift</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-fftshift"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fftshift-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">fftshift</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-fftshift-1"> ¶</a></span></dt>
<dd><p>Perform a shift of the vector <var class="var">x</var>, for use with the <code class="code">fft</code> and
<code class="code">ifft</code> functions, in order to move the frequency 0 to the center of
the vector or matrix.
</p>
<p>If <var class="var">x</var> is a vector of <em class="math">N</em> elements corresponding to <em class="math">N</em> time
samples spaced by <em class="math">dt</em>, then
<code class="code">fftshift (fft (<var class="var">x</var>))</code> corresponds to frequencies
</p>
<div class="example">
<pre class="example-preformatted">f = [ -(ceil((N-1)/2):-1:1), 0, (1:floor((N-1)/2)) ] * df
</pre></div>
<p>where <em class="math">df = 1 / (N * dt)</em>.
</p>
<p>If <var class="var">x</var> is a matrix, the same holds for rows and columns. If <var class="var">x</var>
is an array, then the same holds along each dimension.
</p>
<p>The optional <var class="var">dim</var> argument can be used to limit the dimension along
which the permutation occurs.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFifftshift">ifftshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFifftshift"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ifftshift"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">ifftshift</strong> <code class="def-code-arguments">(<var class="var">y</var>)</code><a class="copiable-link" href="#index-ifftshift"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ifftshift-1"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">ifftshift</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-ifftshift-1"> ¶</a></span></dt>
<dd><p>Undo the action of the <code class="code">fftshift</code> function.
</p>
<p>For even length <var class="var">x</var>, <code class="code">fftshift</code> is its own inverse, but odd lengths
differ slightly.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfftshift">fftshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFfractdiff"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fractdiff"><span><code class="def-type"><var class="var">fd</var> =</code> <strong class="def-name">fractdiff</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-fractdiff"> ¶</a></span></dt>
<dd><p>Compute the fractional differences <em class="math">(1-L)^d x</em> where <em class="math">L</em>
denotes the lag-operator and <em class="math">d</em> is greater than -1.
</p></dd></dl>
<a class="anchor" id="XREFhamming"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-hamming"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">hamming</strong> <code class="def-code-arguments">(<var class="var">m</var>)</code><a class="copiable-link" href="#index-hamming"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-hamming-1"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">hamming</strong> <code class="def-code-arguments">(<var class="var">m</var>, "periodic")</code><a class="copiable-link" href="#index-hamming-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-hamming-2"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">hamming</strong> <code class="def-code-arguments">(<var class="var">m</var>, "symmetric")</code><a class="copiable-link" href="#index-hamming-2"> ¶</a></span></dt>
<dd><p>Return the filter coefficients of a Hamming window of length <var class="var">m</var>.
</p>
<p>If the optional argument <code class="code">"periodic"</code> is given, the periodic form
of the window is returned. This is equivalent to the window of length
<var class="var">m</var>+1 with the last coefficient removed. The optional argument
<code class="code">"symmetric"</code> is equivalent to not specifying a second argument.
</p>
<p>For a definition of the Hamming window see, e.g.,
A.V. Oppenheim & R. W. Schafer,
<cite class="cite">Discrete-Time Signal Processing</cite>.
</p></dd></dl>
<a class="anchor" id="XREFhanning"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-hanning"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">hanning</strong> <code class="def-code-arguments">(<var class="var">m</var>)</code><a class="copiable-link" href="#index-hanning"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-hanning-1"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">hanning</strong> <code class="def-code-arguments">(<var class="var">m</var>, "periodic")</code><a class="copiable-link" href="#index-hanning-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-hanning-2"><span><code class="def-type"><var class="var">c</var> =</code> <strong class="def-name">hanning</strong> <code class="def-code-arguments">(<var class="var">m</var>, "symmetric")</code><a class="copiable-link" href="#index-hanning-2"> ¶</a></span></dt>
<dd><p>Return the filter coefficients of a Hanning window of length <var class="var">m</var>.
</p>
<p>If the optional argument <code class="code">"periodic"</code> is given, the periodic form
of the window is returned. This is equivalent to the window of length
<var class="var">m</var>+1 with the last coefficient removed. The optional argument
<code class="code">"symmetric"</code> is equivalent to not specifying a second argument.
</p>
<p>For a definition of the Hanning window see, e.g.,
A.V. Oppenheim & R. W. Schafer,
<cite class="cite">Discrete-Time Signal Processing</cite>.
</p></dd></dl>
<a class="anchor" id="XREFhurst"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-hurst"><span><code class="def-type"><var class="var">H</var> =</code> <strong class="def-name">hurst</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-hurst"> ¶</a></span></dt>
<dd><p>Estimate the Hurst parameter of sample <var class="var">x</var> via the rescaled range
statistic.
</p>
<p>If <var class="var">x</var> is a matrix, the parameter is estimated for every column.
</p></dd></dl>
<a class="anchor" id="XREFpchip"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-pchip"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">pchip</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>)</code><a class="copiable-link" href="#index-pchip"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-pchip-1"><span><code class="def-type"><var class="var">yi</var> =</code> <strong class="def-name">pchip</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">xi</var>)</code><a class="copiable-link" href="#index-pchip-1"> ¶</a></span></dt>
<dd><p>Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of
points <var class="var">x</var> and <var class="var">y</var>.
</p>
<p>If called with two arguments, return the piecewise polynomial <var class="var">pp</var>
that may be used with <code class="code">ppval</code> to evaluate the polynomial at specific
points.
</p>
<p>When called with a third input argument, <code class="code">pchip</code> evaluates the pchip
polynomial at the points <var class="var">xi</var>. The third calling form is equivalent to
<code class="code">ppval (pchip (<var class="var">x</var>, <var class="var">y</var>), <var class="var">xi</var>)</code>.
</p>
<p>The variable <var class="var">x</var> must be a strictly monotonic vector (either increasing
or decreasing) of length <var class="var">n</var>.
</p>
<p><var class="var">y</var> can be either a vector or array. If <var class="var">y</var> is a vector then it
must be the same length <var class="var">n</var> as <var class="var">x</var>. If <var class="var">y</var> is an array then
the size of <var class="var">y</var> must have the form
<code class="code">[<var class="var">s1</var>, <var class="var">s2</var>, …, <var class="var">sk</var>, <var class="var">n</var>]</code>
The array is reshaped internally to a matrix where the leading dimension is
given by
<code class="code"><var class="var">s1</var> * <var class="var">s2</var> * … * <var class="var">sk</var></code>
and each row of this matrix is then treated separately. Note that this is
exactly opposite to <code class="code">interp1</code> but is done for <small class="sc">MATLAB</small>
compatibility.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="One_002ddimensional-Interpolation.html#XREFspline">spline</a>, <a class="ref" href="Polynomial-Interpolation.html#XREFppval">ppval</a>, <a class="ref" href="Polynomial-Interpolation.html#XREFmkpp">mkpp</a>, <a class="ref" href="Polynomial-Interpolation.html#XREFunmkpp">unmkpp</a>.
</p></dd></dl>
<a class="anchor" id="XREFperiodogram"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-periodogram"><span><code class="def-type">[<var class="var">Pxx</var>, <var class="var">w</var>] =</code> <strong class="def-name">periodogram</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-periodogram"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-periodogram-1"><span><code class="def-type">[<var class="var">Pxx</var>, <var class="var">w</var>] =</code> <strong class="def-name">periodogram</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">win</var>)</code><a class="copiable-link" href="#index-periodogram-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-periodogram-2"><span><code class="def-type">[<var class="var">Pxx</var>, <var class="var">w</var>] =</code> <strong class="def-name">periodogram</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">win</var>, <var class="var">nfft</var>)</code><a class="copiable-link" href="#index-periodogram-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-periodogram-3"><span><code class="def-type">[<var class="var">Pxx</var>, <var class="var">f</var>] =</code> <strong class="def-name">periodogram</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">win</var>, <var class="var">nfft</var>, <var class="var">Fs</var>)</code><a class="copiable-link" href="#index-periodogram-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-periodogram-4"><span><code class="def-type">[<var class="var">Pxx</var>, <var class="var">f</var>] =</code> <strong class="def-name">periodogram</strong> <code class="def-code-arguments">(…, "<var class="var">range</var>")</code><a class="copiable-link" href="#index-periodogram-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-periodogram-5"><span><strong class="def-name">periodogram</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-periodogram-5"> ¶</a></span></dt>
<dd><p>Return the periodogram (Power Spectral Density) of <var class="var">x</var>.
</p>
<p>The possible inputs are:
</p>
<dl class="table">
<dt><var class="var">x</var></dt>
<dd>
<p>data vector. If <var class="var">x</var> is real-valued a one-sided spectrum is estimated.
If <var class="var">x</var> is complex-valued, or <code class="code">"<var class="var">range</var>"</code> specifies
<code class="code">"twosided"</code>, the full spectrum is estimated.
</p>
</dd>
<dt><var class="var">win</var></dt>
<dd><p>window weight data. If window is empty or unspecified a default rectangular
window is used. Otherwise, the window is applied to the signal
(<code class="code"><var class="var">x</var> .* <var class="var">win</var></code>) before computing the periodogram. The window
data must be a vector of the same length as <var class="var">x</var>.
</p>
</dd>
<dt><var class="var">nfft</var></dt>
<dd><p>number of frequency bins. The default is 256 or the next higher power of
2 greater than the length of <var class="var">x</var>
(<code class="code">max (256, 2.^nextpow2 (length (x)))</code>). If <var class="var">nfft</var> is greater
than the length of the input then <var class="var">x</var> will be zero-padded to the length
of <var class="var">nfft</var>.
</p>
</dd>
<dt><var class="var">Fs</var></dt>
<dd><p>sampling rate. The default is 1.
</p>
</dd>
<dt><var class="var">range</var></dt>
<dd><p>range of spectrum. <code class="code">"onesided"</code> computes spectrum from
[0:nfft/2+1]. <code class="code">"twosided"</code> computes spectrum from
[0:nfft-1].
</p></dd>
</dl>
<p>The optional second output <var class="var">w</var> are the normalized angular frequencies.
For a one-sided calculation <var class="var">w</var> is in the range [0, pi] if <var class="var">nfft</var>
is even and [0, pi) if <var class="var">nfft</var> is odd. Similarly, for a two-sided
calculation <var class="var">w</var> is in the range [0, 2*pi] or [0, 2*pi) depending on
<var class="var">nfft</var>.
</p>
<p>If a sampling frequency is specified, <var class="var">Fs</var>, then the output frequencies
<var class="var">f</var> will be in the range [0, <var class="var">Fs</var>/2] or [0, <var class="var">Fs</var>/2) for
one-sided calculations. For two-sided calculations the range will be
[0, <var class="var">Fs</var>).
</p>
<p>When called with no outputs the periodogram is immediately plotted in the
current figure window.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfft">fft</a>.
</p></dd></dl>
<a class="anchor" id="XREFsinetone"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sinetone"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">sinetone</strong> <code class="def-code-arguments">(<var class="var">freq</var>, <var class="var">rate</var>, <var class="var">sec</var>, <var class="var">ampl</var>)</code><a class="copiable-link" href="#index-sinetone"> ¶</a></span></dt>
<dd><p>Return a sinetone of frequency <var class="var">freq</var> with a length of <var class="var">sec</var>
seconds at sampling rate <var class="var">rate</var> and with amplitude <var class="var">ampl</var>.
</p>
<p>The arguments <var class="var">freq</var> and <var class="var">ampl</var> may be vectors of common size.
</p>
<p>The defaults are <var class="var">rate</var> = 8000, <var class="var">sec</var> = 1, and <var class="var">ampl</var> = 64.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsinewave">sinewave</a>.
</p></dd></dl>
<a class="anchor" id="XREFsinewave"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-sinewave"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">sinewave</strong> <code class="def-code-arguments">(<var class="var">m</var>, <var class="var">n</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-sinewave"> ¶</a></span></dt>
<dd><p>Return an <var class="var">m</var>-element vector with <var class="var">i</var>-th element given by
<code class="code">sin (2 * pi * (<var class="var">i</var>+<var class="var">d</var>-1) / <var class="var">n</var>)</code>.
</p>
<p>The default value for <var class="var">d</var> is 0 and the default value for <var class="var">n</var> is
<var class="var">m</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsinetone">sinetone</a>.
</p></dd></dl>
<a class="anchor" id="XREFspectral_005fadf"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spectral_005fadf"><span><code class="def-type"><var class="var">sde</var> =</code> <strong class="def-name">spectral_adf</strong> <code class="def-code-arguments">(<var class="var">c</var>)</code><a class="copiable-link" href="#index-spectral_005fadf"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spectral_005fadf-1"><span><code class="def-type"><var class="var">sde</var> =</code> <strong class="def-name">spectral_adf</strong> <code class="def-code-arguments">(<var class="var">c</var>, <var class="var">win</var>)</code><a class="copiable-link" href="#index-spectral_005fadf-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spectral_005fadf-2"><span><code class="def-type"><var class="var">sde</var> =</code> <strong class="def-name">spectral_adf</strong> <code class="def-code-arguments">(<var class="var">c</var>, <var class="var">win</var>, <var class="var">b</var>)</code><a class="copiable-link" href="#index-spectral_005fadf-2"> ¶</a></span></dt>
<dd><p>Return the spectral density estimator given a vector of autocovariances
<var class="var">c</var>, window name <var class="var">win</var>, and bandwidth, <var class="var">b</var>.
</p>
<p>The window name, e.g., <code class="code">"triangle"</code> or <code class="code">"rectangle"</code> is
used to search for a function called <code class="code"><var class="var">win</var>_lw</code>.
</p>
<p>If <var class="var">win</var> is omitted, the triangle window is used.
</p>
<p>If <var class="var">b</var> is omitted, <code class="code">1 / sqrt (length (<var class="var">x</var>))</code> is used.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFspectral_005fxdf">spectral_xdf</a>.
</p></dd></dl>
<a class="anchor" id="XREFspectral_005fxdf"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spectral_005fxdf"><span><code class="def-type"><var class="var">sde</var> =</code> <strong class="def-name">spectral_xdf</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-spectral_005fxdf"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spectral_005fxdf-1"><span><code class="def-type"><var class="var">sde</var> =</code> <strong class="def-name">spectral_xdf</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">win</var>)</code><a class="copiable-link" href="#index-spectral_005fxdf-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spectral_005fxdf-2"><span><code class="def-type"><var class="var">sde</var> =</code> <strong class="def-name">spectral_xdf</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">win</var>, <var class="var">b</var>)</code><a class="copiable-link" href="#index-spectral_005fxdf-2"> ¶</a></span></dt>
<dd><p>Return the spectral density estimator given a data vector <var class="var">x</var>, window
name <var class="var">win</var>, and bandwidth, <var class="var">b</var>.
</p>
<p>The window name, e.g., <code class="code">"triangle"</code> or <code class="code">"rectangle"</code> is used to
search for a function called <code class="code"><var class="var">win</var>_sw</code>.
</p>
<p>If <var class="var">win</var> is omitted, the triangle window is used.
</p>
<p>If <var class="var">b</var> is omitted, <code class="code">1 / sqrt (length (<var class="var">x</var>))</code> is used.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFspectral_005fadf">spectral_adf</a>.
</p></dd></dl>
<a class="anchor" id="XREFspencer"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spencer"><span><code class="def-type"><var class="var">savg</var> =</code> <strong class="def-name">spencer</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-spencer"> ¶</a></span></dt>
<dd><p>Return Spencer’s 15-point moving average of each column of
<var class="var">x</var>.
</p></dd></dl>
<a class="anchor" id="XREFstft"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-stft"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">stft</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-stft"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-stft-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">stft</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">win_size</var>)</code><a class="copiable-link" href="#index-stft-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-stft-2"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">stft</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">win_size</var>, <var class="var">inc</var>)</code><a class="copiable-link" href="#index-stft-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-stft-3"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">stft</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">win_size</var>, <var class="var">inc</var>, <var class="var">num_coef</var>)</code><a class="copiable-link" href="#index-stft-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-stft-4"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">stft</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">win_size</var>, <var class="var">inc</var>, <var class="var">num_coef</var>, <var class="var">win_type</var>)</code><a class="copiable-link" href="#index-stft-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-stft-5"><span><code class="def-type">[<var class="var">y</var>, <var class="var">c</var>] =</code> <strong class="def-name">stft</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-stft-5"> ¶</a></span></dt>
<dd><p>Compute the short-time Fourier transform of the vector <var class="var">x</var> with
<var class="var">num_coef</var> coefficients by applying a window of <var class="var">win_size</var> data
points and an increment of <var class="var">inc</var> points.
</p>
<p>Before computing the Fourier transform, one of the following windows
is applied:
</p>
<dl class="table">
<dt><code class="code">"hanning"</code></dt>
<dd><p>win_type = 1
</p>
</dd>
<dt><code class="code">"hamming"</code></dt>
<dd><p>win_type = 2
</p>
</dd>
<dt><code class="code">"rectangle"</code></dt>
<dd><p>win_type = 3
</p></dd>
</dl>
<p>The window names can be passed as strings or by the <var class="var">win_type</var> number.
</p>
<p>The following defaults are used for unspecified arguments:
<var class="var">win_size</var> = 80, <var class="var">inc</var> = 24, <var class="var">num_coef</var> = 64, and
<var class="var">win_type</var> = 1.
</p>
<p><code class="code"><var class="var">y</var> = stft (<var class="var">x</var>, …)</code> returns the absolute values of the
Fourier coefficients according to the <var class="var">num_coef</var> positive frequencies.
</p>
<p><code class="code">[<var class="var">y</var>, <var class="var">c</var>] = stft (<var class="var">x</var>, …)</code> returns the entire
STFT-matrix <var class="var">y</var> and a 3-element vector <var class="var">c</var> containing the window
size, increment, and window type, which is needed by the <code class="code">synthesis</code>
function.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsynthesis">synthesis</a>.
</p></dd></dl>
<a class="anchor" id="XREFsynthesis"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-synthesis"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">synthesis</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">c</var>)</code><a class="copiable-link" href="#index-synthesis"> ¶</a></span></dt>
<dd><p>Compute a signal from its short-time Fourier transform <var class="var">y</var> and a
3-element vector <var class="var">c</var> specifying window size, increment, and window type.
</p>
<p>The values <var class="var">y</var> and <var class="var">c</var> can be derived by
</p>
<div class="example">
<pre class="example-preformatted">[<var class="var">y</var>, <var class="var">c</var>] = stft (<var class="var">x</var> , ...)
</pre></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFstft">stft</a>.
</p></dd></dl>
<a class="anchor" id="XREFyulewalker"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-yulewalker"><span><code class="def-type">[<var class="var">a</var>, <var class="var">v</var>] =</code> <strong class="def-name">yulewalker</strong> <code class="def-code-arguments">(<var class="var">c</var>)</code><a class="copiable-link" href="#index-yulewalker"> ¶</a></span></dt>
<dd><p>Fit an AR (p)-model with Yule-Walker estimates given a vector <var class="var">c</var> of
autocovariances <code class="code">[gamma_0, …, gamma_p]</code>.
</p>
<p>Returns the AR coefficients, <var class="var">a</var>, and the variance of white noise,
<var class="var">v</var>.
</p></dd></dl>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Image-Processing.html">Image Processing</a>, Previous: <a href="Geometry.html">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|