File: Solvers.html

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (403 lines) | stat: -rw-r--r-- 20,394 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Solvers (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Solvers (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Solvers (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Nonlinear-Equations.html" rel="up" title="Nonlinear Equations">
<link href="Minimizers.html" rel="next" title="Minimizers">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
ul.mark-bullet {list-style-type: disc}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="section-level-extent" id="Solvers">
<div class="nav-panel">
<p>
Next: <a href="Minimizers.html" accesskey="n" rel="next">Minimizers</a>, Up: <a href="Nonlinear-Equations.html" accesskey="u" rel="up">Nonlinear Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Solvers-1"><span>20.1 Solvers<a class="copiable-link" href="#Solvers-1"> &para;</a></span></h3>

<p>Octave can solve sets of nonlinear equations of the form
</p>
<div class="example">
<pre class="example-preformatted">F (x) = 0
</pre></div>


<p>using the function <code class="code">fsolve</code>, which is based on the <small class="sc">MINPACK</small>
subroutine <code class="code">hybrd</code>.  This is an iterative technique so a starting
point must be provided.  This also has the consequence that
convergence is not guaranteed even if a solution exists.
</p>
<a class="anchor" id="XREFfsolve"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fsolve"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">fsolve</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">x0</var>)</code><a class="copiable-link" href="#index-fsolve"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fsolve-1"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">fsolve</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">x0</var>, <var class="var">options</var>)</code><a class="copiable-link" href="#index-fsolve-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fsolve-2"><span><code class="def-type">[<var class="var">x</var>, <var class="var">fval</var>] =</code> <strong class="def-name">fsolve</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-fsolve-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fsolve-3"><span><code class="def-type">[<var class="var">x</var>, <var class="var">fval</var>, <var class="var">info</var>] =</code> <strong class="def-name">fsolve</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-fsolve-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fsolve-4"><span><code class="def-type">[<var class="var">x</var>, <var class="var">fval</var>, <var class="var">info</var>, <var class="var">output</var>] =</code> <strong class="def-name">fsolve</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-fsolve-4"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fsolve-5"><span><code class="def-type">[<var class="var">x</var>, <var class="var">fval</var>, <var class="var">info</var>, <var class="var">output</var>, <var class="var">fjac</var>] =</code> <strong class="def-name">fsolve</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-fsolve-5"> &para;</a></span></dt>
<dd><p>Solve a system of nonlinear equations defined by the function <var class="var">fcn</var>.
</p>
<p><var class="var">fcn</var> is a function handle, inline function, or string containing the
name of the function to evaluate.  <var class="var">fcn</var> should accept a vector (array)
defining the unknown variables, and return a vector of left-hand sides of
the equations.  Right-hand sides are defined to be zeros.  In other words,
this function attempts to determine a vector <var class="var">x</var> such that
<code class="code"><var class="var">fcn</var> (<var class="var">x</var>)</code> gives (approximately) all zeros.
</p>
<p><var class="var">x0</var> is an initial guess for the solution.  The shape of <var class="var">x0</var> is
preserved in all calls to <var class="var">fcn</var>, but otherwise is treated as a column
vector.
</p>
<p><var class="var">options</var> is a structure specifying additional parameters which
control the algorithm.  Currently, <code class="code">fsolve</code> recognizes these options:
<code class="code">&quot;AutoScaling&quot;</code>, <code class="code">&quot;ComplexEqn&quot;</code>, <code class="code">&quot;FinDiffType&quot;</code>,
<code class="code">&quot;FunValCheck&quot;</code>, <code class="code">&quot;Jacobian&quot;</code>, <code class="code">&quot;MaxFunEvals&quot;</code>,
<code class="code">&quot;MaxIter&quot;</code>, <code class="code">&quot;OutputFcn&quot;</code>, <code class="code">&quot;TolFun&quot;</code>, <code class="code">&quot;TolX&quot;</code>,
<code class="code">&quot;TypicalX&quot;</code>, and <code class="code">&quot;Updating&quot;</code>.
</p>
<p>If <code class="code">&quot;AutoScaling&quot;</code> is <code class="code">&quot;on&quot;</code>, the variables will be
automatically scaled according to the column norms of the (estimated)
Jacobian.  As a result, <code class="code">&quot;TolFun&quot;</code> becomes scaling-independent.  By
default, this option is <code class="code">&quot;off&quot;</code> because it may sometimes deliver
unexpected (though mathematically correct) results.
</p>
<p>If <code class="code">&quot;ComplexEqn&quot;</code> is <code class="code">&quot;on&quot;</code>, <code class="code">fsolve</code> will attempt to solve
complex equations in complex variables, assuming that the equations possess
a complex derivative (i.e., are holomorphic).  If this is not what you want,
you should unpack the real and imaginary parts of the system to get a real
system.
</p>
<p>If <code class="code">&quot;Jacobian&quot;</code> is <code class="code">&quot;on&quot;</code>, it specifies that <var class="var">fcn</var>&mdash;when
called with 2 output arguments&mdash;also returns the Jacobian matrix of
right-hand sides at the requested point.
</p>
<p><code class="code">&quot;MaxFunEvals&quot;</code> proscribes the maximum number of function evaluations
before optimization is halted.  The default value is
<code class="code">100 * number_of_variables</code>, i.e., <code class="code">100 * length (<var class="var">x0</var>)</code>.
The value must be a positive integer.
</p>
<p>If <code class="code">&quot;Updating&quot;</code> is <code class="code">&quot;on&quot;</code>, the function will attempt to use
Broyden updates to update the Jacobian, in order to reduce the
number of Jacobian calculations.  If your user function always calculates
the Jacobian (regardless of number of output arguments) then this option
provides no advantage and should be disabled.
</p>
<p><code class="code">&quot;TolX&quot;</code> specifies the termination tolerance in the unknown variables,
while <code class="code">&quot;TolFun&quot;</code> is a tolerance for equations.  Default is <code class="code">1e-6</code>
for both <code class="code">&quot;TolX&quot;</code> and <code class="code">&quot;TolFun&quot;</code>.
</p>
<p>For a description of the other options,
see <a class="pxref" href="Linear-Least-Squares.html#XREFoptimset"><code class="code">optimset</code></a>.  To initialize an options structure
with default values for <code class="code">fsolve</code> use
<code class="code">options = optimset (&quot;fsolve&quot;)</code>.
</p>
<p>The first output <var class="var">x</var> is the solution while the second output <var class="var">fval</var>
contains the value of the function <var class="var">fcn</var> evaluated at <var class="var">x</var> (ideally
a vector of all zeros).
</p>
<p>The third output <var class="var">info</var> reports whether the algorithm succeeded and may
take one of the following values:
</p>
<dl class="table">
<dt>1</dt>
<dd><p>Converged to a solution point.  Relative residual error is less than
specified by <code class="code">TolFun</code>.
</p>
</dd>
<dt>2</dt>
<dd><p>Last relative step size was less than <code class="code">TolX</code>.
</p>
</dd>
<dt>3</dt>
<dd><p>Last relative decrease in residual was less than <code class="code">TolFun</code>.
</p>
</dd>
<dt>0</dt>
<dd><p>Iteration limit (either <code class="code">MaxIter</code> or <code class="code">MaxFunEvals</code>) exceeded.
</p>
</dd>
<dt>-1</dt>
<dd><p>Stopped by <code class="code">OutputFcn</code>.
</p>
</dd>
<dt>-2</dt>
<dd><p>The Jacobian became excessively small and the search stalled.
</p>
</dd>
<dt>-3</dt>
<dd><p>The trust region radius became excessively small.
</p></dd>
</dl>

<p><var class="var">output</var> is a structure containing runtime information about the
<code class="code">fsolve</code> algorithm.  Fields in the structure are:
</p>
<dl class="table">
<dt><code class="code">iterations</code></dt>
<dd><p>Number of iterations through loop.
</p>
</dd>
<dt><code class="code">successful</code></dt>
<dd><p>Number of successful iterations.
</p>
</dd>
<dt><code class="code">funcCount</code></dt>
<dd><p>Number of function evaluations.
</p>
</dd>
</dl>

<p>The final output <var class="var">fjac</var> contains the value of the Jacobian evaluated
at <var class="var">x</var>.
</p>
<p>Note: If you only have a single nonlinear equation of one variable, using
<code class="code">fzero</code> is usually a much better idea.
</p>
<p>Note about user-supplied Jacobians:
As an inherent property of the algorithm, a Jacobian is always requested for
a solution vector whose residual vector is already known, and it is the last
accepted successful step.  Often this will be one of the last two calls, but
not always.  If the savings by reusing intermediate results from residual
calculation in Jacobian calculation are significant, the best strategy is to
employ <code class="code">OutputFcn</code>: After a vector is evaluated for residuals, if
<code class="code">OutputFcn</code> is called with that vector, then the intermediate results
should be saved for future Jacobian evaluation, and should be kept until a
Jacobian evaluation is requested or until <code class="code">OutputFcn</code> is called with a
different vector, in which case they should be dropped in favor of this most
recent vector.  A short example how this can be achieved follows:
</p>
<div class="example">
<pre class="example-preformatted">function [fval, fjac] = user_fcn (x, optimvalues, state)
persistent sav = [], sav0 = [];
if (nargin == 1)
  ## evaluation call
  if (nargout == 1)
    sav0.x = x;  # mark saved vector
    ## calculate fval, save results to sav0.
  elseif (nargout == 2)
    ## calculate fjac using sav.
  endif
else
  ## outputfcn call.
  if (all (x == sav0.x))
    sav = sav0;
  endif
  ## maybe output iteration status, etc.
endif
endfunction

## ...

fsolve (@user_fcn, x0, optimset (&quot;OutputFcn&quot;, @user_fcn, ...))
</pre></div>

<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFfzero">fzero</a>, <a class="ref" href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>


<p>The following is a complete example.  To solve the set of equations
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">-2x^2 + 3xy   + 4 sin(y) = 6
 3x^2 - 2xy^2 + 3 cos(x) = -4
</pre></div></div>


<p>you first need to write a function to compute the value of the given
function.  For example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">function y = f (x)
  y = zeros (2, 1);
  y(1) = -2*x(1)^2 + 3*x(1)*x(2)   + 4*sin(x(2)) - 6;
  y(2) =  3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
endfunction
</pre></div></div>

<p>Then, call <code class="code">fsolve</code> with a specified initial condition to find the
roots of the system of equations.  For example, given the function
<code class="code">f</code> defined above,
</p>
<div class="example">
<pre class="example-preformatted">[x, fval, info] = fsolve (@f, [1; 2])
</pre></div>

<p>results in the solution
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">x =

  0.57983
  2.54621

fval =

  -5.7184e-10
   5.5460e-10

info = 1
</pre></div></div>

<p>A value of <code class="code">info = 1</code> indicates that the solution has converged.
</p>
<p>When no Jacobian is supplied (as in the example above) it is approximated
numerically.  This requires more function evaluations, and hence is
less efficient.  In the example above we could compute the Jacobian
analytically as
</p>

<div class="example">
<div class="group"><pre class="example-preformatted">function [y, jac] = f (x)
  y = zeros (2, 1);
  y(1) = -2*x(1)^2 + 3*x(1)*x(2)   + 4*sin(x(2)) - 6;
  y(2) =  3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
  if (nargout == 2)
    jac = zeros (2, 2);
    jac(1,1) =  3*x(2) - 4*x(1);
    jac(1,2) =  4*cos(x(2)) + 3*x(1);
    jac(2,1) = -2*x(2)^2 - 3*sin(x(1)) + 6*x(1);
    jac(2,2) = -4*x(1)*x(2);
  endif
endfunction
</pre></div></div>

<p>The Jacobian can then be used with the following call to <code class="code">fsolve</code>:
</p>
<div class="example">
<pre class="example-preformatted">[x, fval, info] = fsolve (@f, [1; 2], optimset (&quot;jacobian&quot;, &quot;on&quot;));
</pre></div>

<p>which gives the same solution as before.
</p>
<a class="anchor" id="XREFfzero"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-fzero"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">fzero</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">x0</var>)</code><a class="copiable-link" href="#index-fzero"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fzero-1"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">fzero</strong> <code class="def-code-arguments">(<var class="var">fcn</var>, <var class="var">x0</var>, <var class="var">options</var>)</code><a class="copiable-link" href="#index-fzero-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fzero-2"><span><code class="def-type">[<var class="var">x</var>, <var class="var">fval</var>] =</code> <strong class="def-name">fzero</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-fzero-2"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fzero-3"><span><code class="def-type">[<var class="var">x</var>, <var class="var">fval</var>, <var class="var">info</var>] =</code> <strong class="def-name">fzero</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-fzero-3"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-fzero-4"><span><code class="def-type">[<var class="var">x</var>, <var class="var">fval</var>, <var class="var">info</var>, <var class="var">output</var>] =</code> <strong class="def-name">fzero</strong> <code class="def-code-arguments">(&hellip;)</code><a class="copiable-link" href="#index-fzero-4"> &para;</a></span></dt>
<dd><p>Find a zero of a univariate function.
</p>
<p><var class="var">fcn</var> is a function handle, inline function, or string containing the
name of the function to evaluate.
</p>
<p><var class="var">x0</var> should be a two-element vector specifying two points which
bracket a zero.  In other words, there must be a change in sign of the
function between <var class="var">x0</var>(1) and <var class="var">x0</var>(2).  More mathematically, the
following must hold
</p>
<div class="example">
<pre class="example-preformatted">sign (<var class="var">fcn</var>(<var class="var">x0</var>(1))) * sign (<var class="var">fcn</var>(<var class="var">x0</var>(2))) &lt;= 0
</pre></div>

<p>If <var class="var">x0</var> is a single scalar then several nearby and distant values are
probed in an attempt to obtain a valid bracketing.  If this is not
successful, the function fails.
</p>
<p><var class="var">options</var> is a structure specifying additional options.  Currently,
<code class="code">fzero</code> recognizes these options:
<code class="code">&quot;Display&quot;</code>, <code class="code">&quot;FunValCheck&quot;</code>, <code class="code">&quot;MaxFunEvals&quot;</code>,
<code class="code">&quot;MaxIter&quot;</code>, <code class="code">&quot;OutputFcn&quot;</code>, and <code class="code">&quot;TolX&quot;</code>.
</p>
<p><code class="code">&quot;MaxFunEvals&quot;</code> proscribes the maximum number of function evaluations
before the search is halted.  The default value is <code class="code">Inf</code>.
The value must be a positive integer.
</p>
<p><code class="code">&quot;MaxIter&quot;</code> proscribes the maximum number of algorithm iterations
before the search is halted.  The default value is <code class="code">Inf</code>.
The value must be a positive integer.
</p>
<p><code class="code">&quot;TolX&quot;</code> specifies the termination tolerance for the solution <var class="var">x</var>.
The default value is <code class="code">eps</code>.
</p>
<p>For a description of the other options,
see <a class="pxref" href="Linear-Least-Squares.html#XREFoptimset"><code class="code">optimset</code></a>.
To initialize an options structure with default values for <code class="code">fzero</code> use
<code class="code">options = optimset (&quot;fzero&quot;)</code>.
</p>
<p>On exit, the function returns <var class="var">x</var>, the approximate zero point, and
<var class="var">fval</var>, the function evaluated at <var class="var">x</var>.
</p>
<p>The third output <var class="var">info</var> reports whether the algorithm succeeded and
may take one of the following values:
</p>
<ul class="itemize mark-bullet">
<li>1
 The algorithm converged to a solution.

</li><li>0
 Maximum number of iterations or function evaluations has been reached.

</li><li>-1
The algorithm has been terminated by a user <code class="code">OutputFcn</code>.

</li><li>-5
The algorithm may have converged to a singular point.
</li></ul>

<p><var class="var">output</var> is a structure containing runtime information about the
<code class="code">fzero</code> algorithm.  Fields in the structure are:
</p>
<ul class="itemize mark-bullet">
<li>iterations
 Number of iterations through loop.

</li><li>funcCount
 Number of function evaluations.

</li><li>algorithm
 The string <code class="code">&quot;bisection, interpolation&quot;</code>.

</li><li>bracketx
 A two-element vector with the final bracketing of the zero along the
x-axis.

</li><li>brackety
 A two-element vector with the final bracketing of the zero along the
y-axis.
</li></ul>

<p><strong class="strong">See also:</strong> <a class="ref" href="Linear-Least-Squares.html#XREFoptimset">optimset</a>, <a class="ref" href="#XREFfsolve">fsolve</a>.
</p></dd></dl>


</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Minimizers.html">Minimizers</a>, Up: <a href="Nonlinear-Equations.html">Nonlinear Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>