File: quad.texi

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (1489 lines) | stat: -rw-r--r-- 58,706 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <https://www.gnu.org/licenses/>.

@node Numerical Integration
@chapter Numerical Integration

Octave comes with several built-in functions for computing the integral
of a function numerically (termed quadrature).  These functions all solve
1-dimensional integration problems.

@menu
* Functions of One Variable::
* Orthogonal Collocation::
* Functions of Multiple Variables::
@end menu

@node Functions of One Variable
@section Functions of One Variable

Octave supports five different adaptive quadrature algorithms for computing
the integral
@tex
$$
 \int_a^b f(x) d x
$$
@end tex
of a function @math{f} over the interval from @math{a} to @math{b}.  These are

@table @code
@item quad
Numerical integration based on Gaussian quadrature.

@item quadv
Numerical integration using an adaptive vectorized Simpson's rule.

@item quadl
Numerical integration using an adaptive @nospell{Lobatto} rule.

@item quadgk
Numerical integration using an adaptive @nospell{Gauss-Konrod} rule.

@item quadcc
Numerical integration using adaptive @nospell{Clenshaw-Curtis} rules.

In addition, the following functions are also provided:

@item integral
A compatibility wrapper function that will choose between @code{quadv} and
@code{quadgk} depending on the integrand and options chosen.

@item trapz, cumtrapz
Numerical integration of data using the trapezoidal method.
@end table

@noindent
The best quadrature algorithm to use depends on the integrand.  If you have
empirical data, rather than a function, the choice is @code{trapz} or
@code{cumtrapz}.  If you are uncertain about the characteristics of the
integrand, @code{quadcc} will be the most robust as it can handle
discontinuities, singularities, oscillatory functions, and infinite intervals.
When the integrand is smooth @code{quadgk} may be the fastest of the
algorithms.

@multitable @columnfractions 0.05 0.15 .80
@headitem @tab Function @tab Characteristics
@item @tab quad   @tab Low accuracy with nonsmooth integrands
@item @tab quadv  @tab Medium accuracy with smooth integrands
@item @tab quadl  @tab Medium accuracy with smooth integrands.  Slower than quadgk.
@item @tab quadgk @tab Medium accuracy (1e-6 -- 1e-9) with smooth integrands.
@item @tab        @tab Handles oscillatory functions and infinite bounds
@item @tab quadcc @tab Low to High accuracy with nonsmooth/smooth integrands
@item @tab        @tab Handles oscillatory functions, singularities, and infinite bounds
@end multitable


Here is an example of using @code{quad} to integrate the function
@tex
$$
 f(x) = x \sin (1/x) \sqrt {|1 - x|}
$$
from $x = 0$ to $x = 3$.
@end tex
@ifnottex

@example
  @var{f}(@var{x}) = @var{x} * sin (1/@var{x}) * sqrt (abs (1 - @var{x}))
@end example

@noindent
from @var{x} = 0 to @var{x} = 3.
@end ifnottex

This is a fairly difficult integration (plot the function over the range
of integration to see why).

The first step is to define the function:

@example
@group
function y = f (x)
  y = x .* sin (1./x) .* sqrt (abs (1 - x));
endfunction
@end group
@end example

Note the use of the `dot' forms of the operators.  This is not necessary for
the @code{quad} integrator, but is required by the other integrators.  In any
case, it makes it much easier to generate a set of points for plotting because
it is possible to call the function with a vector argument to produce a vector
result.

The second step is to call quad with the limits of integration:

@example
@group
[q, ier, nfun, err] = quad ("f", 0, 3)
     @result{} 1.9819
     @result{} 1
     @result{} 5061
     @result{} 1.1522e-07
@end group
@end example

Although @code{quad} returns a nonzero value for @var{ier}, the result
is reasonably accurate (to see why, examine what happens to the result
if you move the lower bound to 0.1, then 0.01, then 0.001, etc.).

The function @qcode{"f"} can be the string name of a function or a
function handle.  These options make it quite easy to do integration
without having to fully define a function in an m-file.  For example:

@example
@group
# Verify gamma function = (n-1)! for n = 4
f = @@(x) x.^3 .* exp (-x);
quadcc (f, 0, Inf)
     @result{} 6.0000
@end group
@end example

@c quad libinterp/corefcn/quad.cc
@anchor{XREFquad}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} quad (@var{f}, @var{a}, @var{b})
@deftypefnx {} {@var{q} =} quad (@var{f}, @var{a}, @var{b}, @var{tol})
@deftypefnx {} {@var{q} =} quad (@var{f}, @var{a}, @var{b}, @var{tol}, @var{sing})
@deftypefnx {} {[@var{q}, @var{ier}, @var{nfev}, @var{err}] =} quad (@dots{})
Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using
Fortran routines from @w{@sc{quadpack}}.

@var{f} is a function handle, inline function, or a string containing the
name of the function to evaluate.  The function must have the form @code{y =
f (x)} where @var{y} and @var{x} are scalars.

@var{a} and @var{b} are the lower and upper limits of integration.  Either
or both may be infinite.

The optional argument @var{tol} is a vector that specifies the desired
accuracy of the result.  The first element of the vector is the desired
absolute tolerance, and the second element is the desired relative
tolerance.  To choose a relative test only, set the absolute
tolerance to zero.  To choose an absolute test only, set the relative
tolerance to zero.  Both tolerances default to @code{sqrt (eps)} or
approximately 1.5e-8.

The optional argument @var{sing} is a vector of values at which the
integrand is known to be singular.

The result of the integration is returned in @var{q}.

@var{ier} contains an integer error code (0 indicates a successful
integration).

@var{nfev} indicates the number of function evaluations that were
made.

@var{err} contains an estimate of the error in the solution.

The function @code{quad_options} can set other optional parameters for
@code{quad}.

Note: because @code{quad} is written in Fortran it cannot be called
recursively.  This prevents its use in integrating over more than one
variable by routines @code{dblquad} and @code{triplequad}.
@xseealso{@ref{XREFquad_options,,quad_options}, @ref{XREFquadv,,quadv}, @ref{XREFquadl,,quadl}, @ref{XREFquadgk,,quadgk}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}, @ref{XREFdblquad,,dblquad}, @ref{XREFtriplequad,,triplequad}}
@end deftypefn


@c quad_options libinterp/corefcn/Quad-opts.cc
@anchor{XREFquad_options}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {} quad_options ()
@deftypefnx {} {val =} quad_options (@var{opt})
@deftypefnx {} {} quad_options (@var{opt}, @var{val})
Query or set options for the function @code{quad}.

When called with no arguments, the names of all available options and
their current values are displayed.

Given one argument, return the value of the option @var{opt}.

When called with two arguments, @code{quad_options} sets the option
@var{opt} to value @var{val}.

Options include

@table @asis
@item @qcode{"absolute tolerance"}
Absolute tolerance; may be zero for pure relative error test.

@item @qcode{"relative tolerance"}
Non-negative relative tolerance.  If the absolute tolerance is zero,
the relative tolerance must be greater than or equal to
@w{@code{max (50*eps, 0.5e-28)}}.

@item @qcode{"single precision absolute tolerance"}
Absolute tolerance for single precision; may be zero for pure relative
error test.

@item @qcode{"single precision relative tolerance"}
Non-negative relative tolerance for single precision.  If the absolute
tolerance is zero, the relative tolerance must be greater than or equal to
@w{@code{max (50*eps, 0.5e-28)}}.
@end table
@end deftypefn


@c quadv scripts/general/quadv.m
@anchor{XREFquadv}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b})
@deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol})
@deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
@deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
@deftypefnx {} {[@var{q}, @var{nfev}] =} quadv (@dots{})

Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
using an adaptive Simpson's rule.

@var{f} is a function handle, inline function, or string containing the name
of the function to evaluate.  @code{quadv} is a vectorized version of
@code{quad} and the function defined by @var{f} must accept a scalar or
vector as input and return a scalar, vector, or array as output.

@var{a} and @var{b} are the lower and upper limits of integration.  Both
limits must be finite.

The optional argument @var{tol} defines the absolute tolerance used to stop
the adaptation procedure.  The default value is 1e-6.

The algorithm used by @code{quadv} involves recursively subdividing the
integration interval and applying Simpson's rule on each subinterval.
If @var{trace} is true then after computing each of these partial
integrals display: (1) the total number of function evaluations,
(2) the left end of the subinterval, (3) the length of the subinterval,
(4) the approximation of the integral over the subinterval.

Additional arguments @var{p1}, etc., are passed directly to the function
@var{f}.  To use default values for @var{tol} and @var{trace}, one may pass
empty matrices ([]).

The result of the integration is returned in @var{q}.

The optional output @var{nfev} indicates the total number of function
evaluations performed.

Note: @code{quadv} is written in Octave's scripting language and can be
used recursively in @code{dblquad} and @code{triplequad}, unlike the
@code{quad} function.
@xseealso{@ref{XREFquad,,quad}, @ref{XREFquadl,,quadl}, @ref{XREFquadgk,,quadgk}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}, @ref{XREFdblquad,,dblquad}, @ref{XREFtriplequad,,triplequad}, @ref{XREFintegral,,integral}, @ref{XREFintegral2,,integral2}, @ref{XREFintegral3,,integral3}}
@end deftypefn


@c quadl scripts/general/quadl.m
@anchor{XREFquadl}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b})
@deftypefnx {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol})
@deftypefnx {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
@deftypefnx {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
@deftypefnx {} {[@var{q}, @var{nfev}] =} quadl (@dots{})

Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using
an adaptive @nospell{Lobatto} rule.

@var{f} is a function handle, inline function, or string containing the name
of the function to evaluate.  The function @var{f} must be vectorized and
return a vector of output values when given a vector of input values.

@var{a} and @var{b} are the lower and upper limits of integration.  Both
limits must be finite.

The optional argument @var{tol} defines the absolute tolerance with which
to perform the integration.  The default value is 1e-6.

The algorithm used by @code{quadl} involves recursively subdividing the
integration interval.  If @var{trace} is defined then for each subinterval
display: (1) the total number of function evaluations, (2) the left end of
the subinterval, (3) the length of the subinterval, (4) the approximation of
the integral over the subinterval.

Additional arguments @var{p1}, etc., are passed directly to the function
@var{f}.  To use default values for @var{tol} and @var{trace}, one may pass
empty matrices ([]).

The result of the integration is returned in @var{q}.

The optional output @var{nfev} indicates the total number of function
evaluations performed.

Reference: @nospell{W. Gander and W. Gautschi}, @cite{Adaptive Quadrature -
Revisited}, BIT Vol.@: 40, No.@: 1, March 2000, pp.@: 84--101.
@url{https://www.inf.ethz.ch/personal/gander/}
@xseealso{@ref{XREFquad,,quad}, @ref{XREFquadv,,quadv}, @ref{XREFquadgk,,quadgk}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}, @ref{XREFdblquad,,dblquad}, @ref{XREFtriplequad,,triplequad}, @ref{XREFintegral,,integral}, @ref{XREFintegral2,,integral2}, @ref{XREFintegral3,,integral3}}
@end deftypefn


@c quadgk scripts/general/quadgk.m
@anchor{XREFquadgk}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b})
@deftypefnx {} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b}, @var{abstol})
@deftypefnx {} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b}, @var{abstol}, @var{trace})
@deftypefnx {} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b}, "@var{prop}", @var{val}, @dots{})
@deftypefnx {} {[@var{q}, @var{err}] =} quadgk (@dots{})

Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
using adaptive @nospell{Gauss-Kronrod} quadrature.

@var{f} is a function handle, inline function, or string containing the name
of the function to evaluate.  The function @var{f} must be vectorized and
return a vector of output values when given a vector of input values (See
property @qcode{"ArrayValued"} for an exception to this rule).

@var{a} and @var{b} are the lower and upper limits of integration.  Either
or both limits may be infinite or contain weak end singularities.  Variable
transformation will be used to treat any infinite intervals and weaken the
singularities.  For example:

@example
quadgk (@@(x) 1 ./ (sqrt (x) .* (x + 1)), 0, Inf)
@end example

@noindent
Note that the formulation of the integrand uses the element-by-element
operator @code{./} and all user functions to @code{quadgk} should do the
same.

The optional argument @var{abstol} defines the absolute tolerance used to
stop the integration procedure.  The default value is 1e-10 (1e-5 for
single).

The algorithm used by @code{quadgk} involves subdividing the integration
interval and evaluating each subinterval.  If @var{trace} is true then after
computing each of these partial integrals display: (1) the number of
subintervals at this step, (2) the current estimate of the error @var{err},
(3) the current estimate for the integral @var{q}.

The behavior of the algorithm can be configured by passing arguments to
@code{quadgk} as pairs @qcode{"@var{prop}", @var{val}}.  Valid properties
are

@table @code
@item AbsTol
Define the absolute error tolerance for the quadrature.  The default
absolute tolerance is 1e-10 (1e-5 for single).

@item RelTol
Define the relative error tolerance for the quadrature.  The default
relative tolerance is 1e-6 (1e-4 for single).

@item ArrayValued
When set to true, the function @var{f} produces an array output for a scalar
input.  The default is false which requires that @var{f} produce an output
that is the same size as the input.  For example,

@example
quadgk (@@(x) x .^ (1:5), 0, 2, "ArrayValued", 1)
@end example

@noindent
will integrate @code{[x.^1, x.^2, x.^3, x.^4, x.^5]} in one function call
rather than having to repeatedly define a single anonymous function and
use a normal invocation of @code{quadgk}.

@item WayPoints
Specify points which will become endpoints for subintervals in the
algorithm which can result in significantly improved estimation of the error
in the integral, faster computation, or both.  It can be useful to specify
more subintervals around a region where the integrand is rapidly changing or
to flag locations where there is a discontinuity in the first derivative
of the function.  For example, the signum function has a discontinuity at
@code{x == 0} and by specifying a waypoint

@example
quadgk (@@(x) sign (x), -0.5, 1, "Waypoints", [0])
@end example

@noindent
the error bound is reduced from 4e-7 to 1e-13.

If the function has @strong{singularities} within the region of integration
those should not be addressed with waypoints.  Instead, the overall integral
should be decomposed into a sum of several smaller integrals such that the
singularity occurs as one of the bounds of integration in the call to
@code{quadgk}.

If any of the waypoints are complex then contour integration is performed as
documented below.

@item MaxIntervalCount
@code{quadgk} initially subdivides the interval on which to perform the
quadrature into 10 intervals or, if WayPoints are given, at each waypoint.
Subintervals that have an unacceptable error are subdivided and
re-evaluated.  If the number of subintervals exceeds 650 subintervals at any
point then a poor convergence is signaled and the current estimate of the
integral is returned.  The property @qcode{"MaxIntervalCount"} can be used
to alter the number of subintervals that can exist before exiting.

@item Trace
If logically true @code{quadgk} prints information on the convergence of the
quadrature at each iteration.
@end table

If any of @var{a}, @var{b}, or @var{waypoints} is complex then the
quadrature is treated as a contour integral along a piecewise linear
path defined by
@code{[@var{a}, @var{waypoints}(1), @var{waypoints}(2), @dots{}, @var{b}]}.
In this case the integral is assumed to have no edge singularities.  For
example,

@example
@group
quadgk (@@(z) log (z), 1+1i, 1+1i, "WayPoints",
        [-1+1i, -1-1i, +1-1i])
@end group
@end example

@noindent
integrates @code{log (z)} along the square defined by
@code{[1+1i, -1+1i, -1-1i, +1-1i]}.

The result of the integration is returned in @var{q}.

@var{err} is an approximate bound on the error in the integral
@w{@code{abs (@var{q} - @var{I})}}, where @var{I} is the exact value of the
integral.  If the adaptive integration did not converge, the value of
@var{err} will be larger than the requested tolerance.  If only a single
output is requested then a warning will be emitted when the requested
tolerance is not met.  If the second output @var{err} is requested then no
warning is issued and it is the responsibility of the programmer to inspect
and determine whether the results are satisfactory.

Reference: @nospell{L.F. Shampine},
@cite{"Vectorized adaptive quadrature in @sc{matlab}"}, Journal of
Computational and Applied Mathematics, pp.@: 131--140, Vol 211, Issue 2,
Feb 2008.

@xseealso{@ref{XREFquad,,quad}, @ref{XREFquadv,,quadv}, @ref{XREFquadl,,quadl}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}, @ref{XREFdblquad,,dblquad}, @ref{XREFtriplequad,,triplequad}, @ref{XREFintegral,,integral}, @ref{XREFintegral2,,integral2}, @ref{XREFintegral3,,integral3}}
@end deftypefn


@c quadcc libinterp/corefcn/quadcc.cc
@anchor{XREFquadcc}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} quadcc (@var{f}, @var{a}, @var{b})
@deftypefnx {} {@var{q} =} quadcc (@var{f}, @var{a}, @var{b}, @var{tol})
@deftypefnx {} {@var{q} =} quadcc (@var{f}, @var{a}, @var{b}, @var{tol}, @var{sing})
@deftypefnx {} {[@var{q}, @var{err}, @var{nr_points}] =} quadcc (@dots{})
Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using
doubly-adaptive @nospell{Clenshaw-Curtis} quadrature.

@var{f} is a function handle, inline function, or string containing the name
of the function to evaluate.  The function @var{f} must be vectorized and
must return a vector of output values if given a vector of input values.
For example,

@example
f = @@(x) x .* sin (1./x) .* sqrt (abs (1 - x));
@end example

@noindent
which uses the element-by-element ``dot'' form for all operators.

@var{a} and @var{b} are the lower and upper limits of integration.  Either or
both limits may be infinite.  @code{quadcc} handles an infinite limit by
substituting the variable of integration with @code{x = tan (pi/2*u)}.

The optional argument @var{tol} is a 1- or 2-element vector that specifies the
desired accuracy of the result.  The first element of the vector is the desired
absolute tolerance, and the second element is the desired relative tolerance.
To choose a relative test only, set the absolute tolerance to zero.  To choose
an absolute test only, set the relative tolerance to zero.  The default
absolute tolerance is 1e-10 (1e-5 for single), and the default relative
tolerance is 1e-6 (1e-4 for single).

The optional argument @var{sing} contains a list of points where the integrand
has known singularities, or discontinuities in any of its derivatives, inside
the integration interval.  For the example above, which has a discontinuity at
x=1, the call to @code{quadcc} would be as follows

@example
int = quadcc (f, a, b, [], [ 1 ]);
@end example

The result of the integration is returned in @var{q}.

@var{err} is an estimate of the absolute integration error.

@var{nr_points} is the number of points at which the integrand was evaluated.

If the adaptive integration did not converge, the value of @var{err} will be
larger than the requested tolerance.  If only a single output is requested then
a warning will be emitted when the requested tolerance is not met.  If the
second output @var{err} is requested then no warning is issued and it is the
responsibility of the programmer to inspect and determine whether the results
are satisfactory.

@code{quadcc} is capable of dealing with non-numeric values of the integrand
such as @code{NaN} or @code{Inf}.  If the integral diverges, and @code{quadcc}
detects this, then a warning is issued and @code{Inf} or @code{-Inf} is
returned.

Note: @code{quadcc} is a general purpose quadrature algorithm and, as such,
may be less efficient for a smooth or otherwise well-behaved integrand than
other methods such as @code{quadgk}.

The algorithm uses @nospell{Clenshaw-Curtis} quadrature rules of increasing
degree in each interval and bisects the interval if either the function does
not appear to be smooth or a rule of maximum degree has been reached.  The
error estimate is computed from the L2-norm of the difference between two
successive interpolations of the integrand over the nodes of the respective
quadrature rules.

Reference: @nospell{P. Gonnet}, @cite{Increasing the Reliability of Adaptive
Quadrature Using Explicit Interpolants}, @nospell{ACM} Transactions on
Mathematical Software, Vol.@: 37, Issue 3, Article No.@: 3, 2010.
@xseealso{@ref{XREFquad,,quad}, @ref{XREFquadv,,quadv}, @ref{XREFquadl,,quadl}, @ref{XREFquadgk,,quadgk}, @ref{XREFtrapz,,trapz}, @ref{XREFdblquad,,dblquad}, @ref{XREFtriplequad,,triplequad}}
@end deftypefn


@c integral scripts/general/integral.m
@anchor{XREFintegral}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} integral (@var{f}, @var{a}, @var{b})
@deftypefnx {} {@var{q} =} integral (@var{f}, @var{a}, @var{b}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {[@var{q}, @var{err}] =} integral (@dots{})

Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using
adaptive quadrature.

@code{integral} is a wrapper for @code{quadcc} (general real-valued, scalar
integrands and limits), and @code{quadgk} (integrals with specified
integration paths and array-valued integrands) that is intended to provide
@sc{matlab} compatibility.  More control of the numerical integration may be
achievable by calling the various quadrature functions directly.

@var{f} is a function handle, inline function, or string containing the name
of the function to evaluate.  The function @var{f} must be vectorized and
return a vector of output values when given a vector of input values.

@var{a} and @var{b} are the lower and upper limits of integration.  Either
or both limits may be infinite or contain weak end singularities.  If either
or both limits are complex, @code{integral} will perform a straight line
path integral.  Alternatively, a complex domain path can be specified using
the @qcode{"Waypoints"} option (see below).

Additional optional parameters can be specified using
@qcode{"@var{property}", @var{value}} pairs.  Valid properties are:

@table @code
@item Waypoints
Specifies points to be used in defining subintervals of the quadrature
algorithm, or if @var{a}, @var{b}, or @var{waypoints} are complex then
the quadrature is calculated as a contour integral along a piecewise
continuous path.  For more detail, @pxref{XREFquadgk,,@code{quadgk}}.

@item ArrayValued
@code{integral} expects @var{f} to return a scalar value unless
@var{arrayvalued} is specified as true.  This option will cause
@code{integral} to perform the integration over the entire array and return
@var{q} with the same dimensions as returned by @var{f}.  For more detail
@pxref{XREFquadgk,,@code{quadgk}}.

@item AbsTol
Define the absolute error tolerance for the quadrature.  The default
absolute tolerance is 1e-10 (1e-5 for single).

@item RelTol
Define the relative error tolerance for the quadrature.  The default
relative tolerance is 1e-6 (1e-4 for single).
@end table

The optional output @var{err} contains the absolute error estimate used by
the called integrator.

Adaptive quadrature is used to minimize the estimate of error until the
following is satisfied:
@tex
$$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
@end tex
@ifnottex

@example
@group
  @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|).
@end group
@end example

@end ifnottex

Known @sc{matlab} incompatibilities:

@enumerate
@item
If tolerances are left unspecified, and any integration limits or waypoints
are of type @code{single}, then Octave's integral functions automatically
reduce the default absolute and relative error tolerances as specified
above.  If tighter tolerances are desired they must be specified.
@sc{matlab} leaves the tighter tolerances appropriate for @code{double}
inputs in place regardless of the class of the integration limits.
@end enumerate

@xseealso{@ref{XREFintegral2,,integral2}, @ref{XREFintegral3,,integral3}, @ref{XREFquad,,quad}, @ref{XREFquadgk,,quadgk}, @ref{XREFquadv,,quadv}, @ref{XREFquadl,,quadl}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}, @ref{XREFdblquad,,dblquad}, @ref{XREFtriplequad,,triplequad}}
@end deftypefn


Sometimes one does not have the function, but only the raw (x, y) points from
which to perform an integration.  This can occur when collecting data in an
experiment.  The @code{trapz} function can integrate these values as shown in
the following example where "data" has been collected on the cosine function
over the range [0, pi/2).

@example
@group
x = 0:0.1:pi/2;  # Uniformly spaced points
y = cos (x);
trapz (x, y)
     @result{} 0.99666
@end group
@end example

The answer is reasonably close to the exact value of 1.  Ordinary quadrature
is sensitive to the characteristics of the integrand.  Empirical integration
depends not just on the integrand, but also on the particular points chosen to
represent the function.  Repeating the example above with the sine function
over the range [0, pi/2) produces far inferior results.

@example
@group
x = 0:0.1:pi/2;  # Uniformly spaced points
y = sin (x);
trapz (x, y)
     @result{} 0.92849
@end group
@end example

However, a slightly different choice of data points can change the result
significantly.  The same integration, with the same number of points, but
spaced differently produces a more accurate answer.

@example
@group
x = linspace (0, pi/2, 16);  # Uniformly spaced, but including endpoint
y = sin (x);
trapz (x, y)
     @result{} 0.99909
@end group
@end example

In general there may be no way of knowing the best distribution of points ahead
of time.  Or the points may come from an experiment where there is no freedom
to select the best distribution.  In any case, one must remain aware of this
issue when using @code{trapz}.

@c trapz scripts/general/trapz.m
@anchor{XREFtrapz}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} trapz (@var{y})
@deftypefnx {} {@var{q} =} trapz (@var{x}, @var{y})
@deftypefnx {} {@var{q} =} trapz (@dots{}, @var{dim})

Numerically evaluate the integral of points @var{y} using the trapezoidal
method.

@w{@code{trapz (@var{y})}}@ computes the integral of @var{y} along the first
non-singleton dimension.  When the argument @var{x} is omitted an equally
spaced @var{x} vector with unit spacing (1) is assumed.
@code{trapz (@var{x}, @var{y})} evaluates the integral with respect to the
spacing in @var{x} and the values in @var{y}.  This is useful if the points
in @var{y} have been sampled unevenly.

If the optional @var{dim} argument is given, operate along this dimension.

Application Note: If @var{x} is not specified then unit spacing will be
used.  To scale the integral to the correct value you must multiply by the
actual spacing value (deltaX).  As an example, the integral of @math{x^3}
over the range [0, 1] is @math{x^4/4} or 0.25.  The following code uses
@code{trapz} to calculate the integral in three different ways.

@example
@group
x = 0:0.1:1;
y = x.^3;
## No scaling
q = trapz (y)
  @result{} q = 2.5250
## Approximation to integral by scaling
q * 0.1
  @result{} 0.25250
## Same result by specifying @var{x}
trapz (x, y)
  @result{} 0.25250
@end group
@end example

@xseealso{@ref{XREFcumtrapz,,cumtrapz}}
@end deftypefn


@c cumtrapz scripts/general/cumtrapz.m
@anchor{XREFcumtrapz}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} cumtrapz (@var{y})
@deftypefnx {} {@var{q} =} cumtrapz (@var{x}, @var{y})
@deftypefnx {} {@var{q} =} cumtrapz (@dots{}, @var{dim})
Cumulative numerical integration of points @var{y} using the trapezoidal
method.

@w{@code{cumtrapz (@var{y})}}@ computes the cumulative integral of @var{y}
along the first non-singleton dimension.  Where @code{trapz} reports only
the overall integral sum, @code{cumtrapz} reports the current partial sum
value at each point of @var{y}.

When the argument @var{x} is omitted an equally spaced @var{x} vector with
unit spacing (1) is assumed.  @code{cumtrapz (@var{x}, @var{y})} evaluates
the integral with respect to the spacing in @var{x} and the values in
@var{y}.  This is useful if the points in @var{y} have been sampled
unevenly.

If the optional @var{dim} argument is given, operate along this dimension.

Application Note: If @var{x} is not specified then unit spacing will be
used.  To scale the integral to the correct value you must multiply by the
actual spacing value (deltaX).
@xseealso{@ref{XREFtrapz,,trapz}, @ref{XREFcumsum,,cumsum}}
@end deftypefn


@node Orthogonal Collocation
@section Orthogonal Collocation

@c colloc libinterp/corefcn/colloc.cc
@anchor{XREFcolloc}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {[@var{r}, @var{amat}, @var{bmat}, @var{q}] =} colloc (@var{n}, "left", "right")
Compute derivative and integral weight matrices for orthogonal collocation.

Reference: @nospell{J. Villadsen}, @nospell{M. L. Michelsen},
@cite{Solution of Differential Equation Models by Polynomial Approximation}.
@end deftypefn


Here is an example of using @code{colloc} to generate weight matrices
for solving the second order differential equation
@tex
$u^\prime - \alpha u^{\prime\prime} = 0$ with the boundary conditions
$u(0) = 0$ and $u(1) = 1$.
@end tex
@ifnottex
@var{u}' - @var{alpha} * @var{u}'' = 0 with the boundary conditions
@var{u}(0) = 0 and @var{u}(1) = 1.
@end ifnottex

First, we can generate the weight matrices for @var{n} points (including
the endpoints of the interval), and incorporate the boundary conditions
in the right hand side (for a specific value of
@tex
$\alpha$).
@end tex
@ifnottex
@var{alpha}).
@end ifnottex

@example
@group
n = 7;
alpha = 0.1;
[r, a, b] = colloc (n-2, "left", "right");
at = a(2:n-1,2:n-1);
bt = b(2:n-1,2:n-1);
rhs = alpha * b(2:n-1,n) - a(2:n-1,n);
@end group
@end example

Then the solution at the roots @var{r} is

@example
@group
u = [ 0; (at - alpha * bt) \ rhs; 1]
     @result{} [ 0.00; 0.004; 0.01 0.00; 0.12; 0.62; 1.00 ]
@end group
@end example

@node Functions of Multiple Variables
@section Functions of Multiple Variables

Octave includes several functions for computing the integral of functions of
multiple variables.  This procedure can generally be performed by creating a
function that integrates @math{f} with respect to @math{x}, and then integrates
that function with respect to @math{y}.  This procedure can be performed
manually using the following example which integrates the function:

@tex
$$
  f(x, y) = \sin(\pi x y)\sqrt{x y}
$$
@end tex
@ifnottex

@example
f(x, y) = sin(pi*x*y) * sqrt(x*y)
@end example

@end ifnottex
for @math{x} and @math{y} between 0 and 1.

Using @code{quadgk} in the example below, a double integration can be
performed.  (Note that any of the 1-D quadrature functions can be used in this
fashion except for @code{quad} since it is written in Fortran and cannot be
called recursively.)

@example
@group
function q = g(y)
  q = ones (size (y));
  for i = 1:length (y)
    f = @@(x) sin (pi*x.*y(i)) .* sqrt (x.*y(i));
    q(i) = quadgk (f, 0, 1);
  endfor
endfunction

I = quadgk ("g", 0, 1)
      @result{} 0.30022
@end group
@end example

The algorithm above is implemented in the function @code{dblquad} for integrals
over two variables.  The 3-D equivalent of this process is implemented in
@code{triplequad} for integrals over three variables.  As an example, the
result above can be replicated with a call to @code{dblquad} as shown below.

@example
@group
I = dblquad (@@(x, y) sin (pi*x.*y) .* sqrt (x.*y), 0, 1, 0, 1)
      @result{} 0.30022
@end group
@end example

@c dblquad scripts/general/dblquad.m
@anchor{XREFdblquad}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} dblquad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb})
@deftypefnx {} {@var{q} =} dblquad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{tol})
@deftypefnx {} {@var{q} =} dblquad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{tol}, @var{quadf})
@deftypefnx {} {@var{q} =} dblquad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{tol}, @var{quadf}, @dots{})
Numerically evaluate the double integral of @var{f}.

@var{f} is a function handle, inline function, or string containing the name
of the function to evaluate.  The function @var{f} must have the form
@math{z = f(x,y)} where @var{x} is a vector and @var{y} is a scalar.  It
should return a vector of the same length and orientation as @var{x}.

@var{xa}, @var{ya} and @var{xb}, @var{yb} are the lower and upper limits of
integration for x and y respectively.  The underlying integrator determines
whether infinite bounds are accepted.

The optional argument @var{tol} defines the absolute tolerance used to
integrate each sub-integral.  The default value is 1e-6.

The optional argument @var{quadf} specifies which underlying integrator
function to use.  Any choice but @code{quad} is available and the default
is @code{quadcc}.

Additional arguments, are passed directly to @var{f}.  To use the default
value for @var{tol} or @var{quadf} one may pass @qcode{':'} or an empty
matrix ([]).
@xseealso{@ref{XREFintegral2,,integral2}, @ref{XREFintegral3,,integral3}, @ref{XREFtriplequad,,triplequad}, @ref{XREFquad,,quad}, @ref{XREFquadv,,quadv}, @ref{XREFquadl,,quadl}, @ref{XREFquadgk,,quadgk}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}}
@end deftypefn


@c triplequad scripts/general/triplequad.m
@anchor{XREFtriplequad}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb})
@deftypefnx {} {@var{q} =} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{tol})
@deftypefnx {} {@var{q} =} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{tol}, @var{quadf})
@deftypefnx {} {@var{q} =} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{tol}, @var{quadf}, @dots{})
Numerically evaluate the triple integral of @var{f}.

@var{f} is a function handle, inline function, or string containing the name
of the function to evaluate.  The function @var{f} must have the form
@math{w = f(x,y,z)} where either @var{x} or @var{y} is a vector and the
remaining inputs are scalars.  It should return a vector of the same length
and orientation as @var{x} or @var{y}.

@var{xa}, @var{ya}, @var{za} and @var{xb}, @var{yb}, @var{zb} are the lower
and upper limits of integration for x, y, and z respectively.  The
underlying integrator determines whether infinite bounds are accepted.

The optional argument @var{tol} defines the absolute tolerance used to
integrate each sub-integral.  The default value is 1e-6.

The optional argument @var{quadf} specifies which underlying integrator
function to use.  Any choice but @code{quad} is available and the default
is @code{quadcc}.

Additional arguments, are passed directly to @var{f}.  To use the default
value for @var{tol} or @var{quadf} one may pass @qcode{':'} or an empty
matrix ([]).
@xseealso{@ref{XREFintegral3,,integral3}, @ref{XREFintegral2,,integral2}, @ref{XREFdblquad,,dblquad}, @ref{XREFquad,,quad}, @ref{XREFquadv,,quadv}, @ref{XREFquadl,,quadl}, @ref{XREFquadgk,,quadgk}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}}
@end deftypefn


The recursive algorithm for quadrature presented above is referred to as
@qcode{"iterated"}.  A separate 2-D integration method is implemented in the
function @code{quad2d}.  This function performs a @qcode{"tiled"} integration
by subdividing the integration domain into rectangular regions and performing
separate integrations over those domains.  The domains are further subdivided
in areas requiring refinement to reach the desired numerical accuracy.  For
certain functions this method can be faster than the 2-D iteration used in the
other functions above.

@c quad2d scripts/general/quad2d.m
@anchor{XREFquad2d}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} quad2d (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb})
@deftypefnx {} {@var{q} =} quad2d (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {[@var{q}, @var{err}, @var{iter}] =} quad2d (@dots{})

Numerically evaluate the two-dimensional integral of @var{f} using adaptive
quadrature over the two-dimensional domain defined by @var{xa}, @var{xb},
@var{ya}, @var{yb} using tiled integration.  Additionally, @var{ya} and
@var{yb} may be scalar functions of @var{x}, allowing for the integration
over non-rectangular domains.

@var{f} is a function handle, inline function, or string containing the
name of the function to evaluate.  The function @var{f} must be of the form
@math{z = f(x,y)}, and all operations must be vectorized such that @var{x}
and @var{y} accept array inputs and return array outputs of the same size.
(It can be assumed that @var{x} and @var{y} will either be same-size arrays
or one will be a scalar.)  The underlying integrators will input arrays of
integration points into @var{f} and/or use internal vector expansions to
speed computation that can produce unpredictable results if @var{f} is not
restricted to elementwise operations.  For integrands where this is
unavoidable, the @qcode("Vectorized") option described below may produce
more reliable results.

Additional optional parameters can be specified using
@qcode{"@var{property}", @var{value}} pairs.  Valid properties are:

@table @code
@item AbsTol
Define the absolute error tolerance for the quadrature.  The default
value is 1e-10 (1e-5 for single).

@item RelTol
Define the relative error tolerance for the quadrature.  The default
value is 1e-6 (1e-4 for single).

@item MaxFunEvals
The maximum number of function calls to the vectorized function @var{f}.
The default value is 5000.

@item Singular
Enable/disable transforms to weaken singularities on the edge of the
integration domain.  The default value is @var{true}.

@item Vectorized
Enable or disable vectorized integration.  A value of @code{false} forces
Octave to use only scalar inputs when calling the integrand, which enables
integrands @math{f(x,y)} that have not been vectorized or only accept
scalar values of @var{x} or @var{y}.  The default value is @code{true}.
Note that this is achieved by wrapping @math{f(x,y)} with the function
@code{arrayfun}, which may significantly decrease computation speed.

@item FailurePlot
If @code{quad2d} fails to converge to the desired error tolerance before
MaxFunEvals is reached, a plot of the areas that still need refinement
is created.  The default value is @var{false}.
@end table

Adaptive quadrature is used to minimize the estimate of error until the
following is satisfied:
@tex
$$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
@end tex
@ifnottex

@example
@group
        @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|)
@end group
@end example

@end ifnottex

The optional output @var{err} is an approximate bound on the error in the
integral @code{abs (@var{q} - @var{I})}, where @var{I} is the exact value
of the integral.  The optional output @var{iter} is the number of vectorized
function calls to the function @var{f} that were used.

Example 1 : integrate a rectangular region in x-y plane

@example
@group
@var{f} = @@(@var{x},@var{y}) 2*ones (size (@var{x}));
@var{q} = quad2d (@var{f}, 0, 1, 0, 1)
  @result{} @var{q} =  2
@end group
@end example

The result is a volume, which for this constant-value integrand, is just
@code{@var{Length} * @var{Width} * @var{Height}}.

Example 2 : integrate a triangular region in x-y plane

@example
@group
@var{f} = @@(@var{x},@var{y}) 2*ones (size (@var{x}));
@var{ymax} = @@(@var{x}) 1 - @var{x};
@var{q} = quad2d (@var{f}, 0, 1, 0, @var{ymax})
  @result{} @var{q} =  1
@end group
@end example

The result is a volume, which for this constant-value integrand
@w{@math{@var{f} = 2}}, is the Triangle Area x Height or
@w{@code{1/2 * @var{Base} * @var{Width} * @var{Height}}}.

Example 3 : integrate a non-vectorized function over a square region

@example
@group
@var{f} = @@(@var{x},@var{y}) sinc (@var{x}) * sinc (@var{y}));
@var{q} = quad2d (@var{f}, -1, 1, -1, 1)
  @result{} @var{q} =  12.328  (incorrect)
@var{q} = quad2d (@var{f}, -1, 1, -1, 1, "Vectorized", false)
  @result{} @var{q} =  1.390 (correct)
@var{f} = @@(@var{x},@var{y}) sinc (@var{x}) .* sinc (@var{y});
@var{q} = quad2d (@var{f}, -1, 1, -1, 1)
  @result{} @var{q} =  1.390  (correct)
@end group
@end example

The first result is incorrect as the non-elementwise operator between the
sinc functions in @var{f} create unintended matrix multiplications between
the internal integration arrays used by @code{quad2d}.  In the second
result, setting @qcode{"Vectorized"} to false forces @code{quad2d} to
perform scalar internal operations to compute the integral, resulting in
the correct numerical result at the cost of about a 20x increase in
computation time.  In the third result, vectorizing the integrand @var{f}
using the elementwise multiplication operator gets the correct result
without increasing computation time.

Programming Notes: If there are singularities within the integration region
it is best to split the integral and place the singularities on the
boundary.

Known @sc{matlab} incompatibility: If tolerances are left unspecified, and
any integration limits are of type @code{single}, then Octave's integral
functions automatically reduce the default absolute and relative error
tolerances as specified above.  If tighter tolerances are desired they
must be specified.  @sc{matlab} leaves the tighter tolerances appropriate
for @code{double} inputs in place regardless of the class of the
integration limits.

Reference: @nospell{L.F. Shampine},
@cite{@sc{matlab} program for quadrature in 2D}, Applied Mathematics and
Computation, pp.@: 266--274, Vol 1, 2008.

@xseealso{@ref{XREFintegral2,,integral2}, @ref{XREFdblquad,,dblquad}, @ref{XREFintegral,,integral}, @ref{XREFquad,,quad}, @ref{XREFquadgk,,quadgk}, @ref{XREFquadv,,quadv}, @ref{XREFquadl,,quadl}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}, @ref{XREFintegral3,,integral3}, @ref{XREFtriplequad,,triplequad}}
@end deftypefn


Finally, the functions @code{integral2} and @code{integral3} are provided
as general 2-D and 3-D integration functions.  They will auto-select between
iterated and tiled integration methods and, unlike @code{dblquad} and
@code{triplequad}, will work with non-rectangular integration domains.

@c integral2 scripts/general/integral2.m
@anchor{XREFintegral2}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} integral2 (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb})
@deftypefnx {} {@var{q} =} integral2 (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {[@var{q}, @var{err}] =} integral2 (@dots{})

Numerically evaluate the two-dimensional integral of @var{f} using adaptive
quadrature over the two-dimensional domain defined by @var{xa}, @var{xb},
@var{ya}, @var{yb} (scalars may be finite or infinite).  Additionally,
@var{ya} and @var{yb} may be scalar functions of @var{x}, allowing for
integration over non-rectangular domains.

@var{f} is a function handle, inline function, or string containing the
name of the function to evaluate.  The function @var{f} must be of the form
@math{z = f(x,y)}, and all operations must be vectorized such that @var{x}
and @var{y} accept array inputs and return array outputs of the same size.
(It can be assumed that @var{x} and @var{y} will either be same-size arrays
or one will be a scalar.)  The underlying integrators will input arrays of
integration points into @var{f} and/or use internal vector expansions to
speed computation that can produce unpredictable results if @var{f} is not
restricted to elementwise operations.  For integrands where this is
unavoidable, the @qcode("Vectorized") option described below may produce
more reliable results.

Additional optional parameters can be specified using
@qcode{"@var{property}", @var{value}} pairs.  Valid properties are:

@table @code
@item AbsTol
Define the absolute error tolerance for the quadrature.  The default
value is 1e-10 (1e-5 for single).

@item RelTol
Define the relative error tolerance for the quadrature.  The default
value is 1e-6 (1e-4 for single).

@item Method
Specify the two-dimensional integration method to be used, with valid
options being @qcode{"auto"} (default), @qcode{"tiled"}, or
@qcode{"iterated"}.  When using @qcode{"auto"}, Octave will choose the
@qcode{"tiled"} method unless any of the integration limits are infinite.

@item Vectorized
Enable or disable vectorized integration.  A value of @code{false} forces
Octave to use only scalar inputs when calling the integrand, which enables
integrands @math{f(x,y)} that have not been vectorized or only accept
scalar values of @var{x} or @var{y}.  The default value is @code{true}.
Note that this is achieved by wrapping @math{f(x,y)} with the function
@code{arrayfun}, which may significantly decrease computation speed.
@end table

Adaptive quadrature is used to minimize the estimate of error until the
following is satisfied:
@tex
$$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
@end tex
@ifnottex

@example
@group
        @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|)
@end group
@end example

@end ifnottex

@var{err} is an approximate bound on the error in the integral
@code{abs (@var{q} - @var{I})}, where @var{I} is the exact value of the
integral.

Example 1 : integrate a rectangular region in x-y plane

@example
@group
@var{f} = @@(@var{x},@var{y}) 2*ones (size (@var{x}));
@var{q} = integral2 (@var{f}, 0, 1, 0, 1)
  @result{} @var{q} =  2
@end group
@end example

The result is a volume, which for this constant-value integrand, is just
@w{@code{@var{Length} * @var{Width} * @var{Height}}}.

Example 2 : integrate a triangular region in x-y plane

@example
@group
@var{f} = @@(@var{x},@var{y}) 2*ones (size (@var{x}));
@var{ymax} = @@(@var{x}) 1 - @var{x};
@var{q} = integral2 (@var{f}, 0, 1, 0, @var{ymax})
  @result{} @var{q} =  1
@end group
@end example

The result is a volume, which for this constant-value integrand
@w{@math{@var{f} = 2}}, is the Triangle Area x Height or
@w{@code{1/2 * @var{Base} * @var{Width} * @var{Height}}}.

Example 3 : integrate a non-vectorized function over a square region

@example
@group
@var{f} = @@(@var{x},@var{y}) sinc (@var{x}) * sinc (@var{y}));
@var{q} = integral2 (@var{f}, -1, 1, -1, 1)
  @result{} @var{q} =  12.328  (incorrect)
@var{q} = integral2 (@var{f}, -1, 1, -1, 1, "Vectorized", false)
  @result{} @var{q} =  1.390 (correct)
@var{f} = @@(@var{x},@var{y}) sinc (@var{x}) .* sinc (@var{y});
@var{q} = integral2 (@var{f}, -1, 1, -1, 1)
  @result{} @var{q} =  1.390  (correct)
@end group
@end example

The first result is incorrect as the non-elementwise operator between the
sinc functions in @var{f} create unintended matrix multiplications between
the internal integration arrays used by @code{integral2}.  In the second
result, setting @qcode{"Vectorized"} to false forces @code{integral2} to
perform scalar internal operations to compute the integral, resulting in
the correct numerical result at the cost of about a 20x increase in
computation time.  In the third result, vectorizing the integrand @var{f}
using the elementwise multiplication operator gets the correct result
without increasing computation time.

Programming Notes: If there are singularities within the integration region
it is best to split the integral and place the singularities on the
boundary.

Known @sc{matlab} incompatibility: If tolerances are left unspecified, and
any integration limits are of type @code{single}, then Octave's integral
functions automatically reduce the default absolute and relative error
tolerances as specified above.  If tighter tolerances are desired they
must be specified.  @sc{matlab} leaves the tighter tolerances appropriate
for @code{double} inputs in place regardless of the class of the
integration limits.

Reference: @nospell{L.F. Shampine},
@cite{@sc{matlab} program for quadrature in 2D}, Applied Mathematics and
Computation, pp.@: 266--274, Vol 1, 2008.

@xseealso{@ref{XREFquad2d,,quad2d}, @ref{XREFdblquad,,dblquad}, @ref{XREFintegral,,integral}, @ref{XREFquad,,quad}, @ref{XREFquadgk,,quadgk}, @ref{XREFquadv,,quadv}, @ref{XREFquadl,,quadl}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}, @ref{XREFintegral3,,integral3}, @ref{XREFtriplequad,,triplequad}}
@end deftypefn


@c integral3 scripts/general/integral3.m
@anchor{XREFintegral3}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{q} =} integral3 (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb})
@deftypefnx {} {@var{q} =} integral3 (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{prop}, @var{val}, @dots{})

Numerically evaluate the three-dimensional integral of @var{f} using
adaptive quadrature over the three-dimensional domain defined by
@var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb} (scalars may
be finite or infinite).  Additionally, @var{ya} and @var{yb} may be
scalar functions of @var{x} and @var{za}, and @var{zb} maybe be scalar
functions of @var{x} and @var{y}, allowing for integration over
non-rectangular domains.

@var{f} is a function handle, inline function, or string containing the
name of the function to evaluate.  The function @var{f} must be of the form
@math{z = f(x,y,z)}, and all operations must be vectorized such that
@var{x}, @var{y}, and @var{z} accept array inputs and return array outputs
of the same size.  (It can be assumed that @var{x}, @var{y}, and @var{z}
will either be same-size arrays or scalars.)  The underlying integrators
will input arrays of integration points into @var{f} and/or use internal
vector expansions to speed computation that can produce unpredictable
results if @var{f} is not restricted to elementwise operations.  For
integrands where this is unavoidable, the @qcode("Vectorized") option
described below may produce more reliable results.

Additional optional parameters can be specified using
@qcode{"@var{property}", @var{value}} pairs.  Valid properties are:

@table @code
@item AbsTol
Define the absolute error tolerance for the quadrature.  The default
value is 1e-10 (1e-5 for single).

@item RelTol
Define the relative error tolerance for the quadrature.  The default
value is 1e-6 (1e-4 for single).

@item Method
Specify the two-dimensional integration method to be used, with valid
options being @qcode{"auto"} (default), @qcode{"tiled"}, or
@qcode{"iterated"}.  When using @qcode{"auto"}, Octave will choose the
@qcode{"tiled"} method unless any of the integration limits are infinite.

@item Vectorized
Enable or disable vectorized integration.  A value of @code{false} forces
Octave to use only scalar inputs when calling the integrand, which enables
integrands @math{f(x,y,z)} that have not been vectorized or only accept
scalar values of @var{x}, @var{y}, or @var{z}.  The default value is
@code{true}.  Note that this is achieved by wrapping @math{f(x,y,z)} with
the function @code{arrayfun}, which may significantly decrease computation
speed.
@end table

Adaptive quadrature is used to minimize the estimate of error until the
following is satisfied:
@tex
$$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
@end tex
@ifnottex

@example
@group
        @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|)
@end group
@end example

@end ifnottex

@var{err} is an approximate bound on the error in the integral
@code{abs (@var{q} - @var{I})}, where @var{I} is the exact value of the
integral.

Example 1 : integrate over a rectangular volume

@example
@group
@var{f} = @@(@var{x},@var{y},@var{z}) ones (size (@var{x}));
@var{q} = integral3 (@var{f}, 0, 1, 0, 1, 0, 1)
  @result{} @var{q} =  1.00000
@end group
@end example

For this constant-value integrand, the result is a volume which is just
@code{@var{Length} * @var{Width} * @var{Height}}.

Example 2 : integrate over a spherical volume

@example
@group
@var{f} = @@(@var{x},@var{y}) ones (size (@var{x}));
@var{ymax} = @@(@var{x}) sqrt (1 - @var{x}.^2);
@var{zmax} = @@(@var{x},@var{y}) sqrt (1 - @var{x}.^2 - @var{y}.^2);
@var{q} = integral3 (@var{f}, 0, 1, 0, @var{ymax}, 0, @var{zmax})
  @result{} @var{q} =  0.52360
@end group
@end example

For this constant-value integrand, the result is a volume which is 1/8th
of a unit sphere or @code{1/8 * 4/3 * pi}.

Example 3 : integrate a non-vectorized function over a cubic volume

@example
@group
@var{f} = @@(@var{x},@var{y}) sinc (@var{x}) * sinc (@var{y}), * sinc (@var{z});
@var{q} = integral3 (@var{f}, -1, 1, -1, 1, -1, 1)
  @result{} @var{q} =  14.535  (incorrect)
@var{q} = integral3 (@var{f}, -1, 1, -1, 1, -1, 1, "Vectorized", false)
  @result{} @var{q} =  1.6388 (correct)
@var{f} = @@(@var{x},@var{y},@var{z}) sinc (@var{x}) .* sinc (@var{y}), .* sinc (@var{z});
@var{q} = integral3 (@var{f}, -1, 1, -1, 1, -1, 1)
  @result{} @var{q} =  1.6388  (correct)
@end group
@end example

The first result is incorrect as the non-elementwise operator between the
sinc functions in @var{f} create unintended matrix multiplications between
the internal integration arrays used by @code{integral3}.  In the second
result, setting @qcode{"Vectorized"} to false forces @code{integral3} to
perform scalar internal operations to compute the integral, resulting in
the correct numerical result at the cost of about a 30x increase in
computation time.  In the third result, vectorizing the integrand @var{f}
using the elementwise multiplication operator gets the correct result
without increasing computation time.

Programming Notes: If there are singularities within the integration region
it is best to split the integral and place the singularities on the
boundary.

Known @sc{matlab} incompatibility: If tolerances are left unspecified, and
any integration limits are of type @code{single}, then Octave's integral
functions automatically reduce the default absolute and relative error
tolerances as specified above.  If tighter tolerances are desired they
must be specified.  @sc{matlab} leaves the tighter tolerances appropriate
for @code{double} inputs in place regardless of the class of the
integration limits.

Reference: @nospell{L.F. Shampine},
@cite{@sc{matlab} program for quadrature in 2D}, Applied Mathematics and
Computation, pp.@: 266--274, Vol 1, 2008.

@xseealso{@ref{XREFtriplequad,,triplequad}, @ref{XREFintegral,,integral}, @ref{XREFquad,,quad}, @ref{XREFquadgk,,quadgk}, @ref{XREFquadv,,quadv}, @ref{XREFquadl,,quadl}, @ref{XREFquadcc,,quadcc}, @ref{XREFtrapz,,trapz}, @ref{XREFintegral2,,integral2}, @ref{XREFquad2d,,quad2d}, @ref{XREFdblquad,,dblquad}}
@end deftypefn


The above integrations can be fairly slow, and that problem increases
exponentially with the dimensionality of the integral.  Another possible
solution for 2-D integration is to use Orthogonal Collocation as described in
the previous section (@pxref{Orthogonal Collocation}).  The integral of a
function @math{f(x,y)} for @math{x} and @math{y} between 0 and 1 can be
approximated using @math{n} points by
@tex
$$
 \int_0^1 \int_0^1 f(x,y) d x d y \approx \sum_{i=1}^n \sum_{j=1}^n q_i q_j f(r_i, r_j),
$$
@end tex
@ifnottex
the sum over @code{i=1:n} and @code{j=1:n} of @code{q(i)*q(j)*f(r(i),r(j))},
@end ifnottex
where @math{q} and @math{r} is as returned by @code{colloc (n)}.  The
generalization to more than two variables is straight forward.  The
following code computes the studied integral using @math{n=8} points.

@example
@group
f = @@(x,y) sin (pi*x*y') .* sqrt (x*y');
n = 8;
[t, ~, ~, q] = colloc (n);
I = q'*f(t,t)*q;
      @result{} 0.30022
@end group
@end example

@noindent
It should be noted that the number of points determines the quality
of the approximation.  If the integration needs to be performed between
@math{a} and @math{b}, instead of 0 and 1, then a change of variables is needed.