File: optim.txi

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (146 lines) | stat: -rw-r--r-- 3,143 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <https://www.gnu.org/licenses/>.

@node Optimization
@chapter Optimization

Octave comes with support for solving various kinds of optimization
problems.  Specifically Octave can solve problems in Linear Programming,
Quadratic Programming, Nonlinear Programming, and Linear Least Squares
Minimization.

@menu
* Linear Programming::
* Quadratic Programming::
* Nonlinear Programming::
* Linear Least Squares::
@end menu

@c @cindex linear programming
@cindex quadratic programming
@cindex nonlinear programming
@cindex optimization
@cindex LP
@cindex QP
@cindex NLP

@node Linear Programming
@section Linear Programming

Octave can solve Linear Programming problems using the @code{glpk}
function.  That is, Octave can solve

@tex
$$
  \min_x c^T x
$$
@end tex
@ifnottex

@example
min C'*x
@end example

@end ifnottex
subject to the linear constraints
@tex
$Ax = b$ where $x \geq 0$.
@end tex
@ifnottex
@math{A*x = b} where @math{x @geq{} 0}.
@end ifnottex

@noindent
The @code{glpk} function also supports variations of this problem.

@DOCSTRING(glpk)

@node Quadratic Programming
@section Quadratic Programming

Octave can also solve Quadratic Programming problems, this is
@tex
$$
 \min_x {1 \over 2} x^T H x + x^T q
$$
@end tex
@ifnottex

@example
min 0.5 x'*H*x + x'*q
@end example

@end ifnottex
subject to
@tex
$$
 A x = b \qquad lb \leq x \leq ub \qquad A_{lb} \leq A_{in} x \leq A_{ub}
$$
@end tex
@ifnottex

@example
@group
     A*x = b
     lb <= x <= ub
     A_lb <= A_in*x <= A_ub
@end group
@end example

@end ifnottex

@DOCSTRING(qp)

@DOCSTRING(pqpnonneg)

@node Nonlinear Programming
@section Nonlinear Programming

Octave can also perform general nonlinear minimization using a
successive quadratic programming solver.

@DOCSTRING(sqp)

@node Linear Least Squares
@section Linear Least Squares

Octave also supports linear least squares minimization.  That is,
Octave can find the parameter @math{b} such that the model
@tex
$y = xb$
@end tex
@ifnottex
@math{y = x*b}
@end ifnottex
fits data @math{(x,y)} as well as possible, assuming zero-mean
Gaussian noise.  If the noise is assumed to be isotropic the problem
can be solved using the @samp{\} or @samp{/} operators, or the @code{ols}
function.  In the general case where the noise is assumed to be anisotropic
the @code{gls} is needed.

@DOCSTRING(ols)

@DOCSTRING(gls)

@DOCSTRING(lsqnonneg)

@DOCSTRING(lscov)

@DOCSTRING(optimset)

@DOCSTRING(optimget)