1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
########################################################################
##
## Copyright (C) 2000-2025 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{dx} =} gradient (@var{m})
## @deftypefnx {} {[@var{dx}, @var{dy}, @var{dz}, @dots{}] =} gradient (@var{m})
## @deftypefnx {} {[@dots{}] =} gradient (@var{m}, @var{s})
## @deftypefnx {} {[@dots{}] =} gradient (@var{m}, @var{sx}, @var{sy}, @var{sz}, @dots{})
## @deftypefnx {} {[@dots{}] =} gradient (@var{f}, @var{x0})
## @deftypefnx {} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{s})
## @deftypefnx {} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{sx}, @var{sy}, @dots{})
##
## Calculate the gradient of sampled data or a function.
## @tex
## $$
## {\rm grad} \ F(x,y,z) \equiv \nabla F = \frac{\partial F_x}{\partial x} \hat{i} + \frac{\partial F_y}{\partial y} \hat{j} + \frac{\partial F_z}{\partial z} \hat{k}
## $$
## @end tex
## @ifnottex
##
## @group
## @verbatim
## d d d
## grad F(x,y,z) = -- F(x,y,z) i + -- F(x,y,z) j + -- F(x,y,z) k
## dx dy dz
## @end verbatim
## @end group
##
## @end ifnottex
##
## If @var{m} is a vector, calculate the one-dimensional numerical gradient of
## @var{m}. If @var{m} is a matrix the gradient is calculated for each
## dimension. The return argument(s) are the estimated partial derivatives
## for each dimension at the specified sample points.
##
## The default spacing of between data points is 1. A constant spacing between
## points can be specified with the @var{s} parameter. If @var{s} is a scalar,
## the single spacing value is used for all dimensions. Otherwise, separate
## values of the spacing can be supplied by the @var{sx}, @dots{} arguments.
## Scalar values specify an equidistant spacing. Vector values for the
## @var{sx}, @dots{} arguments specify the coordinate for that dimension. The
## length must match the respective dimension of @var{m}.
##
## If the first argument @var{f} is a function handle, the gradient of the
## function is calculated for the points in @var{x0}. As with sampled data,
## the spacing values between the points from which the gradient is estimated
## can be set via the @var{s} or @var{dx}, @var{dy}, @dots{} arguments. By
## default a spacing of 1 is used, however this is normally overly large unless
## the function is very slowly varying, and it is often necessary to specify a
## smaller sample spacing.
##
## Example: numerical gradient of @code{cos} (analytically = @code{-sin})
##
## @example
## @group
## gradient (@@cos, pi/2, .1)
## @result{} -0.9983
## -sin (pi/2)
## @result{} -1
## @end group
## @end example
##
## Programming Notes:
## The value for interior data points is approximated using the central
## difference.
##
## @example
## y'(i) = 1/2 * (y(i+1) - y(i-1)).
## @end example
##
## At boundary points a linear extrapolation is applied.
##
## @example
## y'(1) = y(2) - y(1).
## @end example
##
## @seealso{diff, del2}
## @end deftypefn
function varargout = gradient (m, varargin)
if (nargin < 1)
print_usage ();
endif
nargout_with_ans = max (1,nargout);
if (isnumeric (m))
[varargout{1:nargout_with_ans}] = matrix_gradient (m, varargin{:});
elseif (is_function_handle (m))
[varargout{1:nargout_with_ans}] = handle_gradient (m, varargin{:});
elseif (ischar (m))
[varargout{1:nargout_with_ans}] = handle_gradient (str2func (m), ...
varargin{:});
else
error ("gradient: first input must be an array or a function");
endif
endfunction
function varargout = matrix_gradient (m, varargin)
transposed = false;
if (isvector (m))
## make a row vector.
transposed = (columns (m) == 1);
m = m(:).';
endif
nd = ndims (m);
sz = size (m);
if (length (sz) > 1)
tmp = sz(1); sz(1) = sz(2); sz(2) = tmp;
endif
if (nargin > 2 && nargin != nd + 1)
print_usage ("gradient");
endif
## cell d stores a spacing vector for each dimension
d = cell (1, nd);
if (nargin == 1)
## no spacing given - assume 1.0 for all dimensions
for i = 1:nd
d{i} = ones (sz(i) - 1, 1);
endfor
elseif (nargin == 2)
if (isscalar (varargin{1}))
## single scalar value for all dimensions
for i = 1:nd
d{i} = varargin{1} * ones (sz(i) - 1, 1);
endfor
else
## vector for one-dimensional derivative
d{1} = diff (varargin{1}(:));
endif
else
## have spacing value for each dimension
if (length (varargin) != nd)
error ("gradient: dimensions and number of spacing values do not match");
endif
for i = 1:nd
if (isscalar (varargin{i}))
d{i} = varargin{i} * ones (sz(i) - 1, 1);
else
d{i} = diff (varargin{i}(:));
endif
endfor
endif
m = shiftdim (m, 1);
for i = 1:min (nd, nargout)
mr = rows (m);
mc = numel (m) / mr;
Y = zeros (size (m), class (m));
if (mr > 1)
## Top and bottom boundary.
Y(1,:) = diff (m(1:2, :)) / d{i}(1);
Y(mr,:) = diff (m(mr-1:mr, :) / d{i}(mr - 1));
endif
if (mr > 2)
## Interior points.
Y(2:mr-1,:) = ((m(3:mr,:) - m(1:mr-2,:))
./ kron (d{i}(1:mr-2) + d{i}(2:mr-1), ones (1, mc)));
endif
## turn multi-dimensional matrix in a way, that gradient
## along x-direction is calculated first then y, z, ...
if (i == 1)
varargout{i} = shiftdim (Y, nd - 1);
m = shiftdim (m, nd - 1);
elseif (i == 2)
varargout{i} = Y;
m = shiftdim (m, 2);
else
varargout{i} = shiftdim (Y, nd - i + 1);
m = shiftdim (m, 1);
endif
endfor
if (transposed)
varargout{1} = varargout{1}.';
endif
endfunction
function varargout = handle_gradient (f, p0, varargin)
## Input checking
p0_size = size (p0);
if (numel (p0_size) != 2)
error ("gradient: the second input argument should either be a vector or a matrix");
endif
if (any (p0_size == 1))
p0 = p0(:);
dim = 1;
num_points = numel (p0);
else
num_points = p0_size (1);
dim = p0_size (2);
endif
if (length (varargin) == 0)
delta = 1;
elseif (length (varargin) == 1 || length (varargin) == dim)
try
delta = [varargin{:}];
catch
error ("gradient: spacing parameters must be scalars or a vector");
end_try_catch
else
error ("gradient: incorrect number of spacing parameters");
endif
if (isscalar (delta))
delta = repmat (delta, 1, dim);
elseif (! isvector (delta))
error ("gradient: spacing values must be scalars or a vector");
endif
## Calculate the gradient
p0 = mat2cell (p0, num_points, ones (1, dim));
varargout = cell (1, dim);
for d = 1:dim
s = delta(d);
df_dx = (f (p0{1:d-1}, p0{d}+s, p0{d+1:end})
- f (p0{1:d-1}, p0{d}-s, p0{d+1:end})) ./ (2*s);
if (dim == 1)
varargout{d} = reshape (df_dx, p0_size);
else
varargout{d} = df_dx;
endif
endfor
endfunction
%!test
%! data = [1, 2, 4, 2];
%! dx = gradient (data);
%! dx2 = gradient (data, 0.25);
%! dx3 = gradient (data, [0.25, 0.5, 1, 3]);
%! assert (dx, [1, 3/2, 0, -2]);
%! assert (dx2, [4, 6, 0, -8]);
%! assert (dx3, [4, 4, 0, -1]);
%! assert (size_equal (data, dx));
%!test
%! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30);
%! [dX,dY,dZ,dU] = gradient (X);
%! assert (all (dX(:) == 1));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Y);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 2));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Z);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 4));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (U);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 5));
%! assert (size_equal (dX, dY, dZ, dU, X, Y, Z, U));
%! [dX,dY,dZ,dU] = gradient (U, 5.0);
%! assert (all (dU(:) == 1));
%! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5);
%! assert (all (dU(:) == 2));
%!test
%! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30);
%! [dX,dY,dZ,dU] = gradient (X+j*X);
%! assert (all (dX(:) == 1+1j));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Y-j*Y);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 2-j*2));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Z+j*1);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 4));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (U-j*1);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 5));
%! assert (size_equal (dX, dY, dZ, dU, X, Y, Z, U));
%! [dX,dY,dZ,dU] = gradient (U, 5.0);
%! assert (all (dU(:) == 1));
%! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5);
%! assert (all (dU(:) == 2));
%!test
%! x = 0:10;
%! f = @cos;
%! df_dx = @(x) -sin (x);
%! assert (gradient (f, x), df_dx (x), 0.2);
%! assert (gradient (f, x, 0.5), df_dx (x), 0.1);
%!test
%! xy = reshape (1:10, 5, 2);
%! f = @(x,y) sin (x) .* cos (y);
%! df_dx = @(x, y) cos (x) .* cos (y);
%! df_dy = @(x, y) -sin (x) .* sin (y);
%! [dx, dy] = gradient (f, xy);
%! assert (dx, df_dx (xy (:, 1), xy (:, 2)), 0.1);
%! assert (dy, df_dy (xy (:, 1), xy (:, 2)), 0.1);
|