File: poly.txi

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (398 lines) | stat: -rw-r--r-- 11,340 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <https://www.gnu.org/licenses/>.

@node Polynomial Manipulations
@chapter Polynomial Manipulations

In Octave, a polynomial is represented by its coefficients (arranged
in descending order).  For example, a vector @var{c} of length
@math{N+1} corresponds to the following polynomial of order
@tex
 $N$
$$
 p (x) = c_1 x^N + \ldots + c_N x + c_{N+1}.
$$
@end tex
@ifnottex
 @var{N}

@example
p(x) = @var{c}(1) x^@var{N} + @dots{} + @var{c}(@var{N}) x + @var{c}(@var{N}+1).
@end example

@end ifnottex

@menu
* Evaluating Polynomials::
* Finding Roots::
* Products of Polynomials::
* Derivatives / Integrals / Transforms::
* Polynomial Interpolation::
* Miscellaneous Functions::
@end menu

@node Evaluating Polynomials
@section Evaluating Polynomials

The value of a polynomial represented by the vector @var{c} can be evaluated
at the point @var{x} very easily, as the following example shows:

@example
@group
N = length (c) - 1;
val = dot (x.^(N:-1:0), c);
@end group
@end example

@noindent
While the above example shows how easy it is to compute the value of a
polynomial, it isn't the most stable algorithm.  With larger polynomials
you should use more elegant algorithms, such as @nospell{Horner's} Method,
which is exactly what the Octave function @code{polyval} does.

In the case where @var{x} is a square matrix, the polynomial given by
@var{c} is still well-defined.  As when @var{x} is a scalar the obvious
implementation is easily expressed in Octave, but also in this case
more elegant algorithms perform better.  The @code{polyvalm} function
provides such an algorithm.

@DOCSTRING(polyval)

@DOCSTRING(polyvalm)

@node Finding Roots
@section Finding Roots

Octave can find the roots of a given polynomial.  This is done by computing
the companion matrix of the polynomial (see the @code{compan} function
for a definition), and then finding its eigenvalues.

@DOCSTRING(roots)

@DOCSTRING(polyeig)

@DOCSTRING(compan)

@DOCSTRING(mpoles)

@node Products of Polynomials
@section Products of Polynomials

@DOCSTRING(conv)

@DOCSTRING(convn)

@DOCSTRING(deconv)

@DOCSTRING(conv2)

@DOCSTRING(polygcd)

@DOCSTRING(residue)

@node Derivatives / Integrals / Transforms
@section Derivatives / Integrals / Transforms

Octave comes with functions for computing the derivative and the integral
of a polynomial.  The functions @code{polyder} and @code{polyint}
both return new polynomials describing the result.  As an example we'll
compute the definite integral of @math{p(x) = x^2 + 1} from 0 to 3.

@example
@group
c = [1, 0, 1];
integral = polyint (c);
area = polyval (integral, 3) - polyval (integral, 0)
@result{} 12
@end group
@end example

@DOCSTRING(polyder)

@DOCSTRING(polyint)

@DOCSTRING(polyaffine)

@node Polynomial Interpolation
@section Polynomial Interpolation

Octave comes with good support for various kinds of interpolation,
most of which are described in @ref{Interpolation}.  One simple alternative
to the functions described in the aforementioned chapter, is to fit
a single polynomial, or a piecewise polynomial (spline) to some given
data points.  To avoid a highly fluctuating polynomial, one most often
wants to fit a low-order polynomial to data.  This usually means that it
is necessary to fit the polynomial in a least-squares sense, which just
is what the @code{polyfit} function does.

@DOCSTRING(polyfit)

In situations where a single polynomial isn't good enough, a solution
is to use several polynomials pieced together.  The function
@code{splinefit} fits a piecewise polynomial (spline) to a set of
data.

@DOCSTRING(splinefit)

The number of @var{breaks} (or knots) used to construct the piecewise
polynomial is a significant factor in suppressing the noise present in
the input data, @var{x} and @var{y}.  This is demonstrated by the example
below.

@example
@group
x = 2 * pi * rand (1, 200);
y = sin (x) + sin (2 * x) + 0.2 * randn (size (x));
## Uniform breaks
breaks = linspace (0, 2 * pi, 41); % 41 breaks, 40 pieces
pp1 = splinefit (x, y, breaks);
## Breaks interpolated from data
pp2 = splinefit (x, y, 10);  % 11 breaks, 10 pieces
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
plot (x, y, ".", xx, [y1; y2])
axis tight
ylim auto
legend (@{"data", "41 breaks, 40 pieces", "11 breaks, 10 pieces"@})
@end group
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit1}.

@float Figure,fig:splinefit1
@center @image{splinefit1,4in}
@caption{Comparison of a fitting a piecewise polynomial with 41 breaks to one
with 11 breaks.  The fit with the large number of breaks exhibits a fast ripple
that is not present in the underlying function.}
@end float
@end ifnotinfo

The piecewise polynomial fit, provided by @code{splinefit}, has
continuous derivatives up to the @var{order}-1.  For example, a cubic fit
has continuous first and second derivatives.  This is demonstrated by
the code

@example
## Data (200 points)
x = 2 * pi * rand (1, 200);
y = sin (x) + sin (2 * x) + 0.1 * randn (size (x));
## Piecewise constant
pp1 = splinefit (x, y, 8, "order", 0);
## Piecewise linear
pp2 = splinefit (x, y, 8, "order", 1);
## Piecewise quadratic
pp3 = splinefit (x, y, 8, "order", 2);
## Piecewise cubic
pp4 = splinefit (x, y, 8, "order", 3);
## Piecewise quartic
pp5 = splinefit (x, y, 8, "order", 4);
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
y3 = ppval (pp3, xx);
y4 = ppval (pp4, xx);
y5 = ppval (pp5, xx);
plot (x, y, ".", xx, [y1; y2; y3; y4; y5])
axis tight
ylim auto
legend (@{"data", "order 0", "order 1", "order 2", "order 3", "order 4"@})
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit2}.

@float Figure,fig:splinefit2
@center @image{splinefit2,4in}
@caption{Comparison of a piecewise constant, linear, quadratic, cubic, and
quartic polynomials with 8 breaks to noisy data.  The higher order solutions
more accurately represent the underlying function, but come with the
expense of computational complexity.}
@end float
@end ifnotinfo

When the underlying function to provide a fit to is periodic, @code{splinefit}
is able to apply the boundary conditions needed to manifest a periodic fit.
This is demonstrated by the code below.

@example
@group
## Data (100 points)
x = 2 * pi * [0, (rand (1, 98)), 1];
y = sin (x) - cos (2 * x) + 0.2 * randn (size (x));
## No constraints
pp1 = splinefit (x, y, 10, "order", 5);
## Periodic boundaries
pp2 = splinefit (x, y, 10, "order", 5, "periodic", true);
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
plot (x, y, ".", xx, [y1; y2])
axis tight
ylim auto
legend (@{"data", "no constraints", "periodic"@})
@end group
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit3}.

@float Figure,fig:splinefit3
@center @image{splinefit3,4in}
@caption{Comparison of piecewise polynomial fits to a noisy periodic
function with, and without, periodic boundary conditions.}
@end float
@end ifnotinfo

More complex constraints may be added as well.  For example, the code below
illustrates a periodic fit with values that have been clamped at the endpoints,
and a second periodic fit which is hinged at the endpoints.

@example
## Data (200 points)
x = 2 * pi * rand (1, 200);
y = sin (2 * x) + 0.1 * randn (size (x));
## Breaks
breaks = linspace (0, 2 * pi, 10);
## Clamped endpoints, y = y' = 0
xc = [0, 0, 2*pi, 2*pi];
cc = [(eye (2)), (eye (2))];
con = struct ("xc", xc, "cc", cc);
pp1 = splinefit (x, y, breaks, "constraints", con);
## Hinged periodic endpoints, y = 0
con = struct ("xc", 0);
pp2 = splinefit (x, y, breaks, "constraints", con, "periodic", true);
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
plot (x, y, ".", xx, [y1; y2])
axis tight
ylim auto
legend (@{"data", "clamped", "hinged periodic"@})
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit4}.

@float Figure,fig:splinefit4
@center @image{splinefit4,4in}
@caption{Comparison of two periodic piecewise cubic fits to a noisy periodic
signal.  One fit has its endpoints clamped and the second has its endpoints
hinged.}
@end float
@end ifnotinfo

The @code{splinefit} function also provides the convenience of a @var{robust}
fitting, where the effect of outlying data is reduced.  In the example below,
three different fits are provided.  Two with differing levels of outlier
suppression and a third illustrating the non-robust solution.

@example
## Data
x = linspace (0, 2*pi, 200);
y = sin (x) + sin (2 * x) + 0.05 * randn (size (x));
## Add outliers
x = [x, linspace(0,2*pi,60)];
y = [y, -ones(1,60)];
## Fit splines with hinged conditions
con = struct ("xc", [0, 2*pi]);
## Robust fitting, beta = 0.25
pp1 = splinefit (x, y, 8, "constraints", con, "beta", 0.25);
## Robust fitting, beta = 0.75
pp2 = splinefit (x, y, 8, "constraints", con, "beta", 0.75);
## No robust fitting
pp3 = splinefit (x, y, 8, "constraints", con);
## Plot
xx = linspace (0, 2*pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
y3 = ppval (pp3, xx);
plot (x, y, ".", xx, [y1; y2; y3])
legend (@{"data with outliers","robust, beta = 0.25", ...
         "robust, beta = 0.75", "no robust fitting"@})
axis tight
ylim auto
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit6}.

@float Figure,fig:splinefit6
@center @image{splinefit6,4in}
@caption{Comparison of two different levels of robust fitting (@var{beta} = 0.25 and 0.75) to noisy data combined with outlying data.  A conventional fit, without
robust fitting (@var{beta} = 0) is also included.}
@end float
@end ifnotinfo

A very specific form of polynomial interpretation is the Pad@'e approximant.
For control systems, a continuous-time delay can be modeled very simply with
the approximant.

@DOCSTRING(padecoef)

The function, @code{ppval}, evaluates the piecewise polynomials, created
by @code{mkpp} or other means, and @code{unmkpp} returns detailed
information about the piecewise polynomial.

The following example shows how to combine two linear functions and a
quadratic into one function.  Each of these functions is expressed
on adjoined intervals.

@example
@group
x = [-2, -1, 1, 2];
p = [ 0,  1, 0;
      1, -2, 1;
      0, -1, 1 ];
pp = mkpp (x, p);
xi = linspace (-2, 2, 50);
yi = ppval (pp, xi);
plot (xi, yi);
@end group
@end example

@DOCSTRING(mkpp)

@DOCSTRING(unmkpp)

@DOCSTRING(ppval)

@DOCSTRING(ppder)

@DOCSTRING(ppint)

@DOCSTRING(ppjumps)

@node Miscellaneous Functions
@section Miscellaneous Functions

@DOCSTRING(poly)

@DOCSTRING(polyout)

@DOCSTRING(polyreduce)