1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Voronoi Diagrams (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Voronoi Diagrams (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Voronoi Diagrams (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Geometry.html" rel="up" title="Geometry">
<link href="Convex-Hull.html" rel="next" title="Convex Hull">
<link href="Delaunay-Triangulation.html" rel="prev" title="Delaunay Triangulation">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.center {text-align:center}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
ul.mark-bullet {list-style-type: disc}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="section-level-extent" id="Voronoi-Diagrams">
<div class="nav-panel">
<p>
Next: <a href="Convex-Hull.html" accesskey="n" rel="next">Convex Hull</a>, Previous: <a href="Delaunay-Triangulation.html" accesskey="p" rel="prev">Delaunay Triangulation</a>, Up: <a href="Geometry.html" accesskey="u" rel="up">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Voronoi-Diagrams-1"><span>30.2 Voronoi Diagrams<a class="copiable-link" href="#Voronoi-Diagrams-1"> ¶</a></span></h3>
<p>A Voronoi diagram or Voronoi tessellation of a set of points <var class="var">s</var> in
an N-dimensional space, is the tessellation of the N-dimensional space
such that all points in <code class="code"><var class="var">v</var>(<var class="var">p</var>)</code>, a partitions of the
tessellation where <var class="var">p</var> is a member of <var class="var">s</var>, are closer to <var class="var">p</var>
than any other point in <var class="var">s</var>. The Voronoi diagram is related to the
Delaunay triangulation of a set of points, in that the vertices of the
Voronoi tessellation are the centers of the circum-circles of the
simplices of the Delaunay tessellation.
</p>
<a class="anchor" id="XREFvoronoi"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-voronoi"><span><strong class="def-name">voronoi</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>)</code><a class="copiable-link" href="#index-voronoi"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-voronoi-1"><span><strong class="def-name">voronoi</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">options</var>)</code><a class="copiable-link" href="#index-voronoi-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-voronoi-2"><span><strong class="def-name">voronoi</strong> <code class="def-code-arguments">(…, "linespec")</code><a class="copiable-link" href="#index-voronoi-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-voronoi-3"><span><strong class="def-name">voronoi</strong> <code class="def-code-arguments">(<var class="var">hax</var>, …)</code><a class="copiable-link" href="#index-voronoi-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-voronoi-4"><span><code class="def-type"><var class="var">h</var> =</code> <strong class="def-name">voronoi</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-voronoi-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-voronoi-5"><span><code class="def-type">[<var class="var">vx</var>, <var class="var">vy</var>] =</code> <strong class="def-name">voronoi</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-voronoi-5"> ¶</a></span></dt>
<dd><p>Plot the Voronoi diagram of points <code class="code">(<var class="var">x</var>, <var class="var">y</var>)</code>.
</p>
<p>The Voronoi facets with points at infinity are not drawn.
</p>
<p>The <var class="var">options</var> argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
<a class="url" href="http://www.qhull.org/html/qh-quick.htm#options">http://www.qhull.org/html/qh-quick.htm#options</a>.
</p>
<p>If <code class="code">"linespec"</code> is given it is used to set the color and line style of
the plot.
</p>
<p>If an axes graphics handle <var class="var">hax</var> is supplied then the Voronoi diagram is
drawn on the specified axes rather than in a new figure.
</p>
<p>If a single output argument is requested then the Voronoi diagram will be
plotted and a graphics handle <var class="var">h</var> to the plot is returned.
</p>
<p>[<var class="var">vx</var>, <var class="var">vy</var>] = voronoi (…) returns the Voronoi vertices
instead of plotting the diagram.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">x = rand (10, 1);
y = rand (size (x));
h = convhull (x, y);
[vx, vy] = voronoi (x, y);
plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g");
legend ("", "points", "hull");
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvoronoin">voronoin</a>, <a class="ref" href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>, <a class="ref" href="Convex-Hull.html#XREFconvhull">convhull</a>.
</p></dd></dl>
<a class="anchor" id="XREFvoronoin"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-voronoin"><span><code class="def-type">[<var class="var">C</var>, <var class="var">F</var>] =</code> <strong class="def-name">voronoin</strong> <code class="def-code-arguments">(<var class="var">pts</var>)</code><a class="copiable-link" href="#index-voronoin"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-voronoin-1"><span><code class="def-type">[<var class="var">C</var>, <var class="var">F</var>] =</code> <strong class="def-name">voronoin</strong> <code class="def-code-arguments">(<var class="var">pts</var>, <var class="var">options</var>)</code><a class="copiable-link" href="#index-voronoin-1"> ¶</a></span></dt>
<dd><p>Compute N-dimensional Voronoi facets.
</p>
<p>The input matrix <var class="var">pts</var> of size [n, dim] contains n points in a space of
dimension dim.
</p>
<p><var class="var">C</var> contains the points of the Voronoi facets. The list <var class="var">F</var>
contains, for each facet, the indices of the Voronoi points.
</p>
<p>An optional second argument, which must be a string or cell array of
strings, contains options passed to the underlying qhull command. See the
documentation for the Qhull library for details
<a class="url" href="http://www.qhull.org/html/qh-quick.htm#options">http://www.qhull.org/html/qh-quick.htm#options</a>.
</p>
<p>The default options depend on the dimension of the input:
</p>
<ul class="itemize mark-bullet">
<li>2-D and 3-D: <var class="var">options</var> = <code class="code">{"Qbb"}</code>
</li><li>4-D and higher: <var class="var">options</var> = <code class="code">{"Qbb", "Qx"}</code>
</li></ul>
<p>If <var class="var">options</var> is not present or <code class="code">[]</code> then the default arguments are
used. Otherwise, <var class="var">options</var> replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in <var class="var">options</var>. Use a null string to pass no arguments.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFvoronoi">voronoi</a>, <a class="ref" href="Convex-Hull.html#XREFconvhulln">convhulln</a>, <a class="ref" href="Delaunay-Triangulation.html#XREFdelaunayn">delaunayn</a>.
</p></dd></dl>
<p>An example of the use of <code class="code">voronoi</code> is
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">rand ("state",9);
x = rand (10,1);
y = rand (10,1);
tri = delaunay (x, y);
[vx, vy] = voronoi (x, y, tri);
triplot (tri, x, y, "b");
hold on;
plot (vx, vy, "r");
</pre></div></div>
<p>The result of which can be seen in <a class="ref" href="#fig_003avoronoi">Figure 30.3</a>. Note that the
circum-circle of one of the triangles has been added to this figure, to
make the relationship between the Delaunay tessellation and the Voronoi
diagram clearer.
</p>
<div class="float" id="fig_003avoronoi">
<div class="center"><img class="image" src="voronoi.png" alt="voronoi">
</div><div class="caption"><p><strong class="strong">Figure 30.3: </strong>Delaunay triangulation (blue lines) and Voronoi diagram (red lines)
of a random set of points</p></div></div>
<p>Additional information about the size of the facets of a Voronoi
diagram, and which points of a set of points is in a polygon can be had
with the <code class="code">polyarea</code> and <code class="code">inpolygon</code> functions respectively.
</p>
<a class="anchor" id="XREFpolyarea"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-polyarea"><span><code class="def-type"><var class="var">a</var> =</code> <strong class="def-name">polyarea</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>)</code><a class="copiable-link" href="#index-polyarea"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-polyarea-1"><span><code class="def-type"><var class="var">a</var> =</code> <strong class="def-name">polyarea</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-polyarea-1"> ¶</a></span></dt>
<dd>
<p>Determine area of a polygon by triangle method.
</p>
<p>The variables <var class="var">x</var> and <var class="var">y</var> define the vertex pairs, and must
therefore have the same shape. They can be either vectors or arrays. If
they are arrays then the columns of <var class="var">x</var> and <var class="var">y</var> are treated
separately and an area returned for each.
</p>
<p>If the optional <var class="var">dim</var> argument is given, then <code class="code">polyarea</code> works
along this dimension of the arrays <var class="var">x</var> and <var class="var">y</var>.
</p>
</dd></dl>
<p>An example of the use of <code class="code">polyarea</code> might be
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">rand ("state", 2);
x = rand (10, 1);
y = rand (10, 1);
[c, f] = voronoin ([x, y]);
af = zeros (size (f));
for i = 1 : length (f)
af(i) = polyarea (c (f {i, :}, 1), c (f {i, :}, 2));
endfor
</pre></div></div>
<p>Facets of the Voronoi diagram with a vertex at infinity have infinity
area. A simplified version of <code class="code">polyarea</code> for rectangles is
available with <code class="code">rectint</code>
</p>
<a class="anchor" id="XREFrectint"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-rectint"><span><code class="def-type"><var class="var">area</var> =</code> <strong class="def-name">rectint</strong> <code class="def-code-arguments">(<var class="var">a</var>, <var class="var">b</var>)</code><a class="copiable-link" href="#index-rectint"> ¶</a></span></dt>
<dd><p>Compute area or volume of intersection of rectangles or N-D boxes.
</p>
<p>Compute the area of intersection of rectangles in <var class="var">a</var> and rectangles in
<var class="var">b</var>. N-dimensional boxes are supported in which case the volume, or
hypervolume is computed according to the number of dimensions.
</p>
<p>2-dimensional rectangles are defined as <code class="code">[xpos ypos width height]</code>
where xpos and ypos are the position of the bottom left corner. Higher
dimensions are supported where the coordinates for the minimum value of each
dimension follow the length of the box in that dimension, e.g.,
<code class="code">[xpos ypos zpos kpos … width height depth k_length …]</code>.
</p>
<p>Each row of <var class="var">a</var> and <var class="var">b</var> define a rectangle, and if both define
multiple rectangles, then the output, <var class="var">area</var>, is a matrix where the i-th
row corresponds to the i-th row of a and the j-th column corresponds to the
j-th row of b.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFpolyarea">polyarea</a>.
</p></dd></dl>
<a class="anchor" id="XREFinpolygon"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-inpolygon"><span><code class="def-type"><var class="var">in</var> =</code> <strong class="def-name">inpolygon</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">xv</var>, <var class="var">yv</var>)</code><a class="copiable-link" href="#index-inpolygon"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-inpolygon-1"><span><code class="def-type">[<var class="var">in</var>, <var class="var">on</var>] =</code> <strong class="def-name">inpolygon</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">xv</var>, <var class="var">yv</var>)</code><a class="copiable-link" href="#index-inpolygon-1"> ¶</a></span></dt>
<dd>
<p>For a polygon defined by vertex points <code class="code">(<var class="var">xv</var>, <var class="var">yv</var>)</code>, return
true if the points <code class="code">(<var class="var">x</var>, <var class="var">y</var>)</code> are inside (or on the boundary)
of the polygon; Otherwise, return false.
</p>
<p>The input variables <var class="var">x</var> and <var class="var">y</var>, must have the same dimension.
</p>
<p>The optional output <var class="var">on</var> returns true if the points are exactly on the
polygon edge, and false otherwise.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>.
</p></dd></dl>
<p>An example of the use of <code class="code">inpolygon</code> might be
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">randn ("state", 2);
x = randn (100, 1);
y = randn (100, 1);
vx = cos (pi * [-1 : 0.1: 1]);
vy = sin (pi * [-1 : 0.1 : 1]);
in = inpolygon (x, y, vx, vy);
plot (vx, vy, x(in), y(in), "r+", x(!in), y(!in), "bo");
axis ([-2, 2, -2, 2]);
</pre></div></div>
<p>The result of which can be seen in <a class="ref" href="#fig_003ainpolygon">Figure 30.4</a>.
</p>
<div class="float" id="fig_003ainpolygon">
<div class="center"><img class="image" src="inpolygon.png" alt="inpolygon">
</div><div class="caption"><p><strong class="strong">Figure 30.4: </strong>Demonstration of the <code class="code">inpolygon</code> function to determine the
points inside a polygon</p></div></div>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Convex-Hull.html">Convex Hull</a>, Previous: <a href="Delaunay-Triangulation.html">Delaunay Triangulation</a>, Up: <a href="Geometry.html">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|