1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Three-Dimensional Plots (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Three-Dimensional Plots (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Three-Dimensional Plots (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="High_002dLevel-Plotting.html" rel="up" title="High-Level Plotting">
<link href="Plot-Annotations.html" rel="next" title="Plot Annotations">
<link href="Two_002dDimensional-Plots.html" rel="prev" title="Two-Dimensional Plots">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.center {text-align:center}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="subsection-level-extent" id="Three_002dDimensional-Plots">
<div class="nav-panel">
<p>
Next: <a href="Plot-Annotations.html" accesskey="n" rel="next">Plot Annotations</a>, Previous: <a href="Two_002dDimensional-Plots.html" accesskey="p" rel="prev">Two-Dimensional Plots</a>, Up: <a href="High_002dLevel-Plotting.html" accesskey="u" rel="up">High-Level Plotting</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h4 class="subsection" id="Three_002dDimensional-Plots-1"><span>15.2.2 Three-Dimensional Plots<a class="copiable-link" href="#Three_002dDimensional-Plots-1"> ¶</a></span></h4>
<a class="index-entry-id" id="index-plotting_002c-three_002ddimensional"></a>
<p>The function <code class="code">mesh</code> produces mesh surface plots. For example,
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">tx = ty = linspace (-8, 8, 41)';
[xx, yy] = meshgrid (tx, ty);
r = sqrt (xx .^ 2 + yy .^ 2) + eps;
tz = sin (r) ./ r;
mesh (tx, ty, tz);
xlabel ("tx");
ylabel ("ty");
zlabel ("tz");
title ("3-D Sombrero plot");
</pre></div></div>
<p>produces the familiar “sombrero” plot shown in <a class="ref" href="#fig_003amesh">Figure 15.5</a>. Note
the use of the function <code class="code">meshgrid</code> to create matrices of X and Y
coordinates to use for plotting the Z data. The <code class="code">ndgrid</code> function
is similar to <code class="code">meshgrid</code>, but works for N-dimensional matrices.
</p>
<div class="float" id="fig_003amesh">
<div class="center"><img class="image" src="mesh.png" alt="mesh">
</div><div class="caption"><p><strong class="strong">Figure 15.5: </strong>Mesh plot.</p></div></div>
<p>The <code class="code">meshc</code> function is similar to <code class="code">mesh</code>, but also produces a
plot of contours for the surface.
</p>
<p>The <code class="code">plot3</code> function displays arbitrary three-dimensional data,
without requiring it to form a surface. For example,
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">t = 0:0.1:10*pi;
r = linspace (0, 1, numel (t));
z = linspace (0, 1, numel (t));
plot3 (r.*sin (t), r.*cos (t), z);
xlabel ("r.*sin (t)");
ylabel ("r.*cos (t)");
zlabel ("z");
title ("plot3 display of 3-D helix");
</pre></div></div>
<p>displays the spiral in three dimensions shown in <a class="ref" href="#fig_003aplot3">Figure 15.6</a>.
</p>
<div class="float" id="fig_003aplot3">
<div class="center"><img class="image" src="plot3.png" alt="plot3">
</div><div class="caption"><p><strong class="strong">Figure 15.6: </strong>Three-dimensional spiral.</p></div></div>
<p>Finally, the <code class="code">view</code> function changes the viewpoint for
three-dimensional plots.
</p>
<a class="anchor" id="XREFmesh"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-mesh"><span><strong class="def-name">mesh</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-mesh"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mesh-1"><span><strong class="def-name">mesh</strong> <code class="def-code-arguments">(<var class="var">z</var>)</code><a class="copiable-link" href="#index-mesh-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mesh-2"><span><strong class="def-name">mesh</strong> <code class="def-code-arguments">(…, <var class="var">c</var>)</code><a class="copiable-link" href="#index-mesh-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mesh-3"><span><strong class="def-name">mesh</strong> <code class="def-code-arguments">(…, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-mesh-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mesh-4"><span><strong class="def-name">mesh</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-mesh-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mesh-5"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">mesh</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-mesh-5"> ¶</a></span></dt>
<dd><p>Plot a 3-D wireframe mesh.
</p>
<p>The wireframe mesh is plotted using rectangles. The vertices of the
rectangles [<var class="var">x</var>, <var class="var">y</var>] are typically the output of <code class="code">meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var class="var">z</var> determines the
height above the plane of each vertex. If only a single <var class="var">z</var> matrix is
given, then it is plotted over the meshgrid
<code class="code"><var class="var">x</var> = 1:columns (<var class="var">z</var>), <var class="var">y</var> = 1:rows (<var class="var">z</var>)</code>.
Thus, columns of <var class="var">z</var> correspond to different <var class="var">x</var> values and rows
of <var class="var">z</var> correspond to different <var class="var">y</var> values.
</p>
<p>The color of the mesh is computed by linearly scaling the <var class="var">z</var> values
to fit the range of the current colormap. Use <code class="code">clim</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally, the color of the mesh can be specified independently of <var class="var">z</var>
by supplying a color matrix, <var class="var">c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object. The full list of properties is documented at
<a class="ref" href="Surface-Properties.html">Surface Properties</a>.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the created
surface object.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Three_002ddimensional-Function-Plotting.html#XREFezmesh">ezmesh</a>, <a class="ref" href="#XREFmeshc">meshc</a>, <a class="ref" href="#XREFmeshz">meshz</a>, <a class="ref" href="Plotting-the-Triangulation.html#XREFtrimesh">trimesh</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a class="ref" href="#XREFsurf">surf</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="#XREFmeshgrid">meshgrid</a>, <a class="ref" href="#XREFhidden">hidden</a>, <a class="ref" href="#XREFshading">shading</a>, <a class="ref" href="Representing-Images.html#XREFcolormap">colormap</a>, <a class="ref" href="Axis-Configuration.html#XREFclim">clim</a>.
</p></dd></dl>
<a class="anchor" id="XREFmeshc"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-meshc"><span><strong class="def-name">meshc</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-meshc"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshc-1"><span><strong class="def-name">meshc</strong> <code class="def-code-arguments">(<var class="var">z</var>)</code><a class="copiable-link" href="#index-meshc-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshc-2"><span><strong class="def-name">meshc</strong> <code class="def-code-arguments">(…, <var class="var">c</var>)</code><a class="copiable-link" href="#index-meshc-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshc-3"><span><strong class="def-name">meshc</strong> <code class="def-code-arguments">(…, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-meshc-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshc-4"><span><strong class="def-name">meshc</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-meshc-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshc-5"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">meshc</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-meshc-5"> ¶</a></span></dt>
<dd><p>Plot a 3-D wireframe mesh with underlying contour lines.
</p>
<p>The wireframe mesh is plotted using rectangles. The vertices of the
rectangles [<var class="var">x</var>, <var class="var">y</var>] are typically the output of <code class="code">meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var class="var">z</var> determines the
height above the plane of each vertex. If only a single <var class="var">z</var> matrix is
given, then it is plotted over the meshgrid
<code class="code"><var class="var">x</var> = 1:columns (<var class="var">z</var>), <var class="var">y</var> = 1:rows (<var class="var">z</var>)</code>.
Thus, columns of <var class="var">z</var> correspond to different <var class="var">x</var> values and rows
of <var class="var">z</var> correspond to different <var class="var">y</var> values.
</p>
<p>The color of the mesh is computed by linearly scaling the <var class="var">z</var> values
to fit the range of the current colormap. Use <code class="code">clim</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally the color of the mesh can be specified independently of <var class="var">z</var>
by supplying a color matrix, <var class="var">c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object. The full list of properties is documented at
<a class="ref" href="Surface-Properties.html">Surface Properties</a>.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a 2-element vector with a graphics
handle to the created surface object and to the created contour plot.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Three_002ddimensional-Function-Plotting.html#XREFezmeshc">ezmeshc</a>, <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="#XREFmeshz">meshz</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a class="ref" href="#XREFsurfc">surfc</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="#XREFmeshgrid">meshgrid</a>, <a class="ref" href="#XREFhidden">hidden</a>, <a class="ref" href="#XREFshading">shading</a>, <a class="ref" href="Representing-Images.html#XREFcolormap">colormap</a>, <a class="ref" href="Axis-Configuration.html#XREFclim">clim</a>.
</p></dd></dl>
<a class="anchor" id="XREFmeshz"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-meshz"><span><strong class="def-name">meshz</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-meshz"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshz-1"><span><strong class="def-name">meshz</strong> <code class="def-code-arguments">(<var class="var">z</var>)</code><a class="copiable-link" href="#index-meshz-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshz-2"><span><strong class="def-name">meshz</strong> <code class="def-code-arguments">(…, <var class="var">c</var>)</code><a class="copiable-link" href="#index-meshz-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshz-3"><span><strong class="def-name">meshz</strong> <code class="def-code-arguments">(…, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-meshz-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshz-4"><span><strong class="def-name">meshz</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-meshz-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshz-5"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">meshz</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-meshz-5"> ¶</a></span></dt>
<dd><p>Plot a 3-D wireframe mesh with a surrounding curtain.
</p>
<p>The wireframe mesh is plotted using rectangles. The vertices of the
rectangles [<var class="var">x</var>, <var class="var">y</var>] are typically the output of <code class="code">meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var class="var">z</var> determines the
height above the plane of each vertex. If only a single <var class="var">z</var> matrix is
given, then it is plotted over the meshgrid
<code class="code"><var class="var">x</var> = 1:columns (<var class="var">z</var>), <var class="var">y</var> = 1:rows (<var class="var">z</var>)</code>.
Thus, columns of <var class="var">z</var> correspond to different <var class="var">x</var> values and rows
of <var class="var">z</var> correspond to different <var class="var">y</var> values.
</p>
<p>The color of the mesh is computed by linearly scaling the <var class="var">z</var> values
to fit the range of the current colormap. Use <code class="code">clim</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally the color of the mesh can be specified independently of <var class="var">z</var>
by supplying a color matrix, <var class="var">c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object. The full list of properties is documented at
<a class="ref" href="Surface-Properties.html">Surface Properties</a>.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the created
surface object.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="#XREFmeshc">meshc</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a class="ref" href="#XREFsurf">surf</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="#XREFwaterfall">waterfall</a>, <a class="ref" href="#XREFmeshgrid">meshgrid</a>, <a class="ref" href="#XREFhidden">hidden</a>, <a class="ref" href="#XREFshading">shading</a>, <a class="ref" href="Representing-Images.html#XREFcolormap">colormap</a>, <a class="ref" href="Axis-Configuration.html#XREFclim">clim</a>.
</p></dd></dl>
<a class="anchor" id="XREFhidden"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-hidden"><span><strong class="def-name">hidden</strong><a class="copiable-link" href="#index-hidden"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-hidden-1"><span><strong class="def-name">hidden</strong> <code class="def-code-arguments">on</code><a class="copiable-link" href="#index-hidden-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-hidden-2"><span><strong class="def-name">hidden</strong> <code class="def-code-arguments">off</code><a class="copiable-link" href="#index-hidden-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-hidden-3"><span><code class="def-type"><var class="var">mode</var> =</code> <strong class="def-name">hidden</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-hidden-3"> ¶</a></span></dt>
<dd><p>Control mesh hidden line removal.
</p>
<p>When called with no argument the hidden line removal state is toggled.
</p>
<p>When called with one of the modes <code class="code">"on"</code> or <code class="code">"off"</code> the state
is set accordingly.
</p>
<p>The optional output argument <var class="var">mode</var> is the current state.
</p>
<p>Hidden Line Removal determines what graphic objects behind a mesh plot
are visible. The default is for the mesh to be opaque and lines behind
the mesh are not visible. If hidden line removal is turned off then
objects behind the mesh can be seen through the faces (openings) of the
mesh, although the mesh grid lines are still opaque.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="#XREFmeshc">meshc</a>, <a class="ref" href="#XREFmeshz">meshz</a>, <a class="ref" href="Three_002ddimensional-Function-Plotting.html#XREFezmesh">ezmesh</a>, <a class="ref" href="Three_002ddimensional-Function-Plotting.html#XREFezmeshc">ezmeshc</a>, <a class="ref" href="Plotting-the-Triangulation.html#XREFtrimesh">trimesh</a>, <a class="ref" href="#XREFwaterfall">waterfall</a>.
</p></dd></dl>
<a class="anchor" id="XREFsurf"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-surf"><span><strong class="def-name">surf</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-surf"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surf-1"><span><strong class="def-name">surf</strong> <code class="def-code-arguments">(<var class="var">z</var>)</code><a class="copiable-link" href="#index-surf-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surf-2"><span><strong class="def-name">surf</strong> <code class="def-code-arguments">(…, <var class="var">c</var>)</code><a class="copiable-link" href="#index-surf-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surf-3"><span><strong class="def-name">surf</strong> <code class="def-code-arguments">(…, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-surf-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surf-4"><span><strong class="def-name">surf</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-surf-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surf-5"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">surf</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-surf-5"> ¶</a></span></dt>
<dd><p>Plot a 3-D surface mesh.
</p>
<p>The surface mesh is plotted using shaded rectangles. The vertices of the
rectangles [<var class="var">x</var>, <var class="var">y</var>] are typically the output of <code class="code">meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var class="var">z</var> determines the
height above the plane of each vertex. If only a single <var class="var">z</var> matrix is
given, then it is plotted over the meshgrid
<code class="code"><var class="var">x</var> = 1:columns (<var class="var">z</var>), <var class="var">y</var> = 1:rows (<var class="var">z</var>)</code>.
Thus, columns of <var class="var">z</var> correspond to different <var class="var">x</var> values and rows
of <var class="var">z</var> correspond to different <var class="var">y</var> values.
</p>
<p>The color of the surface is computed by linearly scaling the <var class="var">z</var> values
to fit the range of the current colormap. Use <code class="code">clim</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally, the color of the surface can be specified independently of
<var class="var">z</var> by supplying a color matrix, <var class="var">c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object. The full list of properties is documented at
<a class="ref" href="Surface-Properties.html">Surface Properties</a>.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the created
surface object.
</p>
<p>Note: The exact appearance of the surface can be controlled with the
<code class="code">shading</code> command or by using <code class="code">set</code> to control surface object
properties.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Three_002ddimensional-Function-Plotting.html#XREFezsurf">ezsurf</a>, <a class="ref" href="#XREFsurfc">surfc</a>, <a class="ref" href="#XREFsurfl">surfl</a>, <a class="ref" href="#XREFsurfnorm">surfnorm</a>, <a class="ref" href="Plotting-the-Triangulation.html#XREFtrisurf">trisurf</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="#XREFmeshgrid">meshgrid</a>, <a class="ref" href="#XREFhidden">hidden</a>, <a class="ref" href="#XREFshading">shading</a>, <a class="ref" href="Representing-Images.html#XREFcolormap">colormap</a>, <a class="ref" href="Axis-Configuration.html#XREFclim">clim</a>.
</p></dd></dl>
<a class="anchor" id="XREFsurfc"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-surfc"><span><strong class="def-name">surfc</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-surfc"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfc-1"><span><strong class="def-name">surfc</strong> <code class="def-code-arguments">(<var class="var">z</var>)</code><a class="copiable-link" href="#index-surfc-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfc-2"><span><strong class="def-name">surfc</strong> <code class="def-code-arguments">(…, <var class="var">c</var>)</code><a class="copiable-link" href="#index-surfc-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfc-3"><span><strong class="def-name">surfc</strong> <code class="def-code-arguments">(…, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-surfc-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfc-4"><span><strong class="def-name">surfc</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-surfc-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfc-5"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">surfc</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-surfc-5"> ¶</a></span></dt>
<dd><p>Plot a 3-D surface mesh with underlying contour lines.
</p>
<p>The surface mesh is plotted using shaded rectangles. The vertices of the
rectangles [<var class="var">x</var>, <var class="var">y</var>] are typically the output of <code class="code">meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var class="var">z</var> determines the
height above the plane of each vertex. If only a single <var class="var">z</var> matrix is
given, then it is plotted over the meshgrid
<code class="code"><var class="var">x</var> = 1:columns (<var class="var">z</var>), <var class="var">y</var> = 1:rows (<var class="var">z</var>)</code>.
Thus, columns of <var class="var">z</var> correspond to different <var class="var">x</var> values and rows
of <var class="var">z</var> correspond to different <var class="var">y</var> values.
</p>
<p>The color of the surface is computed by linearly scaling the <var class="var">z</var> values
to fit the range of the current colormap. Use <code class="code">clim</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally, the color of the surface can be specified independently of
<var class="var">z</var> by supplying a color matrix, <var class="var">c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object. The full list of properties is documented at
<a class="ref" href="Surface-Properties.html">Surface Properties</a>.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the created
surface object.
</p>
<p>Note: The exact appearance of the surface can be controlled with the
<code class="code">shading</code> command or by using <code class="code">set</code> to control surface object
properties.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Three_002ddimensional-Function-Plotting.html#XREFezsurfc">ezsurfc</a>, <a class="ref" href="#XREFsurf">surf</a>, <a class="ref" href="#XREFsurfl">surfl</a>, <a class="ref" href="#XREFsurfnorm">surfnorm</a>, <a class="ref" href="Plotting-the-Triangulation.html#XREFtrisurf">trisurf</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="#XREFmeshgrid">meshgrid</a>, <a class="ref" href="#XREFhidden">hidden</a>, <a class="ref" href="#XREFshading">shading</a>, <a class="ref" href="Representing-Images.html#XREFcolormap">colormap</a>, <a class="ref" href="Axis-Configuration.html#XREFclim">clim</a>.
</p></dd></dl>
<a class="anchor" id="XREFsurfl"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-surfl"><span><strong class="def-name">surfl</strong> <code class="def-code-arguments">(<var class="var">z</var>)</code><a class="copiable-link" href="#index-surfl"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfl-1"><span><strong class="def-name">surfl</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-surfl-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfl-2"><span><strong class="def-name">surfl</strong> <code class="def-code-arguments">(…, <var class="var">lsrc</var>)</code><a class="copiable-link" href="#index-surfl-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfl-3"><span><strong class="def-name">surfl</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">lsrc</var>, <var class="var">P</var>)</code><a class="copiable-link" href="#index-surfl-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfl-4"><span><strong class="def-name">surfl</strong> <code class="def-code-arguments">(…, "cdata")</code><a class="copiable-link" href="#index-surfl-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfl-5"><span><strong class="def-name">surfl</strong> <code class="def-code-arguments">(…, "light")</code><a class="copiable-link" href="#index-surfl-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfl-6"><span><strong class="def-name">surfl</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-surfl-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfl-7"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">surfl</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-surfl-7"> ¶</a></span></dt>
<dd><p>Plot a 3-D surface using shading based on various lighting models.
</p>
<p>The surface mesh is plotted using shaded rectangles. The vertices of the
rectangles [<var class="var">x</var>, <var class="var">y</var>] are typically the output of <code class="code">meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var class="var">z</var> determines the
height above the plane of each vertex. If only a single <var class="var">z</var> matrix is
given, then it is plotted over the meshgrid
<code class="code"><var class="var">x</var> = 1:columns (<var class="var">z</var>), <var class="var">y</var> = 1:rows (<var class="var">z</var>)</code>.
Thus, columns of <var class="var">z</var> correspond to different <var class="var">x</var> values and rows
of <var class="var">z</var> correspond to different <var class="var">y</var> values.
</p>
<p>The default lighting mode <code class="code">"cdata"</code>, changes the cdata property of the
surface object to give the impression of a lighted surface.
</p>
<p>The alternate mode <code class="code">"light"</code> creates a light object to illuminate the
surface.
</p>
<p>The light source location may be specified using <var class="var">lsrc</var> which can be
a 2-element vector [azimuth, elevation] in degrees, or a 3-element vector
[lx, ly, lz]. The default value is rotated 45 degrees counterclockwise to
the current view.
</p>
<p>The material properties of the surface can specified using a 4-element
vector <var class="var">P</var> = [<var class="var">AM</var> <var class="var">D</var> <var class="var">SP</var> <var class="var">exp</var>] which defaults to
<var class="var">p</var> = [0.55 0.6 0.4 10].
</p>
<dl class="table">
<dt><code class="code">"AM"</code> strength of ambient light</dt>
<dt><code class="code">"D"</code> strength of diffuse reflection</dt>
<dt><code class="code">"SP"</code> strength of specular reflection</dt>
<dt><code class="code">"EXP"</code> specular exponent</dt>
</dl>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the created
surface object.
</p>
<p>Example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">colormap (bone (64));
surfl (peaks);
shading interp;
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFdiffuse">diffuse</a>, <a class="ref" href="#XREFspecular">specular</a>, <a class="ref" href="#XREFsurf">surf</a>, <a class="ref" href="#XREFshading">shading</a>, <a class="ref" href="Representing-Images.html#XREFcolormap">colormap</a>, <a class="ref" href="Axis-Configuration.html#XREFclim">clim</a>.
</p></dd></dl>
<a class="anchor" id="XREFsurfnorm"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-surfnorm"><span><strong class="def-name">surfnorm</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-surfnorm"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfnorm-1"><span><strong class="def-name">surfnorm</strong> <code class="def-code-arguments">(<var class="var">z</var>)</code><a class="copiable-link" href="#index-surfnorm-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfnorm-2"><span><strong class="def-name">surfnorm</strong> <code class="def-code-arguments">(…, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-surfnorm-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfnorm-3"><span><strong class="def-name">surfnorm</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-surfnorm-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-surfnorm-4"><span><code class="def-type">[<var class="var">Nx</var>, <var class="var">Ny</var>, <var class="var">Nz</var>] =</code> <strong class="def-name">surfnorm</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-surfnorm-4"> ¶</a></span></dt>
<dd><p>Find the vectors normal to a meshgridded surface.
</p>
<p>If <var class="var">x</var> and <var class="var">y</var> are vectors, then a typical vertex is
(<var class="var">x</var>(j), <var class="var">y</var>(i), <var class="var">z</var>(i,j)). Thus, columns of <var class="var">z</var> correspond
to different <var class="var">x</var> values and rows of <var class="var">z</var> correspond to different
<var class="var">y</var> values. If only a single input <var class="var">z</var> is given then <var class="var">x</var> is
taken to be <code class="code">1:columns (<var class="var">z</var>)</code> and <var class="var">y</var> is
<code class="code">1:rows (<var class="var">z</var>)</code>.
</p>
<p>If no return arguments are requested, a surface plot with the normal
vectors to the surface is plotted.
</p>
<p>Any property/value input pairs are assigned to the surface object. The full
list of properties is documented at <a class="ref" href="Surface-Properties.html">Surface Properties</a>.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>If output arguments are requested then the components of the normal
vectors are returned in <var class="var">Nx</var>, <var class="var">Ny</var>, and <var class="var">Nz</var> and no plot is
made. The normal vectors are unnormalized (magnitude != 1). To normalize,
use
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">len = sqrt (nx.^2 + ny.^2 + nz.^2);
nx ./= len; ny ./= len; nz ./= len;
</pre></div></div>
<p>An example of the use of <code class="code">surfnorm</code> is
</p>
<div class="example">
<pre class="example-preformatted">surfnorm (peaks (25));
</pre></div>
<p>Algorithm: The normal vectors are calculated by taking the cross product
of the diagonals of each of the quadrilateral faces in the meshgrid to find
the normal vectors at the center of each face. Next, for each meshgrid
point the four nearest normal vectors are averaged to obtain the final
normal to the surface at the meshgrid point.
</p>
<p>For surface objects, the <code class="code">"VertexNormals"</code> property contains
equivalent information, except possibly near the boundary of the surface
where different interpolation schemes may yield slightly different values.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFisonormals">isonormals</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFquiver3">quiver3</a>, <a class="ref" href="#XREFsurf">surf</a>, <a class="ref" href="#XREFmeshgrid">meshgrid</a>.
</p></dd></dl>
<a class="anchor" id="XREFisosurface"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-isosurface"><span><code class="def-type"><var class="var">fv</var> =</code> <strong class="def-name">isosurface</strong> <code class="def-code-arguments">(<var class="var">v</var>, <var class="var">isoval</var>)</code><a class="copiable-link" href="#index-isosurface"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isosurface-1"><span><code class="def-type"><var class="var">fv</var> =</code> <strong class="def-name">isosurface</strong> <code class="def-code-arguments">(<var class="var">v</var>)</code><a class="copiable-link" href="#index-isosurface-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isosurface-2"><span><code class="def-type"><var class="var">fv</var> =</code> <strong class="def-name">isosurface</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">v</var>, <var class="var">isoval</var>)</code><a class="copiable-link" href="#index-isosurface-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isosurface-3"><span><code class="def-type"><var class="var">fv</var> =</code> <strong class="def-name">isosurface</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">v</var>)</code><a class="copiable-link" href="#index-isosurface-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isosurface-4"><span><code class="def-type"><var class="var">fvc</var> =</code> <strong class="def-name">isosurface</strong> <code class="def-code-arguments">(…, <var class="var">col</var>)</code><a class="copiable-link" href="#index-isosurface-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isosurface-5"><span><code class="def-type"><var class="var">fv</var> =</code> <strong class="def-name">isosurface</strong> <code class="def-code-arguments">(…, "noshare")</code><a class="copiable-link" href="#index-isosurface-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isosurface-6"><span><code class="def-type"><var class="var">fv</var> =</code> <strong class="def-name">isosurface</strong> <code class="def-code-arguments">(…, "verbose")</code><a class="copiable-link" href="#index-isosurface-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isosurface-7"><span><code class="def-type">[<var class="var">f</var>, <var class="var">v</var>] =</code> <strong class="def-name">isosurface</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-isosurface-7"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isosurface-8"><span><code class="def-type">[<var class="var">f</var>, <var class="var">v</var>, <var class="var">c</var>] =</code> <strong class="def-name">isosurface</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-isosurface-8"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isosurface-9"><span><strong class="def-name">isosurface</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-isosurface-9"> ¶</a></span></dt>
<dd>
<p>Calculate isosurface of 3-D volume data.
</p>
<p>An isosurface connects points with the same value and is analogous to a
contour plot, but in three dimensions.
</p>
<p>The input argument <var class="var">v</var> is a three-dimensional array that contains data
sampled over a volume.
</p>
<p>The input <var class="var">isoval</var> is a scalar that specifies the value for the
isosurface. If <var class="var">isoval</var> is omitted or empty, a "good" value
for an isosurface is determined from <var class="var">v</var>.
</p>
<p>When called with a single output argument <code class="code">isosurface</code> returns a
structure array <var class="var">fv</var> that contains the fields <var class="var">faces</var> and
<var class="var">vertices</var> computed at the points
<code class="code">[<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>] = meshgrid (1:l, 1:m, 1:n)</code> where
<code class="code">[l, m, n] = size (<var class="var">v</var>)</code>. The output <var class="var">fv</var> can be
used directly as input to the <code class="code">patch</code> function.
</p>
<p>If called with additional input arguments <var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var>
that are three-dimensional arrays with the same size as <var class="var">v</var> or
vectors with lengths corresponding to the dimensions of <var class="var">v</var>, then the
volume data is taken at the specified points. If <var class="var">x</var>, <var class="var">y</var>, or
<var class="var">z</var> are empty, the grid corresponds to the indices (<code class="code">1:n</code>) in
the respective direction (see <a class="pxref" href="#XREFmeshgrid"><code class="code">meshgrid</code></a>).
</p>
<p>The optional input argument <var class="var">col</var>, which is a three-dimensional array
of the same size as <var class="var">v</var>, specifies coloring of the isosurface. The
color data is interpolated, as necessary, to match <var class="var">isoval</var>. The
output structure array, in this case, has the additional field
<var class="var">facevertexcdata</var>.
</p>
<p>If given the string input argument <code class="code">"noshare"</code>, vertices may be
returned multiple times for different faces. The default behavior is to
eliminate vertices shared by adjacent faces.
</p>
<p>The string input argument <code class="code">"verbose"</code> is supported for <small class="sc">MATLAB</small>
compatibility, but has no effect.
</p>
<p>Any string arguments must be passed after the other arguments.
</p>
<p>If called with two or three output arguments, return the information about
the faces <var class="var">f</var>, vertices <var class="var">v</var>, and color data <var class="var">c</var> as separate
arrays instead of a single structure array.
</p>
<p>If called with no output argument, the isosurface geometry is directly
plotted with the <code class="code">patch</code> command and a light object is added to
the axes if not yet present.
</p>
<p>For example,
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">[x, y, z] = meshgrid (1:5, 1:5, 1:5);
v = rand (5, 5, 5);
isosurface (x, y, z, v, .5);
</pre></div></div>
<p>will directly draw a random isosurface geometry in a graphics window.
</p>
<p>An example of an isosurface geometry with different additional coloring:
</p>
<div class="example smallexample">
<pre class="example-preformatted">N = 15; # Increase number of vertices in each direction
iso = .4; # Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
v = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure ();
subplot (2,2,1); view (-38, 20);
[f, vert] = isosurface (x, y, z, v, iso);
p = patch ("Faces", f, "Vertices", vert, "EdgeColor", "none");
pbaspect ([1 1 1]);
isonormals (x, y, z, v, p)
set (p, "FaceColor", "green", "FaceLighting", "gouraud");
light ("Position", [1 1 5]);
subplot (2,2,2); view (-38, 20);
p = patch ("Faces", f, "Vertices", vert, "EdgeColor", "blue");
pbaspect ([1 1 1]);
isonormals (x, y, z, v, p)
set (p, "FaceColor", "none", "EdgeLighting", "gouraud");
light ("Position", [1 1 5]);
subplot (2,2,3); view (-38, 20);
[f, vert, c] = isosurface (x, y, z, v, iso, y);
p = patch ("Faces", f, "Vertices", vert, "FaceVertexCData", c, ...
"FaceColor", "interp", "EdgeColor", "none");
pbaspect ([1 1 1]);
isonormals (x, y, z, v, p)
set (p, "FaceLighting", "gouraud");
light ("Position", [1 1 5]);
subplot (2,2,4); view (-38, 20);
p = patch ("Faces", f, "Vertices", vert, "FaceVertexCData", c, ...
"FaceColor", "interp", "EdgeColor", "blue");
pbaspect ([1 1 1]);
isonormals (x, y, z, v, p)
set (p, "FaceLighting", "gouraud");
light ("Position", [1 1 5]);
</pre></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFisonormals">isonormals</a>, <a class="ref" href="#XREFisocolors">isocolors</a>, <a class="ref" href="#XREFisocaps">isocaps</a>, <a class="ref" href="#XREFsmooth3">smooth3</a>, <a class="ref" href="#XREFreducevolume">reducevolume</a>, <a class="ref" href="#XREFreducepatch">reducepatch</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFpatch">patch</a>.
</p></dd></dl>
<a class="anchor" id="XREFisonormals"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-isonormals"><span><code class="def-type"><var class="var">vn</var> =</code> <strong class="def-name">isonormals</strong> <code class="def-code-arguments">(<var class="var">val</var>, <var class="var">vert</var>)</code><a class="copiable-link" href="#index-isonormals"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isonormals-1"><span><code class="def-type"><var class="var">vn</var> =</code> <strong class="def-name">isonormals</strong> <code class="def-code-arguments">(<var class="var">val</var>, <var class="var">hp</var>)</code><a class="copiable-link" href="#index-isonormals-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isonormals-2"><span><code class="def-type"><var class="var">vn</var> =</code> <strong class="def-name">isonormals</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">val</var>, <var class="var">vert</var>)</code><a class="copiable-link" href="#index-isonormals-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isonormals-3"><span><code class="def-type"><var class="var">vn</var> =</code> <strong class="def-name">isonormals</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">val</var>, <var class="var">hp</var>)</code><a class="copiable-link" href="#index-isonormals-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isonormals-4"><span><code class="def-type"><var class="var">vn</var> =</code> <strong class="def-name">isonormals</strong> <code class="def-code-arguments">(…, "negate")</code><a class="copiable-link" href="#index-isonormals-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isonormals-5"><span><strong class="def-name">isonormals</strong> <code class="def-code-arguments">(<var class="var">val</var>, <var class="var">hp</var>)</code><a class="copiable-link" href="#index-isonormals-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isonormals-6"><span><strong class="def-name">isonormals</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">val</var>, <var class="var">hp</var>)</code><a class="copiable-link" href="#index-isonormals-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isonormals-7"><span><strong class="def-name">isonormals</strong> <code class="def-code-arguments">(…, "negate")</code><a class="copiable-link" href="#index-isonormals-7"> ¶</a></span></dt>
<dd>
<p>Calculate normals to an isosurface.
</p>
<p>The vertex normals <var class="var">vn</var> are calculated from the gradient of the
3-dimensional array <var class="var">val</var> (size: lxmxn) containing the data for an
isosurface geometry. The normals point towards smaller values in <var class="var">val</var>.
</p>
<p>If called with one output argument <var class="var">vn</var>, and the second input argument
<var class="var">vert</var> holds the vertices of an isosurface, then the normals <var class="var">vn</var>
are calculated at the vertices <var class="var">vert</var> on a grid given by
<code class="code">[x, y, z] = meshgrid (1:l, 1:m, 1:n)</code>. The output argument
<var class="var">vn</var> has the same size as <var class="var">vert</var> and can be used to set the
<code class="code">"VertexNormals"</code> property of the corresponding patch.
</p>
<p>If called with additional input arguments <var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var>,
which are 3-dimensional arrays with the same size as <var class="var">val</var>,
then the volume data is taken at these points. Instead of the vertex data
<var class="var">vert</var>, a patch handle <var class="var">hp</var> can be passed to the function.
</p>
<p>If the last input argument is the string <code class="code">"negate"</code>, compute the
reverse vector normals of an isosurface geometry (i.e., pointed towards
larger values in <var class="var">val</var>).
</p>
<p>If no output argument is given, the property <code class="code">"VertexNormals"</code> of
the patch associated with the patch handle <var class="var">hp</var> is changed directly.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFisosurface">isosurface</a>, <a class="ref" href="#XREFisocolors">isocolors</a>, <a class="ref" href="#XREFsmooth3">smooth3</a>.
</p></dd></dl>
<a class="anchor" id="XREFisocaps"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-isocaps"><span><code class="def-type"><var class="var">fvc</var> =</code> <strong class="def-name">isocaps</strong> <code class="def-code-arguments">(<var class="var">v</var>, <var class="var">isoval</var>)</code><a class="copiable-link" href="#index-isocaps"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocaps-1"><span><code class="def-type"><var class="var">fvc</var> =</code> <strong class="def-name">isocaps</strong> <code class="def-code-arguments">(<var class="var">v</var>)</code><a class="copiable-link" href="#index-isocaps-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocaps-2"><span><code class="def-type"><var class="var">fvc</var> =</code> <strong class="def-name">isocaps</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">v</var>, <var class="var">isoval</var>)</code><a class="copiable-link" href="#index-isocaps-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocaps-3"><span><code class="def-type"><var class="var">fvc</var> =</code> <strong class="def-name">isocaps</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">v</var>)</code><a class="copiable-link" href="#index-isocaps-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocaps-4"><span><code class="def-type"><var class="var">fvc</var> =</code> <strong class="def-name">isocaps</strong> <code class="def-code-arguments">(…, <var class="var">which_caps</var>)</code><a class="copiable-link" href="#index-isocaps-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocaps-5"><span><code class="def-type"><var class="var">fvc</var> =</code> <strong class="def-name">isocaps</strong> <code class="def-code-arguments">(…, <var class="var">which_plane</var>)</code><a class="copiable-link" href="#index-isocaps-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocaps-6"><span><code class="def-type"><var class="var">fvc</var> =</code> <strong class="def-name">isocaps</strong> <code class="def-code-arguments">(…, <code class="code">"verbose"</code>)</code><a class="copiable-link" href="#index-isocaps-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocaps-7"><span><code class="def-type">[<var class="var">faces</var>, <var class="var">vertices</var>, <var class="var">fvcdata</var>] =</code> <strong class="def-name">isocaps</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-isocaps-7"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocaps-8"><span><strong class="def-name">isocaps</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-isocaps-8"> ¶</a></span></dt>
<dd>
<p>Create end-caps for isosurfaces of 3-D data.
</p>
<p>This function places caps at the open ends of isosurfaces.
</p>
<p>The input argument <var class="var">v</var> is a three-dimensional array that contains data
sampled over a volume.
</p>
<p>The input <var class="var">isoval</var> is a scalar that specifies the value for the
isosurface. If <var class="var">isoval</var> is omitted or empty, a "good" value
for an isosurface is determined from <var class="var">v</var>.
</p>
<p>When called with a single output argument, <code class="code">isocaps</code> returns a
structure array <var class="var">fvc</var> with the fields: <code class="code">faces</code>, <code class="code">vertices</code>,
and <code class="code">facevertexcdata</code>. The results are computed at the points
<code class="code">[<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>] = meshgrid (1:l, 1:m, 1:n)</code> where
<code class="code">[l, m, n] = size (<var class="var">v</var>)</code>. The output <var class="var">fvc</var> can be used
directly as input to the <code class="code">patch</code> function.
</p>
<p>If called with additional input arguments <var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var>
that are three-dimensional arrays with the same size as <var class="var">v</var> or
vectors with lengths corresponding to the dimensions of <var class="var">v</var>, then the
volume data is taken at the specified points. If <var class="var">x</var>, <var class="var">y</var>, or
<var class="var">z</var> are empty, the grid corresponds to the indices (<code class="code">1:n</code>) in
the respective direction (see <a class="pxref" href="#XREFmeshgrid"><code class="code">meshgrid</code></a>).
</p>
<p>The optional parameter <var class="var">which_caps</var> can have one of the following
string values which defines how the data will be enclosed:
</p>
<dl class="table">
<dt><code class="code">"above"</code>, <code class="code">"a"</code> (default)</dt>
<dd><p>for end-caps that enclose the data above <var class="var">isoval</var>.
</p>
</dd>
<dt><code class="code">"below"</code>, <code class="code">"b"</code></dt>
<dd><p>for end-caps that enclose the data below <var class="var">isoval</var>.
</p></dd>
</dl>
<p>The optional parameter <var class="var">which_plane</var> can have one of the following
string values to define which end-cap should be drawn:
</p>
<dl class="table">
<dt><code class="code">"all"</code> (default)</dt>
<dd><p>for all of the end-caps.
</p>
</dd>
<dt><code class="code">"xmin"</code></dt>
<dd><p>for end-caps at the lower x-plane of the data.
</p>
</dd>
<dt><code class="code">"xmax"</code></dt>
<dd><p>for end-caps at the upper x-plane of the data.
</p>
</dd>
<dt><code class="code">"ymin"</code></dt>
<dd><p>for end-caps at the lower y-plane of the data.
</p>
</dd>
<dt><code class="code">"ymax"</code></dt>
<dd><p>for end-caps at the upper y-plane of the data.
</p>
</dd>
<dt><code class="code">"zmin"</code></dt>
<dd><p>for end-caps at the lower z-plane of the data.
</p>
</dd>
<dt><code class="code">"zmax"</code></dt>
<dd><p>for end-caps at the upper z-plane of the data.
</p></dd>
</dl>
<p>The string input argument <code class="code">"verbose"</code> is supported for <small class="sc">MATLAB</small>
compatibility, but has no effect.
</p>
<p>If called with two or three output arguments, the data for faces
<var class="var">faces</var>, vertices <var class="var">vertices</var>, and the color data
<var class="var">facevertexcdata</var> are returned in separate arrays instead of a single
structure.
</p>
<p>If called with no output argument, the end-caps are drawn directly in the
current figure with the <code class="code">patch</code> command.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFisosurface">isosurface</a>, <a class="ref" href="#XREFisonormals">isonormals</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFpatch">patch</a>.
</p></dd></dl>
<a class="anchor" id="XREFisocolors"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-isocolors"><span><code class="def-type"><var class="var">cdat</var> =</code> <strong class="def-name">isocolors</strong> <code class="def-code-arguments">(<var class="var">c</var>, <var class="var">v</var>)</code><a class="copiable-link" href="#index-isocolors"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocolors-1"><span><code class="def-type"><var class="var">cdat</var> =</code> <strong class="def-name">isocolors</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">c</var>, <var class="var">v</var>)</code><a class="copiable-link" href="#index-isocolors-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocolors-2"><span><code class="def-type"><var class="var">cdat</var> =</code> <strong class="def-name">isocolors</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">r</var>, <var class="var">g</var>, <var class="var">b</var>, <var class="var">v</var>)</code><a class="copiable-link" href="#index-isocolors-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocolors-3"><span><code class="def-type"><var class="var">cdat</var> =</code> <strong class="def-name">isocolors</strong> <code class="def-code-arguments">(<var class="var">r</var>, <var class="var">g</var>, <var class="var">b</var>, <var class="var">v</var>)</code><a class="copiable-link" href="#index-isocolors-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocolors-4"><span><code class="def-type"><var class="var">cdat</var> =</code> <strong class="def-name">isocolors</strong> <code class="def-code-arguments">(…, <var class="var">hp</var>)</code><a class="copiable-link" href="#index-isocolors-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-isocolors-5"><span><strong class="def-name">isocolors</strong> <code class="def-code-arguments">(…, <var class="var">hp</var>)</code><a class="copiable-link" href="#index-isocolors-5"> ¶</a></span></dt>
<dd>
<p>Compute isosurface colors.
</p>
<p>If called with one output argument, and the first input argument <var class="var">c</var>
is a three-dimensional array that contains indexed color values, and the
second input argument <var class="var">v</var> are the vertices of an isosurface geometry,
then return a matrix <var class="var">cdat</var> with color data information for the geometry
at computed points <code class="code">[x, y, z] = meshgrid (1:l, 1:m, 1:n)</code>. The output
argument <var class="var">cdat</var> can be used to manually set the
<code class="code">"FaceVertexCData"</code> property of an isosurface patch object.
</p>
<p>If called with additional input arguments <var class="var">x</var>, <var class="var">y</var> and <var class="var">z</var> which
are three-dimensional arrays of the same size as <var class="var">c</var> then the
color data is taken at those specified points.
</p>
<p>Instead of indexed color data <var class="var">c</var>, <code class="code">isocolors</code> can also be called
with RGB values <var class="var">r</var>, <var class="var">g</var>, <var class="var">b</var>. If input arguments <var class="var">x</var>,
<var class="var">y</var>, <var class="var">z</var> are not given then <code class="code">meshgrid</code> computed values are
used.
</p>
<p>Optionally, a patch handle <var class="var">hp</var> can be given as the last input argument
to all function call variations and the vertex data will be extracted
from the isosurface patch object. Finally, if no output argument is given
then the colors of the patch given by the patch handle <var class="var">hp</var> are changed.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFisosurface">isosurface</a>, <a class="ref" href="#XREFisonormals">isonormals</a>.
</p></dd></dl>
<a class="anchor" id="XREFsmooth3"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-smooth3"><span><code class="def-type"><var class="var">smoothed_data</var> =</code> <strong class="def-name">smooth3</strong> <code class="def-code-arguments">(<var class="var">data</var>)</code><a class="copiable-link" href="#index-smooth3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-smooth3-1"><span><code class="def-type"><var class="var">smoothed_data</var> =</code> <strong class="def-name">smooth3</strong> <code class="def-code-arguments">(<var class="var">data</var>, <var class="var">method</var>)</code><a class="copiable-link" href="#index-smooth3-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-smooth3-2"><span><code class="def-type"><var class="var">smoothed_data</var> =</code> <strong class="def-name">smooth3</strong> <code class="def-code-arguments">(<var class="var">data</var>, <var class="var">method</var>, <var class="var">sz</var>)</code><a class="copiable-link" href="#index-smooth3-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-smooth3-3"><span><code class="def-type"><var class="var">smoothed_data</var> =</code> <strong class="def-name">smooth3</strong> <code class="def-code-arguments">(<var class="var">data</var>, <var class="var">method</var>, <var class="var">sz</var>, <var class="var">std_dev</var>)</code><a class="copiable-link" href="#index-smooth3-3"> ¶</a></span></dt>
<dd><p>Smooth values of 3-dimensional matrix <var class="var">data</var>.
</p>
<p>This function may be used, for example, to reduce the impact of noise in
<var class="var">data</var> before calculating isosurfaces.
</p>
<p><var class="var">data</var> must be a non-singleton 3-dimensional matrix. The output
<var class="var">smoothed_data</var> is a matrix of the same size as <var class="var">data</var>.
</p>
<p>The option input <var class="var">method</var> determines which convolution kernel is used
for the smoothing process. Possible choices:
</p>
<dl class="table">
<dt><code class="code">"box"</code>, <code class="code">"b"</code> (default)</dt>
<dd><p>a convolution kernel with sharp edges.
</p>
</dd>
<dt><code class="code">"gaussian"</code>, <code class="code">"g"</code></dt>
<dd><p>a convolution kernel that is represented by a non-correlated trivariate
normal distribution function.
</p></dd>
</dl>
<p><var class="var">sz</var> is either a 3-element vector specifying the size of the
convolution kernel in the x-, y- and z-directions, or a scalar. In the
scalar case the same size is used for all three dimensions
(<code class="code">[<var class="var">sz</var>, <var class="var">sz</var>, <var class="var">sz</var>]</code>). The default value is 3.
</p>
<p>If <var class="var">method</var> is <code class="code">"gaussian"</code> then the optional input <var class="var">std_dev</var>
defines the standard deviation of the trivariate normal distribution
function. <var class="var">std_dev</var> is either a 3-element vector specifying the
standard deviation of the Gaussian convolution kernel in x-, y- and
z-directions, or a scalar. In the scalar case the same value is used for
all three dimensions. The default value is 0.65.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFisosurface">isosurface</a>, <a class="ref" href="#XREFisonormals">isonormals</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFpatch">patch</a>.
</p></dd></dl>
<a class="anchor" id="XREFreducevolume"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-reducevolume"><span><code class="def-type">[<var class="var">nx</var>, <var class="var">ny</var>, <var class="var">nz</var>, <var class="var">nv</var>] =</code> <strong class="def-name">reducevolume</strong> <code class="def-code-arguments">(<var class="var">v</var>, <var class="var">r</var>)</code><a class="copiable-link" href="#index-reducevolume"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-reducevolume-1"><span><code class="def-type">[<var class="var">nx</var>, <var class="var">ny</var>, <var class="var">nz</var>, <var class="var">nv</var>] =</code> <strong class="def-name">reducevolume</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">v</var>, <var class="var">r</var>)</code><a class="copiable-link" href="#index-reducevolume-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-reducevolume-2"><span><code class="def-type"><var class="var">nv</var> =</code> <strong class="def-name">reducevolume</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-reducevolume-2"> ¶</a></span></dt>
<dd>
<p>Reduce the volume of the dataset in <var class="var">v</var> according to the values in
<var class="var">r</var>.
</p>
<p><var class="var">v</var> is a matrix that is non-singleton in the first 3 dimensions.
</p>
<p><var class="var">r</var> can either be a vector of 3 elements representing the reduction
factors in the x-, y-, and z-directions or a scalar, in which case the same
reduction factor is used in all three dimensions.
</p>
<p><code class="code">reducevolume</code> reduces the number of elements of <var class="var">v</var> by taking
only every <var class="var">r</var>-th element in the respective dimension.
</p>
<p>Optionally, <var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var> can be supplied to represent the
set of coordinates of <var class="var">v</var>. They can either be matrices of the same size
as <var class="var">v</var> or vectors with sizes according to the dimensions of <var class="var">v</var>, in
which case they are expanded to matrices
(see <a class="pxref" href="#XREFmeshgrid"><code class="code">meshgrid</code></a>).
</p>
<p>If <code class="code">reducevolume</code> is called with two arguments then <var class="var">x</var>, <var class="var">y</var>,
and <var class="var">z</var> are assumed to match the respective indices of <var class="var">v</var>.
</p>
<p>The reduced matrix is returned in <var class="var">nv</var>.
</p>
<p>Optionally, the reduced set of coordinates are returned in <var class="var">nx</var>,
<var class="var">ny</var>, and <var class="var">nz</var>, respectively.
</p>
<p>Examples:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">v</var> = reshape (1:6*8*4, [6 8 4]);
<var class="var">nv</var> = reducevolume (<var class="var">v</var>, [4 3 2]);
</pre></div></div>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">v</var> = reshape (1:6*8*4, [6 8 4]);
<var class="var">x</var> = 1:3:24; <var class="var">y</var> = -14:5:11; <var class="var">z</var> = linspace (16, 18, 4);
[<var class="var">nx</var>, <var class="var">ny</var>, <var class="var">nz</var>, <var class="var">nv</var>] = reducevolume (<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">v</var>, [4 3 2]);
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFisosurface">isosurface</a>, <a class="ref" href="#XREFisonormals">isonormals</a>.
</p></dd></dl>
<a class="anchor" id="XREFreducepatch"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-reducepatch"><span><code class="def-type"><var class="var">reduced_fv</var> =</code> <strong class="def-name">reducepatch</strong> <code class="def-code-arguments">(<var class="var">fv</var>)</code><a class="copiable-link" href="#index-reducepatch"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-reducepatch-1"><span><code class="def-type"><var class="var">reduced_fv</var> =</code> <strong class="def-name">reducepatch</strong> <code class="def-code-arguments">(<var class="var">faces</var>, <var class="var">vertices</var>)</code><a class="copiable-link" href="#index-reducepatch-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-reducepatch-2"><span><code class="def-type"><var class="var">reduced_fv</var> =</code> <strong class="def-name">reducepatch</strong> <code class="def-code-arguments">(<var class="var">patch_handle</var>)</code><a class="copiable-link" href="#index-reducepatch-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-reducepatch-3"><span><strong class="def-name">reducepatch</strong> <code class="def-code-arguments">(<var class="var">patch_handle</var>)</code><a class="copiable-link" href="#index-reducepatch-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-reducepatch-4"><span><code class="def-type"><var class="var">reduced_fv</var> =</code> <strong class="def-name">reducepatch</strong> <code class="def-code-arguments">(…, <var class="var">reduction_factor</var>)</code><a class="copiable-link" href="#index-reducepatch-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-reducepatch-5"><span><code class="def-type"><var class="var">reduced_fv</var> =</code> <strong class="def-name">reducepatch</strong> <code class="def-code-arguments">(…, "fast")</code><a class="copiable-link" href="#index-reducepatch-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-reducepatch-6"><span><code class="def-type"><var class="var">reduced_fv</var> =</code> <strong class="def-name">reducepatch</strong> <code class="def-code-arguments">(…, "verbose")</code><a class="copiable-link" href="#index-reducepatch-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-reducepatch-7"><span><code class="def-type">[<var class="var">reduced_faces</var>, <var class="var">reduces_vertices</var>] =</code> <strong class="def-name">reducepatch</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-reducepatch-7"> ¶</a></span></dt>
<dd>
<p>Reduce the number of faces and vertices in a patch object while retaining
the overall shape of the patch.
</p>
<p>The input patch can be represented by a structure <var class="var">fv</var> with the
fields <code class="code">faces</code> and <code class="code">vertices</code>, by two matrices <var class="var">faces</var> and
<var class="var">vertices</var> (see, e.g., the result of <code class="code">isosurface</code>), or by a
handle to a patch object <var class="var">patch_handle</var>
(see <a class="pxref" href="Creating-Graphics-Objects.html#XREFpatch"><code class="code">patch</code></a>).
</p>
<p>The number of faces and vertices in the patch is reduced by iteratively
collapsing the shortest edge of the patch to its midpoint (as discussed,
e.g., here:
<a class="url" href="https://libigl.github.io/libigl/tutorial/tutorial.html#meshdecimation">https://libigl.github.io/libigl/tutorial/tutorial.html#meshdecimation</a>).
</p>
<p>Currently, only patches consisting of triangles are supported. The
resulting patch also consists only of triangles.
</p>
<p>If <code class="code">reducepatch</code> is called with a handle to a valid patch
<var class="var">patch_handle</var>, and without any output arguments, then the given
patch is updated immediately.
</p>
<p>If the <var class="var">reduction_factor</var> is omitted, the resulting structure
<var class="var">reduced_fv</var> includes approximately 50% of the faces of the original
patch. If <var class="var">reduction_factor</var> is a fraction between 0 (excluded) and 1
(excluded), a patch with approximately the corresponding fraction of faces
is determined.
If <var class="var">reduction_factor</var> is an integer greater than or equal to 1, the
resulting patch has approximately <var class="var">reduction_factor</var> faces. Depending
on the geometry of the patch, the resulting number of faces can differ from
the given value of <var class="var">reduction_factor</var>. This is especially true when
many shared vertices are detected.
</p>
<p>For the reduction, it is necessary that vertices of touching faces are
shared. Shared vertices are detected automatically. This detection can be
skipped by passing the optional string argument <code class="code">"fast"</code>.
</p>
<p>With the optional string arguments <code class="code">"verbose"</code>, additional status
messages are printed to the command window.
</p>
<p>Any string input arguments must be passed after all other arguments.
</p>
<p>If called with one output argument, the reduced faces and vertices are
returned in a structure <var class="var">reduced_fv</var> with the fields <code class="code">faces</code> and
<code class="code">vertices</code> (see the one output option of <code class="code">isosurface</code>).
</p>
<p>If called with two output arguments, the reduced faces and vertices are
returned in two separate matrices <var class="var">reduced_faces</var> and
<var class="var">reduced_vertices</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFisosurface">isosurface</a>, <a class="ref" href="#XREFisonormals">isonormals</a>, <a class="ref" href="#XREFreducevolume">reducevolume</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFpatch">patch</a>.
</p></dd></dl>
<a class="anchor" id="XREFshrinkfaces"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-shrinkfaces"><span><strong class="def-name">shrinkfaces</strong> <code class="def-code-arguments">(<var class="var">p</var>, <var class="var">sf</var>)</code><a class="copiable-link" href="#index-shrinkfaces"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-shrinkfaces-1"><span><code class="def-type"><var class="var">nfv</var> =</code> <strong class="def-name">shrinkfaces</strong> <code class="def-code-arguments">(<var class="var">p</var>, <var class="var">sf</var>)</code><a class="copiable-link" href="#index-shrinkfaces-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-shrinkfaces-2"><span><code class="def-type"><var class="var">nfv</var> =</code> <strong class="def-name">shrinkfaces</strong> <code class="def-code-arguments">(<var class="var">fv</var>, <var class="var">sf</var>)</code><a class="copiable-link" href="#index-shrinkfaces-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-shrinkfaces-3"><span><code class="def-type"><var class="var">nfv</var> =</code> <strong class="def-name">shrinkfaces</strong> <code class="def-code-arguments">(<var class="var">f</var>, <var class="var">v</var>, <var class="var">sf</var>)</code><a class="copiable-link" href="#index-shrinkfaces-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-shrinkfaces-4"><span><code class="def-type">[<var class="var">nf</var>, <var class="var">nv</var>] =</code> <strong class="def-name">shrinkfaces</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-shrinkfaces-4"> ¶</a></span></dt>
<dd>
<p>Reduce the size of faces in a patch by the shrink factor <var class="var">sf</var>.
</p>
<p>The patch object can be specified by a graphics handle (<var class="var">p</var>), a patch
structure (<var class="var">fv</var>) with the fields <code class="code">"faces"</code> and <code class="code">"vertices"</code>,
or as two separate matrices (<var class="var">f</var>, <var class="var">v</var>) of faces and vertices.
</p>
<p>The shrink factor <var class="var">sf</var> is a positive number specifying the percentage
of the original area the new face will occupy. If no factor is given the
default is 0.3 (a reduction to 30% of the original size). A factor greater
than 1.0 will result in the expansion of faces.
</p>
<p>Given a patch handle as the first input argument and no output parameters,
perform the shrinking of the patch faces in place and redraw the patch.
</p>
<p>If called with one output argument, return a structure with fields
<code class="code">"faces"</code>, <code class="code">"vertices"</code>, and <code class="code">"facevertexcdata"</code>
containing the data after shrinking. This structure can be used directly
as an input argument to the <code class="code">patch</code> function.
</p>
<p><strong class="strong">Caution:</strong>: Performing the shrink operation on faces which are not
convex can lead to undesirable results.
</p>
<p>Example: a triangulated 3/4 circle and the corresponding shrunken version.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">[phi r] = meshgrid (linspace (0, 1.5*pi, 16), linspace (1, 2, 4));
tri = delaunay (phi(:), r(:));
v = [r(:).*sin(phi(:)) r(:).*cos(phi(:))];
clf ()
p = patch ("Faces", tri, "Vertices", v, "FaceColor", "none");
fv = shrinkfaces (p);
patch (fv)
axis equal
grid on
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="Creating-Graphics-Objects.html#XREFpatch">patch</a>.
</p></dd></dl>
<a class="anchor" id="XREFdiffuse"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-diffuse"><span><code class="def-type"><var class="var">d</var> =</code> <strong class="def-name">diffuse</strong> <code class="def-code-arguments">(<var class="var">sx</var>, <var class="var">sy</var>, <var class="var">sz</var>, <var class="var">lv</var>)</code><a class="copiable-link" href="#index-diffuse"> ¶</a></span></dt>
<dd><p>Calculate the diffuse reflection strength of a surface defined by the normal
vector elements <var class="var">sx</var>, <var class="var">sy</var>, <var class="var">sz</var>.
</p>
<p>The light source location vector <var class="var">lv</var> can be given as a 2-element vector
[azimuth, elevation] in degrees or as a 3-element vector [x, y, z].
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFspecular">specular</a>, <a class="ref" href="#XREFsurfl">surfl</a>.
</p></dd></dl>
<a class="anchor" id="XREFspecular"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-specular"><span><code class="def-type"><var class="var">refl</var> =</code> <strong class="def-name">specular</strong> <code class="def-code-arguments">(<var class="var">sx</var>, <var class="var">sy</var>, <var class="var">sz</var>, <var class="var">lv</var>, <var class="var">vv</var>)</code><a class="copiable-link" href="#index-specular"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-specular-1"><span><code class="def-type"><var class="var">refl</var> =</code> <strong class="def-name">specular</strong> <code class="def-code-arguments">(<var class="var">sx</var>, <var class="var">sy</var>, <var class="var">sz</var>, <var class="var">lv</var>, <var class="var">vv</var>, <var class="var">se</var>)</code><a class="copiable-link" href="#index-specular-1"> ¶</a></span></dt>
<dd><p>Calculate the specular reflection strength of a surface defined by the
normal vector elements <var class="var">sx</var>, <var class="var">sy</var>, <var class="var">sz</var> using Phong’s
approximation.
</p>
<p>The light source location and viewer location vectors are specified using
parameters <var class="var">lv</var> and <var class="var">vv</var> respectively. The location vectors can
given as 2-element vectors [azimuth, elevation] in degrees or as 3-element
vectors [x, y, z].
</p>
<p>An optional sixth argument specifies the specular exponent (spread)
<var class="var">se</var>. If not given, <var class="var">se</var> defaults to 10.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFdiffuse">diffuse</a>, <a class="ref" href="#XREFsurfl">surfl</a>.
</p></dd></dl>
<a class="anchor" id="XREFlighting"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-lighting"><span><strong class="def-name">lighting</strong> <code class="def-code-arguments">(<var class="var">type</var>)</code><a class="copiable-link" href="#index-lighting"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lighting-1"><span><strong class="def-name">lighting</strong> <code class="def-code-arguments">(<var class="var">hax</var>, <var class="var">type</var>)</code><a class="copiable-link" href="#index-lighting-1"> ¶</a></span></dt>
<dd><p>Set the lighting of patch or surface graphic objects.
</p>
<p>Valid arguments for <var class="var">type</var> are
</p>
<dl class="table">
<dt><code class="code">"flat"</code></dt>
<dd><p>Draw objects with faceted lighting effects.
</p>
</dd>
<dt><code class="code">"gouraud"</code></dt>
<dd><p>Draw objects with linear interpolation of the lighting effects between the
vertices.
</p>
</dd>
<dt><code class="code">"none"</code></dt>
<dd><p>Draw objects without light and shadow effects.
</p></dd>
</dl>
<p>If the first argument <var class="var">hax</var> is an axes handle, then change the lighting
effects of objects in this axes, rather than the current axes returned by
<code class="code">gca</code>.
</p>
<p>The lighting effects are only visible if at least one light object is
present and visible in the same axes.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Creating-Graphics-Objects.html#XREFlight">light</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFfill">fill</a>, <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFpatch">patch</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFpcolor">pcolor</a>, <a class="ref" href="#XREFsurf">surf</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="#XREFshading">shading</a>.
</p></dd></dl>
<a class="anchor" id="XREFmaterial"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-material"><span><strong class="def-name">material</strong> <code class="def-code-arguments">shiny</code><a class="copiable-link" href="#index-material"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-material-1"><span><strong class="def-name">material</strong> <code class="def-code-arguments">dull</code><a class="copiable-link" href="#index-material-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-material-2"><span><strong class="def-name">material</strong> <code class="def-code-arguments">metal</code><a class="copiable-link" href="#index-material-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-material-3"><span><strong class="def-name">material</strong> <code class="def-code-arguments">default</code><a class="copiable-link" href="#index-material-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-material-4"><span><strong class="def-name">material</strong> <code class="def-code-arguments">([<var class="var">as</var>, <var class="var">ds</var>, <var class="var">ss</var>])</code><a class="copiable-link" href="#index-material-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-material-5"><span><strong class="def-name">material</strong> <code class="def-code-arguments">([<var class="var">as</var>, <var class="var">ds</var>, <var class="var">ss</var>, <var class="var">se</var>])</code><a class="copiable-link" href="#index-material-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-material-6"><span><strong class="def-name">material</strong> <code class="def-code-arguments">([<var class="var">as</var>, <var class="var">ds</var>, <var class="var">ss</var>, <var class="var">se</var>, <var class="var">scr</var>])</code><a class="copiable-link" href="#index-material-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-material-7"><span><strong class="def-name">material</strong> <code class="def-code-arguments">(<var class="var">hlist</var>, …)</code><a class="copiable-link" href="#index-material-7"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-material-8"><span><code class="def-type"><var class="var">mtypes</var> =</code> <strong class="def-name">material</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-material-8"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-material-9"><span><code class="def-type"><var class="var">refl_props</var> =</code> <strong class="def-name">material</strong> <code class="def-code-arguments">(<var class="var">mtype_string</var>)</code><a class="copiable-link" href="#index-material-9"> ¶</a></span></dt>
<dd><p>Set reflectance properties for the lighting of surfaces and patches.
</p>
<p>This function changes the ambient, diffuse, and specular strengths, as well
as the specular exponent and specular color reflectance, of all
<code class="code">patch</code> and <code class="code">surface</code> objects in the current axes. This can be
used to simulate, to some extent, the reflectance properties of certain
materials when used with <code class="code">light</code>.
</p>
<p>When called with a string, the aforementioned properties are set
according to the values in the following table:
</p>
<table class="multitable">
<thead><tr><th width="16%"><var class="var">mtype</var></th><th width="16%">ambient- strength</th><th width="16%">diffuse-
strength</th><th width="16%">specular- strength</th><th width="16%">specular- exponent</th><th width="16%">specular-
color- reflectance</th></tr></thead>
<tbody><tr><td width="16%"><code class="code">"shiny"</code></td><td width="16%">0.3</td><td width="16%">0.6</td><td width="16%">0.9</td><td width="16%">20</td><td width="16%">1.0</td></tr>
<tr><td width="16%"><code class="code">"dull"</code></td><td width="16%">0.3</td><td width="16%">0.8</td><td width="16%">0.0</td><td width="16%">10</td><td width="16%">1.0</td></tr>
<tr><td width="16%"><code class="code">"metal"</code></td><td width="16%">0.3</td><td width="16%">0.3</td><td width="16%">1.0</td><td width="16%">25</td><td width="16%">0.5</td></tr>
<tr><td width="16%"><code class="code">"default"</code></td><td width="16%"><code class="code">"default"</code></td><td width="16%"><code class="code">"default"</code></td><td width="16%"><code class="code">"default"</code></td><td width="16%"><code class="code">"default"</code></td><td width="16%"><code class="code">"default"</code></td></tr>
</tbody>
</table>
<p>When called with a vector of three elements, the ambient, diffuse, and
specular strengths of all <code class="code">patch</code> and <code class="code">surface</code> objects in the
current axes are updated. An optional fourth vector element updates the
specular exponent, and an optional fifth vector element updates the
specular color reflectance.
</p>
<p>A list of graphic handles can also be passed as the first argument. In
this case, the properties of these handles and all child <code class="code">patch</code> and
<code class="code">surface</code> objects will be updated.
</p>
<p>Additionally, <code class="code">material</code> can be called with a single output argument.
If called without input arguments, a column cell vector <var class="var">mtypes</var> with
the strings for all available materials is returned. If the one input
argument <var class="var">mtype_string</var> is the name of a material, a 1x5 cell vector
<var class="var">refl_props</var> with the reflectance properties of that material is
returned. In both cases, no graphic properties are changed.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Creating-Graphics-Objects.html#XREFlight">light</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFfill">fill</a>, <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFpatch">patch</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFpcolor">pcolor</a>, <a class="ref" href="#XREFsurf">surf</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>.
</p></dd></dl>
<a class="anchor" id="XREFcamlight"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-camlight"><span><strong class="def-name">camlight</strong><a class="copiable-link" href="#index-camlight"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlight-1"><span><strong class="def-name">camlight</strong> <code class="def-code-arguments">right</code><a class="copiable-link" href="#index-camlight-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlight-2"><span><strong class="def-name">camlight</strong> <code class="def-code-arguments">left</code><a class="copiable-link" href="#index-camlight-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlight-3"><span><strong class="def-name">camlight</strong> <code class="def-code-arguments">headlight</code><a class="copiable-link" href="#index-camlight-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlight-4"><span><strong class="def-name">camlight</strong> <code class="def-code-arguments">(<var class="var">az</var>, <var class="var">el</var>)</code><a class="copiable-link" href="#index-camlight-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlight-5"><span><strong class="def-name">camlight</strong> <code class="def-code-arguments">(…, <var class="var">style</var>)</code><a class="copiable-link" href="#index-camlight-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlight-6"><span><strong class="def-name">camlight</strong> <code class="def-code-arguments">(<var class="var">hl</var>, …)</code><a class="copiable-link" href="#index-camlight-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlight-7"><span><strong class="def-name">camlight</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-camlight-7"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlight-8"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">camlight</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-camlight-8"> ¶</a></span></dt>
<dd><p>Add a light object to a figure using a simple interface.
</p>
<p>When called with no arguments, a light object is added to the current plot
and is placed slightly above and to the right of the camera’s current
position: this is equivalent to <code class="code">camlight right</code>. The commands
<code class="code">camlight left</code> and <code class="code">camlight headlight</code> behave similarly with
the placement being either left of the camera position or centered on the
camera position.
</p>
<p>For more control, the light position can be specified by an azimuthal
rotation <var class="var">az</var> and an elevation angle <var class="var">el</var>, both in degrees,
relative to the current properties of the camera.
</p>
<p>The optional string <var class="var">style</var> specifies whether the light is a local point
source (<code class="code">"local"</code>, the default) or placed at infinite distance
(<code class="code">"infinite"</code>).
</p>
<p>If the first argument <var class="var">hl</var> is a handle to a light object, then act on
this light object rather than creating a new object.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then create a new light
object in this axes, rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the light object.
This can be used to move or further change properties of the light object.
</p>
<p>Examples:
</p>
<p>Add a light object to a plot
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">sphere (36);
camlight
</pre></div></div>
<p>Position the light source exactly
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camlight (45, 30);
</pre></div></div>
<p>Here the light is first pitched upwards (see <a class="pxref" href="#XREFcamup"><code class="code">camup</code></a>)
from the camera position (see <a class="pxref" href="#XREFcampos"><code class="code">campos</code></a>) by 30
degrees. It is then yawed by 45 degrees to the right. Both rotations
are centered around the camera target
(see <a class="pxref" href="#XREFcamtarget"><code class="code">camtarget</code></a>).
</p>
<p>Return a handle to further manipulate the light object
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">clf
sphere (36);
hl = camlight ("left");
set (hl, "color", "r");
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="Creating-Graphics-Objects.html#XREFlight">light</a>.
</p></dd></dl>
<a class="anchor" id="XREFlightangle"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-lightangle"><span><strong class="def-name">lightangle</strong> <code class="def-code-arguments">(<var class="var">az</var>, <var class="var">el</var>)</code><a class="copiable-link" href="#index-lightangle"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lightangle-1"><span><strong class="def-name">lightangle</strong> <code class="def-code-arguments">(<var class="var">hax</var>, <var class="var">az</var>, <var class="var">el</var>)</code><a class="copiable-link" href="#index-lightangle-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lightangle-2"><span><strong class="def-name">lightangle</strong> <code class="def-code-arguments">(<var class="var">hl</var>, <var class="var">az</var>, <var class="var">el</var>)</code><a class="copiable-link" href="#index-lightangle-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lightangle-3"><span><code class="def-type"><var class="var">hl</var> =</code> <strong class="def-name">lightangle</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-lightangle-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lightangle-4"><span><code class="def-type">[<var class="var">az</var>, <var class="var">el</var>] =</code> <strong class="def-name">lightangle</strong> <code class="def-code-arguments">(<var class="var">hl</var>)</code><a class="copiable-link" href="#index-lightangle-4"> ¶</a></span></dt>
<dd><p>Add a light object to the current axes using spherical coordinates.
</p>
<p>The light position is specified by an azimuthal rotation <var class="var">az</var> and an
elevation angle <var class="var">el</var>, both in degrees.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then create a new light
object in this axes, rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>If the first argument <var class="var">hl</var> is a handle to a light object, then act on
this light object rather than creating a new object.
</p>
<p>The optional return value <var class="var">hl</var> is a graphics handle to the light object.
</p>
<p>Example:
</p>
<p>Add a light object to a plot
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">clf;
sphere (36);
lightangle (45, 30);
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="Creating-Graphics-Objects.html#XREFlight">light</a>, <a class="ref" href="#XREFview">view</a>, <a class="ref" href="#XREFcamlight">camlight</a>.
</p></dd></dl>
<a class="anchor" id="XREFmeshgrid"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-meshgrid"><span><code class="def-type">[<var class="var">xx</var>, <var class="var">yy</var>] =</code> <strong class="def-name">meshgrid</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>)</code><a class="copiable-link" href="#index-meshgrid"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshgrid-1"><span><code class="def-type">[<var class="var">xx</var>, <var class="var">yy</var>, <var class="var">zz</var>] =</code> <strong class="def-name">meshgrid</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-meshgrid-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshgrid-2"><span><code class="def-type">[<var class="var">xx</var>, <var class="var">yy</var>] =</code> <strong class="def-name">meshgrid</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-meshgrid-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-meshgrid-3"><span><code class="def-type">[<var class="var">xx</var>, <var class="var">yy</var>, <var class="var">zz</var>] =</code> <strong class="def-name">meshgrid</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-meshgrid-3"> ¶</a></span></dt>
<dd><p>Given vectors of <var class="var">x</var> and <var class="var">y</var> coordinates, return matrices <var class="var">xx</var>
and <var class="var">yy</var> corresponding to a full 2-D grid.
</p>
<p>The rows of <var class="var">xx</var> are copies of <var class="var">x</var>, and the columns of <var class="var">yy</var> are
copies of <var class="var">y</var>. If <var class="var">y</var> is omitted, then it is assumed to be the same
as <var class="var">x</var>.
</p>
<p>If the optional <var class="var">z</var> input is given, or <var class="var">zz</var> is requested, then the
output will be a full 3-D grid. If <var class="var">z</var> is omitted and <var class="var">zz</var> is
requested, it is assumed to be the same as <var class="var">y</var>.
</p>
<p><code class="code">meshgrid</code> is most frequently used to produce input for a 2-D or 3-D
function that will be plotted. The following example creates a surface
plot of the “sombrero” function.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">f = @(x,y) sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
range = linspace (-8, 8, 41);
[<var class="var">X</var>, <var class="var">Y</var>] = meshgrid (range, range);
Z = f (X, Y);
surf (X, Y, Z);
</pre></div></div>
<p>Programming Note: <code class="code">meshgrid</code> is restricted to 2-D or 3-D grid
generation. The <code class="code">ndgrid</code> function will generate 1-D through N-D
grids. However, the functions are not completely equivalent. If <var class="var">x</var>
is a vector of length M and <var class="var">y</var> is a vector of length N, then
<code class="code">meshgrid</code> will produce an output grid which is NxM. <code class="code">ndgrid</code>
will produce an output which is MxN (transpose) for the same
input. Some core functions expect <code class="code">meshgrid</code> input and others expect
<code class="code">ndgrid</code> input. Check the documentation for the function in question
to determine the proper input format.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFndgrid">ndgrid</a>, <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a class="ref" href="#XREFsurf">surf</a>.
</p></dd></dl>
<a class="anchor" id="XREFndgrid"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ndgrid"><span><code class="def-type">[<var class="var">y1</var>, <var class="var">y2</var>, …, <var class="var">y</var>n] =</code> <strong class="def-name">ndgrid</strong> <code class="def-code-arguments">(<var class="var">x1</var>, <var class="var">x2</var>, …, <var class="var">x</var>n)</code><a class="copiable-link" href="#index-ndgrid"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ndgrid-1"><span><code class="def-type">[<var class="var">y1</var>, <var class="var">y2</var>, …, <var class="var">y</var>n] =</code> <strong class="def-name">ndgrid</strong> <code class="def-code-arguments">(<var class="var">x</var>)</code><a class="copiable-link" href="#index-ndgrid-1"> ¶</a></span></dt>
<dd><p>Given n vectors <var class="var">x1</var>, …, <var class="var">x</var>n, <code class="code">ndgrid</code> returns n
arrays of dimension n.
</p>
<p>The elements of the i-th output argument contains the elements of the
vector <var class="var">x</var>i repeated over all dimensions different from the i-th
dimension. Calling ndgrid with only one input argument <var class="var">x</var> is
equivalent to calling ndgrid with all n input arguments equal to <var class="var">x</var>:
</p>
<p>[<var class="var">y1</var>, <var class="var">y2</var>, …, <var class="var">y</var>n] = ndgrid (<var class="var">x</var>, …, <var class="var">x</var>)
</p>
<p>Programming Note: <code class="code">ndgrid</code> is very similar to the function
<code class="code">meshgrid</code> except that the first two dimensions are transposed in
comparison to <code class="code">meshgrid</code>. Some core functions expect <code class="code">meshgrid</code>
input and others expect <code class="code">ndgrid</code> input. Check the documentation for
the function in question to determine the proper input format.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmeshgrid">meshgrid</a>.
</p></dd></dl>
<a class="anchor" id="XREFplot3"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-plot3"><span><strong class="def-name">plot3</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-plot3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-plot3-1"><span><strong class="def-name">plot3</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">prop</var>, <var class="var">value</var>, …)</code><a class="copiable-link" href="#index-plot3-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-plot3-2"><span><strong class="def-name">plot3</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">fmt</var>)</code><a class="copiable-link" href="#index-plot3-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-plot3-3"><span><strong class="def-name">plot3</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">cplx</var>)</code><a class="copiable-link" href="#index-plot3-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-plot3-4"><span><strong class="def-name">plot3</strong> <code class="def-code-arguments">(<var class="var">cplx</var>)</code><a class="copiable-link" href="#index-plot3-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-plot3-5"><span><strong class="def-name">plot3</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-plot3-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-plot3-6"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">plot3</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-plot3-6"> ¶</a></span></dt>
<dd><p>Produce 3-D plots.
</p>
<p>Many different combinations of arguments are possible. The simplest
form is
</p>
<div class="example">
<pre class="example-preformatted">plot3 (<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)
</pre></div>
<p>in which the arguments are taken to be the vertices of the points to
be plotted in three dimensions. If all arguments are vectors of the
same length, then a single continuous line is drawn. If all arguments
are matrices, then each column of is treated as a separate line. No attempt
is made to transpose the arguments to make the number of rows match.
</p>
<p>If only two arguments are given, as
</p>
<div class="example">
<pre class="example-preformatted">plot3 (<var class="var">x</var>, <var class="var">cplx</var>)
</pre></div>
<p>the real and imaginary parts of the second argument are used
as the <var class="var">y</var> and <var class="var">z</var> coordinates, respectively.
</p>
<p>If only one argument is given, as
</p>
<div class="example">
<pre class="example-preformatted">plot3 (<var class="var">cplx</var>)
</pre></div>
<p>the real and imaginary parts of the argument are used as the <var class="var">y</var>
and <var class="var">z</var> values, and they are plotted versus their index.
</p>
<p>Arguments may also be given in groups of three as
</p>
<div class="example">
<pre class="example-preformatted">plot3 (<var class="var">x1</var>, <var class="var">y1</var>, <var class="var">z1</var>, <var class="var">x2</var>, <var class="var">y2</var>, <var class="var">z2</var>, ...)
</pre></div>
<p>in which each set of three arguments is treated as a separate line or
set of lines in three dimensions.
</p>
<p>To plot multiple one- or two-argument groups, separate each group
with an empty format string, as
</p>
<div class="example">
<pre class="example-preformatted">plot3 (<var class="var">x1</var>, <var class="var">c1</var>, "", <var class="var">c2</var>, "", ...)
</pre></div>
<p>Multiple property-value pairs may be specified which will affect the line
objects drawn by <code class="code">plot3</code>. If the <var class="var">fmt</var> argument is supplied it
will format the line objects in the same manner as <code class="code">plot</code>.
The full list of properties is documented at
<a class="ref" href="Line-Properties.html">Line Properties</a>.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the created plot.
</p>
<p>Example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">z = [0:0.05:5];
plot3 (cos (2*pi*z), sin (2*pi*z), z, ";helix;");
plot3 (z, exp (2i*pi*z), ";complex sinusoid;");
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="Three_002ddimensional-Function-Plotting.html#XREFezplot3">ezplot3</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFplot">plot</a>.
</p></dd></dl>
<a class="anchor" id="XREFview"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-view"><span><strong class="def-name">view</strong> <code class="def-code-arguments">(<var class="var">azimuth</var>, <var class="var">elevation</var>)</code><a class="copiable-link" href="#index-view"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-view-1"><span><strong class="def-name">view</strong> <code class="def-code-arguments">([<var class="var">azimuth</var> <var class="var">elevation</var>])</code><a class="copiable-link" href="#index-view-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-view-2"><span><strong class="def-name">view</strong> <code class="def-code-arguments">([<var class="var">x</var> <var class="var">y</var> <var class="var">z</var>])</code><a class="copiable-link" href="#index-view-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-view-3"><span><strong class="def-name">view</strong> <code class="def-code-arguments">(2)</code><a class="copiable-link" href="#index-view-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-view-4"><span><strong class="def-name">view</strong> <code class="def-code-arguments">(3)</code><a class="copiable-link" href="#index-view-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-view-5"><span><strong class="def-name">view</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-view-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-view-6"><span><code class="def-type">[<var class="var">azimuth</var>, <var class="var">elevation</var>] =</code> <strong class="def-name">view</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-view-6"> ¶</a></span></dt>
<dd><p>Query or set the viewpoint for the current axes.
</p>
<p>The parameters <var class="var">azimuth</var> and <var class="var">elevation</var> can be given as two
arguments or as 2-element vector. The viewpoint can also be specified with
Cartesian coordinates <var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var>.
</p>
<p>The call <code class="code">view (2)</code> sets the viewpoint to
<var class="var">azimuth</var> = 0<!-- /@w --> and <var class="var">elevation</var> = 90<!-- /@w -->, which is the default
for 2-D graphs.
</p>
<p>The call <code class="code">view (3)</code> sets the viewpoint to
<var class="var">azimuth</var> = -37.5<!-- /@w --> and <var class="var">elevation</var> = 30<!-- /@w -->, which is the
default for 3-D graphs.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then operate on
this axes rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>If no inputs are given, return the current <var class="var">azimuth</var> and
<var class="var">elevation</var>.
</p></dd></dl>
<a class="anchor" id="XREFcamlookat"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-camlookat"><span><strong class="def-name">camlookat</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-camlookat"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlookat-1"><span><strong class="def-name">camlookat</strong> <code class="def-code-arguments">(<var class="var">h</var>)</code><a class="copiable-link" href="#index-camlookat-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlookat-2"><span><strong class="def-name">camlookat</strong> <code class="def-code-arguments">(<var class="var">handle_list</var>)</code><a class="copiable-link" href="#index-camlookat-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camlookat-3"><span><strong class="def-name">camlookat</strong> <code class="def-code-arguments">(<var class="var">hax</var>)</code><a class="copiable-link" href="#index-camlookat-3"> ¶</a></span></dt>
<dd><p>Move the camera and adjust its properties to look at objects.
</p>
<p>When the input is a handle <var class="var">h</var>, the camera is set to point toward the
center of the bounding box of <var class="var">h</var>. The camera’s position is adjusted so
the bounding box approximately fills the field of view.
</p>
<p>This command fixes the camera’s viewing direction
(<code class="code">camtarget() - campos()</code>), camera up vector
(see <a class="pxref" href="#XREFcamup"><code class="code">camup</code></a>) and viewing angle
(see <a class="pxref" href="#XREFcamva"><code class="code">camva</code></a>). The camera target
(see <a class="pxref" href="#XREFcamtarget"><code class="code">camtarget</code></a>) and camera position
(see <a class="pxref" href="#XREFcampos"><code class="code">campos</code></a>) are changed.
</p>
<p>If the argument is a list <var class="var">handle_list</var>, then a single bounding box for
all the objects is computed and the camera is then adjusted as above.
</p>
<p>If the argument is an axis object <var class="var">hax</var>, then the children of the axis
are used as <var class="var">handle_list</var>. When called with no inputs, it uses the
current axis (see <a class="pxref" href="Handle-Functions.html#XREFgca"><code class="code">gca</code></a>).
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFcamorbit">camorbit</a>, <a class="ref" href="#XREFcamzoom">camzoom</a>, <a class="ref" href="#XREFcamroll">camroll</a>.
</p></dd></dl>
<a class="anchor" id="XREFcampos"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-campos"><span><code class="def-type"><var class="var">p</var> =</code> <strong class="def-name">campos</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-campos"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-campos-1"><span><strong class="def-name">campos</strong> <code class="def-code-arguments">([<var class="var">x</var> <var class="var">y</var> <var class="var">z</var>])</code><a class="copiable-link" href="#index-campos-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-campos-2"><span><code class="def-type"><var class="var">mode</var> =</code> <strong class="def-name">campos</strong> <code class="def-code-arguments">("mode")</code><a class="copiable-link" href="#index-campos-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-campos-3"><span><strong class="def-name">campos</strong> <code class="def-code-arguments">(<var class="var">mode</var>)</code><a class="copiable-link" href="#index-campos-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-campos-4"><span><strong class="def-name">campos</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-campos-4"> ¶</a></span></dt>
<dd><p>Get or set the camera position.
</p>
<p>The default camera position is determined automatically based on the scene.
For example, to get the camera position:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">hf = figure();
peaks()
p = campos ()
⇒ p =
-27.394 -35.701 64.079
</pre></div></div>
<p>We can then move the camera further up the z-axis:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">campos (p + [0 0 10])
campos ()
⇒ ans =
-27.394 -35.701 74.079
</pre></div></div>
<p>Having made that change, the camera position <var class="var">mode</var> is now manual:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">campos ("mode")
⇒ manual
</pre></div></div>
<p>We can set it back to automatic:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">campos ("auto")
campos ()
⇒ ans =
-27.394 -35.701 64.079
close (hf)
</pre></div></div>
<p>By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument <var class="var">hax</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFcamup">camup</a>, <a class="ref" href="#XREFcamtarget">camtarget</a>, <a class="ref" href="#XREFcamva">camva</a>.
</p></dd></dl>
<a class="anchor" id="XREFcamorbit"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-camorbit"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">theta</var>, <var class="var">phi</var>)</code><a class="copiable-link" href="#index-camorbit"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camorbit-1"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">theta</var>, <var class="var">phi</var>, <var class="var">coorsys</var>)</code><a class="copiable-link" href="#index-camorbit-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camorbit-2"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">theta</var>, <var class="var">phi</var>, <var class="var">coorsys</var>, <var class="var">dir</var>)</code><a class="copiable-link" href="#index-camorbit-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camorbit-3"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">theta</var>, <var class="var">phi</var>, "data")</code><a class="copiable-link" href="#index-camorbit-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camorbit-4"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">theta</var>, <var class="var">phi</var>, "data", "z")</code><a class="copiable-link" href="#index-camorbit-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camorbit-5"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">theta</var>, <var class="var">phi</var>, "data", "x")</code><a class="copiable-link" href="#index-camorbit-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camorbit-6"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">theta</var>, <var class="var">phi</var>, "data", "y")</code><a class="copiable-link" href="#index-camorbit-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camorbit-7"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">theta</var>, <var class="var">phi</var>, "data", [<var class="var">x</var> <var class="var">y</var> <var class="var">z</var>])</code><a class="copiable-link" href="#index-camorbit-7"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camorbit-8"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">theta</var>, <var class="var">phi</var>, "camera")</code><a class="copiable-link" href="#index-camorbit-8"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camorbit-9"><span><strong class="def-name">camorbit</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-camorbit-9"> ¶</a></span></dt>
<dd><p>Rotate the camera up/down and left/right around its target.
</p>
<p>Move the camera <var class="var">phi</var> degrees up and <var class="var">theta</var> degrees to the right,
as if it were in an orbit around its target.
Example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">sphere ()
camorbit (30, 20)
</pre></div></div>
<p>These rotations are centered around the camera target
(see <a class="pxref" href="#XREFcamtarget"><code class="code">camtarget</code></a>).
First the camera position is pitched up or down by rotating it <var class="var">phi</var>
degrees around an axis orthogonal to both the viewing direction
(specifically <code class="code">camtarget() - campos()</code>) and the camera “up vector”
(see <a class="pxref" href="#XREFcamup"><code class="code">camup</code></a>).
Example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camorbit (0, 20)
</pre></div></div>
<p>The second rotation depends on the coordinate system <var class="var">coorsys</var> and
direction <var class="var">dir</var> inputs.
The default for <var class="var">coorsys</var> is <code class="code">"data"</code>. In this case, the camera
is yawed left or right by rotating it <var class="var">theta</var> degrees around an axis
specified by <var class="var">dir</var>.
The default for <var class="var">dir</var> is <code class="code">"z"</code>, corresponding to the vector
<code class="code">[0, 0, 1]</code>.
Example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camorbit (30, 0)
</pre></div></div>
<p>When <var class="var">coorsys</var> is set to <code class="code">"camera"</code>, the camera is moved left or
right by rotating it around an axis parallel to the camera up vector
(see <a class="pxref" href="#XREFcamup"><code class="code">camup</code></a>).
The input <var class="var">dir</var> should not be specified in this case.
Example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camorbit (30, 0, "camera")
</pre></div></div>
<p>(Note: the rotation by <var class="var">phi</var> is unaffected by <code class="code">"camera"</code>.)
</p>
<p>The <code class="code">camorbit</code> command modifies two camera properties:
<a class="ref" href="#XREFcampos"><code class="code">campos</code></a> and <a class="ref" href="#XREFcamup"><code class="code">camup</code></a>.
</p>
<p>By default, this command affects the current axis; alternatively, an axis
can be specified by the optional argument <var class="var">hax</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFcamzoom">camzoom</a>, <a class="ref" href="#XREFcamroll">camroll</a>, <a class="ref" href="#XREFcamlookat">camlookat</a>.
</p></dd></dl>
<a class="anchor" id="XREFcamroll"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-camroll"><span><strong class="def-name">camroll</strong> <code class="def-code-arguments">(<var class="var">theta</var>)</code><a class="copiable-link" href="#index-camroll"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camroll-1"><span><strong class="def-name">camroll</strong> <code class="def-code-arguments">(<var class="var">hax</var>, <var class="var">theta</var>)</code><a class="copiable-link" href="#index-camroll-1"> ¶</a></span></dt>
<dd><p>Roll the camera.
</p>
<p>Roll the camera clockwise by <var class="var">theta</var> degrees.
For example, the following command will roll the camera by
30 degrees clockwise (to the right); this will cause the scene
to appear to roll by 30 degrees to the left:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">peaks ()
camroll (30)
</pre></div></div>
<p>Roll the camera back:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camroll (-30)
</pre></div></div>
<p>The following command restores the default camera roll:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camup ("auto")
</pre></div></div>
<p>By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument <var class="var">hax</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFcamzoom">camzoom</a>, <a class="ref" href="#XREFcamorbit">camorbit</a>, <a class="ref" href="#XREFcamlookat">camlookat</a>, <a class="ref" href="#XREFcamup">camup</a>.
</p></dd></dl>
<a class="anchor" id="XREFcamtarget"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-camtarget"><span><code class="def-type"><var class="var">t</var> =</code> <strong class="def-name">camtarget</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-camtarget"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camtarget-1"><span><strong class="def-name">camtarget</strong> <code class="def-code-arguments">([<var class="var">x</var> <var class="var">y</var> <var class="var">z</var>])</code><a class="copiable-link" href="#index-camtarget-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camtarget-2"><span><code class="def-type"><var class="var">mode</var> =</code> <strong class="def-name">camtarget</strong> <code class="def-code-arguments">("mode")</code><a class="copiable-link" href="#index-camtarget-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camtarget-3"><span><strong class="def-name">camtarget</strong> <code class="def-code-arguments">(<var class="var">mode</var>)</code><a class="copiable-link" href="#index-camtarget-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camtarget-4"><span><strong class="def-name">camtarget</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-camtarget-4"> ¶</a></span></dt>
<dd><p>Get or set where the camera is pointed.
</p>
<p>The camera target is a point in space where the camera is pointing.
Usually, it is determined automatically based on the scene:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">hf = figure();
sphere (36)
v = camtarget ()
⇒ v =
0 0 0
</pre></div></div>
<p>We can turn the camera to point at a new target:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camtarget ([1 1 1])
camtarget ()
⇒ 1 1 1
</pre></div></div>
<p>Having done so, the camera target <var class="var">mode</var> is manual:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camtarget ("mode")
⇒ manual
</pre></div></div>
<p>This means, for example, adding new objects to the scene will not retarget
the camera:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">hold on;
peaks ()
camtarget ()
⇒ 1 1 1
</pre></div></div>
<p>We can reset it to be automatic:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camtarget ("auto")
camtarget ()
⇒ 0 0 0.76426
close (hf)
</pre></div></div>
<p>By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument <var class="var">hax</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFcampos">campos</a>, <a class="ref" href="#XREFcamup">camup</a>, <a class="ref" href="#XREFcamva">camva</a>.
</p></dd></dl>
<a class="anchor" id="XREFcamup"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-camup"><span><code class="def-type"><var class="var">up</var> =</code> <strong class="def-name">camup</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-camup"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camup-1"><span><strong class="def-name">camup</strong> <code class="def-code-arguments">([<var class="var">x</var> <var class="var">y</var> <var class="var">z</var>])</code><a class="copiable-link" href="#index-camup-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camup-2"><span><code class="def-type"><var class="var">mode</var> =</code> <strong class="def-name">camup</strong> <code class="def-code-arguments">("mode")</code><a class="copiable-link" href="#index-camup-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camup-3"><span><strong class="def-name">camup</strong> <code class="def-code-arguments">(<var class="var">mode</var>)</code><a class="copiable-link" href="#index-camup-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camup-4"><span><strong class="def-name">camup</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-camup-4"> ¶</a></span></dt>
<dd><p>Get or set the camera up vector.
</p>
<p>By default, the camera is oriented so that “up” corresponds to the
positive z-axis:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">hf = figure ();
sphere (36)
v = camup ()
⇒ v =
0 0 1
</pre></div></div>
<p>Specifying a new “up vector” rolls the camera and sets the mode to manual:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camup ([1 1 0])
camup ()
⇒ 1 1 0
camup ("mode")
⇒ manual
</pre></div></div>
<p>Modifying the up vector does not modify the camera target
(see <a class="pxref" href="#XREFcamtarget"><code class="code">camtarget</code></a>). Thus, the camera up vector might
not be orthogonal to the direction of the camera’s view:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camup ([1 2 3])
dot (camup (), camtarget () - campos ())
⇒ 6...
</pre></div></div>
<p>A consequence is that “pulling back” on the up vector does not pitch the
camera view (as that would require changing the target). Setting the up
vector is thus typically used only to roll the camera. A more intuitive
command for this purpose is <a class="ref" href="#XREFcamroll"><code class="code">camroll</code></a>.
</p>
<p>Finally, we can reset the up vector to automatic mode:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camup ("auto")
camup ()
⇒ 0 0 1
close (hf)
</pre></div></div>
<p>By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument <var class="var">hax</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFcampos">campos</a>, <a class="ref" href="#XREFcamtarget">camtarget</a>, <a class="ref" href="#XREFcamva">camva</a>.
</p></dd></dl>
<a class="anchor" id="XREFcamva"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-camva"><span><code class="def-type"><var class="var">a</var> =</code> <strong class="def-name">camva</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-camva"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camva-1"><span><strong class="def-name">camva</strong> <code class="def-code-arguments">(<var class="var">a</var>)</code><a class="copiable-link" href="#index-camva-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camva-2"><span><code class="def-type"><var class="var">mode</var> =</code> <strong class="def-name">camva</strong> <code class="def-code-arguments">("mode")</code><a class="copiable-link" href="#index-camva-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camva-3"><span><strong class="def-name">camva</strong> <code class="def-code-arguments">(<var class="var">mode</var>)</code><a class="copiable-link" href="#index-camva-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camva-4"><span><strong class="def-name">camva</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-camva-4"> ¶</a></span></dt>
<dd><p>Get or set the camera viewing angle.
</p>
<p>The camera has a viewing angle which determines how much can be seen. By
default this is:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">hf = figure();
sphere (36)
a = camva ()
⇒ a = 10.340
</pre></div></div>
<p>To get a wider-angle view, we could double the viewing angle. This will
also set the mode to manual:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camva (2*a)
camva ("mode")
⇒ manual
</pre></div></div>
<p>We can set it back to automatic:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camva ("auto")
camva ("mode")
⇒ auto
camva ()
⇒ ans = 10.340
close (hf)
</pre></div></div>
<p>By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument <var class="var">hax</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFcampos">campos</a>, <a class="ref" href="#XREFcamtarget">camtarget</a>, <a class="ref" href="#XREFcamup">camup</a>.
</p></dd></dl>
<a class="anchor" id="XREFcamzoom"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-camzoom"><span><strong class="def-name">camzoom</strong> <code class="def-code-arguments">(<var class="var">zf</var>)</code><a class="copiable-link" href="#index-camzoom"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-camzoom-1"><span><strong class="def-name">camzoom</strong> <code class="def-code-arguments">(<var class="var">hax</var>, <var class="var">zf</var>)</code><a class="copiable-link" href="#index-camzoom-1"> ¶</a></span></dt>
<dd><p>Zoom the camera in or out.
</p>
<p>A value of <var class="var">zf</var> larger than 1 “zooms in” such that the scene appears
magnified:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">hf = figure ();
sphere (36)
camzoom (1.2)
</pre></div></div>
<p>A value smaller than 1 “zooms out” so the camera can see more of the
scene:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camzoom (0.5)
</pre></div></div>
<p>Technically speaking, zooming affects the “viewing angle”. The following
command resets to the default zoom:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">camva ("auto")
close (hf)
</pre></div></div>
<p>By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument <var class="var">hax</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFcamroll">camroll</a>, <a class="ref" href="#XREFcamorbit">camorbit</a>, <a class="ref" href="#XREFcamlookat">camlookat</a>, <a class="ref" href="#XREFcamva">camva</a>.
</p></dd></dl>
<a class="anchor" id="XREFslice"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-slice"><span><strong class="def-name">slice</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">v</var>, <var class="var">sx</var>, <var class="var">sy</var>, <var class="var">sz</var>)</code><a class="copiable-link" href="#index-slice"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-slice-1"><span><strong class="def-name">slice</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">v</var>, <var class="var">xi</var>, <var class="var">yi</var>, <var class="var">zi</var>)</code><a class="copiable-link" href="#index-slice-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-slice-2"><span><strong class="def-name">slice</strong> <code class="def-code-arguments">(<var class="var">v</var>, <var class="var">sx</var>, <var class="var">sy</var>, <var class="var">sz</var>)</code><a class="copiable-link" href="#index-slice-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-slice-3"><span><strong class="def-name">slice</strong> <code class="def-code-arguments">(<var class="var">v</var>, <var class="var">xi</var>, <var class="var">yi</var>, <var class="var">zi</var>)</code><a class="copiable-link" href="#index-slice-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-slice-4"><span><strong class="def-name">slice</strong> <code class="def-code-arguments">(…, <var class="var">method</var>)</code><a class="copiable-link" href="#index-slice-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-slice-5"><span><strong class="def-name">slice</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-slice-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-slice-6"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">slice</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-slice-6"> ¶</a></span></dt>
<dd><p>Plot slices of 3-D data/scalar fields.
</p>
<p>Each element of the 3-dimensional array <var class="var">v</var> represents a scalar value at
a location given by the parameters <var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var>. The
parameters <var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var> are either 3-dimensional arrays of
the same size as the array <var class="var">v</var> in the <code class="code">"meshgrid"</code> format or
vectors. The parameters <var class="var">xi</var>, etc. respect a similar format to
<var class="var">x</var>, etc., and they represent the points at which the array <var class="var">vi</var>
is interpolated using interp3. The vectors <var class="var">sx</var>, <var class="var">sy</var>, and
<var class="var">sz</var> contain points of orthogonal slices of the respective axes.
</p>
<p>If <var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var> are omitted, they are assumed to be
<code class="code">x = 1:size (<var class="var">v</var>, 2)</code>, <code class="code">y = 1:size (<var class="var">v</var>, 1)</code> and
<code class="code">z = 1:size (<var class="var">v</var>, 3)</code>.
</p>
<p><var class="var">method</var> is one of:
</p>
<dl class="table">
<dt><code class="code">"nearest"</code></dt>
<dd><p>Return the nearest neighbor.
</p>
</dd>
<dt><code class="code">"linear"</code></dt>
<dd><p>Linear interpolation from nearest neighbors.
</p>
</dd>
<dt><code class="code">"cubic"</code></dt>
<dd><p>Cubic interpolation from four nearest neighbors (not implemented yet).
</p>
</dd>
<dt><code class="code">"spline"</code></dt>
<dd><p>Cubic spline interpolation—smooth first and second derivatives
throughout the curve.
</p></dd>
</dl>
<p>The default method is <code class="code">"linear"</code>.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the created
surface object.
</p>
<p>Examples:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">[x, y, z] = meshgrid (linspace (-8, 8, 32));
v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
slice (x, y, z, v, [], 0, []);
[xi, yi] = meshgrid (linspace (-7, 7));
zi = xi + yi;
slice (x, y, z, v, xi, yi, zi);
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="Multi_002ddimensional-Interpolation.html#XREFinterp3">interp3</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFpcolor">pcolor</a>.
</p></dd></dl>
<a class="anchor" id="XREFribbon"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ribbon"><span><strong class="def-name">ribbon</strong> <code class="def-code-arguments">(<var class="var">y</var>)</code><a class="copiable-link" href="#index-ribbon"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ribbon-1"><span><strong class="def-name">ribbon</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>)</code><a class="copiable-link" href="#index-ribbon-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ribbon-2"><span><strong class="def-name">ribbon</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">width</var>)</code><a class="copiable-link" href="#index-ribbon-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ribbon-3"><span><strong class="def-name">ribbon</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-ribbon-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ribbon-4"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">ribbon</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-ribbon-4"> ¶</a></span></dt>
<dd><p>Draw a ribbon plot for the columns of <var class="var">y</var> vs. <var class="var">x</var>.
</p>
<p>If <var class="var">x</var> is omitted, a vector containing the row numbers is assumed
(<code class="code">1:rows (Y)</code>). Alternatively, <var class="var">x</var> can also be a vector with
same number of elements as rows of <var class="var">y</var> in which case the same
<var class="var">x</var> is used for each column of <var class="var">y</var>.
</p>
<p>The optional parameter <var class="var">width</var> specifies the width of a single ribbon
(default is 0.75).
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a vector of graphics handles to
the surface objects representing each ribbon.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="#XREFwaterfall">waterfall</a>.
</p></dd></dl>
<a class="anchor" id="XREFshading"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-shading"><span><strong class="def-name">shading</strong> <code class="def-code-arguments">(<var class="var">type</var>)</code><a class="copiable-link" href="#index-shading"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-shading-1"><span><strong class="def-name">shading</strong> <code class="def-code-arguments">(<var class="var">hax</var>, <var class="var">type</var>)</code><a class="copiable-link" href="#index-shading-1"> ¶</a></span></dt>
<dd><p>Set the shading of patch or surface graphic objects.
</p>
<p>Valid arguments for <var class="var">type</var> are
</p>
<dl class="table">
<dt><code class="code">"flat"</code></dt>
<dd><p>Single colored patches with invisible edges.
</p>
</dd>
<dt><code class="code">"faceted"</code></dt>
<dd><p>Single colored patches with black edges.
</p>
</dd>
<dt><code class="code">"interp"</code></dt>
<dd><p>Colors between patch vertices are interpolated and the patch edges are
invisible.
</p></dd>
</dl>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Two_002dDimensional-Plots.html#XREFfill">fill</a>, <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFpatch">patch</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFpcolor">pcolor</a>, <a class="ref" href="#XREFsurf">surf</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="#XREFhidden">hidden</a>, <a class="ref" href="#XREFlighting">lighting</a>.
</p></dd></dl>
<a class="anchor" id="XREFscatter3"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-scatter3"><span><strong class="def-name">scatter3</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-scatter3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-scatter3-1"><span><strong class="def-name">scatter3</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">s</var>)</code><a class="copiable-link" href="#index-scatter3-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-scatter3-2"><span><strong class="def-name">scatter3</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>, <var class="var">s</var>, <var class="var">c</var>)</code><a class="copiable-link" href="#index-scatter3-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-scatter3-3"><span><strong class="def-name">scatter3</strong> <code class="def-code-arguments">(…, <var class="var">style</var>)</code><a class="copiable-link" href="#index-scatter3-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-scatter3-4"><span><strong class="def-name">scatter3</strong> <code class="def-code-arguments">(…, "filled")</code><a class="copiable-link" href="#index-scatter3-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-scatter3-5"><span><strong class="def-name">scatter3</strong> <code class="def-code-arguments">(…, <var class="var">prop</var>, <var class="var">val</var>)</code><a class="copiable-link" href="#index-scatter3-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-scatter3-6"><span><strong class="def-name">scatter3</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-scatter3-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-scatter3-7"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">scatter3</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-scatter3-7"> ¶</a></span></dt>
<dd><p>Draw a 3-D scatter plot.
</p>
<p>A marker is plotted at each point defined by the coordinates in the vectors
<var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var>.
</p>
<p>The size of the markers is determined by <var class="var">s</var>, which can be a scalar
or a vector of the same length as <var class="var">x</var>, <var class="var">y</var>, and <var class="var">z</var>. If <var class="var">s</var>
is not given, or is an empty matrix, then a default value of 8 points is
used.
</p>
<p>The color of the markers is determined by <var class="var">c</var>, which can be a string
defining a fixed color; a 3-element vector giving the red, green, and blue
components of the color; a vector of the same length as <var class="var">x</var> that gives
a scaled index into the current colormap; or an Nx3 matrix
defining the RGB color of each marker individually.
</p>
<p>The marker to use can be changed with the <var class="var">style</var> argument, that is a
string defining a marker in the same manner as the <code class="code">plot</code> command.
If no marker is specified it defaults to <code class="code">"o"</code> or circles.
If the argument <code class="code">"filled"</code> is given then the markers are filled.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the scatter
object representing the points.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">[x, y, z] = peaks (20);
scatter3 (x(:), y(:), z(:), [], z(:));
</pre></div></div>
<p>Programming Note: The full list of properties is documented at
<a class="ref" href="Scatter-Properties.html">Scatter Properties</a>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Two_002dDimensional-Plots.html#XREFscatter">scatter</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFpatch">patch</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFplot">plot</a>.
</p></dd></dl>
<a class="anchor" id="XREFwaterfall"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-waterfall"><span><strong class="def-name">waterfall</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-waterfall"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-waterfall-1"><span><strong class="def-name">waterfall</strong> <code class="def-code-arguments">(<var class="var">z</var>)</code><a class="copiable-link" href="#index-waterfall-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-waterfall-2"><span><strong class="def-name">waterfall</strong> <code class="def-code-arguments">(…, <var class="var">c</var>)</code><a class="copiable-link" href="#index-waterfall-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-waterfall-3"><span><strong class="def-name">waterfall</strong> <code class="def-code-arguments">(…, <var class="var">prop</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-waterfall-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-waterfall-4"><span><strong class="def-name">waterfall</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-waterfall-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-waterfall-5"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">waterfall</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-waterfall-5"> ¶</a></span></dt>
<dd><p>Plot a 3-D waterfall plot.
</p>
<p>A waterfall plot is similar to a <code class="code">meshz</code> plot except only
mesh lines for the rows of <var class="var">z</var> (x-values) are shown.
</p>
<p>The wireframe mesh is plotted using rectangles. The vertices of the
rectangles [<var class="var">x</var>, <var class="var">y</var>] are typically the output of <code class="code">meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var class="var">z</var> determines the
height above the plane of each vertex. If only a single <var class="var">z</var> matrix is
given, then it is plotted over the meshgrid
<code class="code"><var class="var">x</var> = 1:columns (<var class="var">z</var>), <var class="var">y</var> = 1:rows (<var class="var">z</var>)</code>.
Thus, columns of <var class="var">z</var> correspond to different <var class="var">x</var> values and rows
of <var class="var">z</var> correspond to different <var class="var">y</var> values.
</p>
<p>The color of the mesh is computed by linearly scaling the <var class="var">z</var> values
to fit the range of the current colormap. Use <code class="code">clim</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally the color of the mesh can be specified independently of <var class="var">z</var>
by supplying a color matrix, <var class="var">c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object. The full list of properties is documented at
<a class="ref" href="Surface-Properties.html">Surface Properties</a>.
</p>
<p>If the first argument <var class="var">hax</var> is an axes handle, then plot into this axes,
rather than the current axes returned by <code class="code">gca</code>.
</p>
<p>The optional return value <var class="var">h</var> is a graphics handle to the created
surface object.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFmeshz">meshz</a>, <a class="ref" href="#XREFmesh">mesh</a>, <a class="ref" href="#XREFmeshc">meshc</a>, <a class="ref" href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a class="ref" href="#XREFsurf">surf</a>, <a class="ref" href="Creating-Graphics-Objects.html#XREFsurface">surface</a>, <a class="ref" href="#XREFribbon">ribbon</a>, <a class="ref" href="#XREFmeshgrid">meshgrid</a>, <a class="ref" href="#XREFhidden">hidden</a>, <a class="ref" href="#XREFshading">shading</a>, <a class="ref" href="Representing-Images.html#XREFcolormap">colormap</a>, <a class="ref" href="Axis-Configuration.html#XREFclim">clim</a>.
</p></dd></dl>
<ul class="mini-toc">
<li><a href="Aspect-Ratio.html" accesskey="1">Aspect Ratio</a></li>
<li><a href="Three_002ddimensional-Function-Plotting.html" accesskey="2">Three-dimensional Function Plotting</a></li>
<li><a href="Three_002ddimensional-Geometric-Shapes.html" accesskey="3">Three-dimensional Geometric Shapes</a></li>
</ul>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Plot-Annotations.html">Plot Annotations</a>, Previous: <a href="Two_002dDimensional-Plots.html">Two-Dimensional Plots</a>, Up: <a href="High_002dLevel-Plotting.html">High-Level Plotting</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|