File: rat.m

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (342 lines) | stat: -rw-r--r-- 9,821 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
########################################################################
##
## Copyright (C) 2001-2025 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{s} =} rat (@var{x})
## @deftypefnx {} {@var{s} =} rat (@var{x}, @var{tol})
## @deftypefnx {} {[@var{n}, @var{d}] =} rat (@dots{})
##
## Find a rational approximation of @var{x} to within the tolerance defined by
## @var{tol}.
##
## If unspecified, the default tolerance is @code{1e-6 * norm (@var{x}(:), 1)}.
##
## When called with one output argument, return a string containing a
## continued fraction expansion (multiple terms).
##
## When called with two output arguments, return numeric matrices for the
## numerator and denominator of a fractional representation of @var{x} such
## that @code{@var{x} = @var{n} ./ @var{d}}.
##
## For example:
##
## @example
## @group
## s = rat (pi)
## @result{} s = 3 + 1/(7 + 1/16)
##
## [n, d] = rat (pi)
## @result{} n =  355
## @result{} d =  113
##
## n / d - pi
## @result{} 2.6676e-07
## @end group
## @end example
##
## Complex inputs are similar:
##
## @example
## @group
## s = rat (0.5 + i * pi)
## @result{} s = complex (1 + 1/(-2), 3 + 1/(7 + 1/16))
##
## [n, d] = rat (0.5 + i * pi)
## @result{} n =  113 + 710i
## @result{} d =  226
##
## n / d - (0.5 + i * pi)
## @result{} 0 + 2.6676e-07i
## @end group
## @end example
##
## Programming Notes:
##
## 1. With one output @code{rat} produces a string which is a continued
## fraction expansion.  To produce a string which is a simple fraction
## (one numerator, one denominator) use @code{rats}.
##
## 2. The string output produced by @code{rat} can be passed to @code{eval}
## to get back the original input up to the tolerance used.
##
## @seealso{rats, format}
## @end deftypefn

function [n, d] = rat (x, tol)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isfloat (x))
    error ("rat: X must be a single or double array");
  endif

  if (iscomplex (x))
    if (nargout == 2)  # return numerator and denominator
      if (nargin == 2)
        [nr, dr] = rat (real (x), tol);
        [ni, di] = rat (imag (x), tol);
      else
        [nr, dr] = rat (real (x));
        [ni, di] = rat (imag (x));
      endif

      ## For inputs with inf, the output is set to 1/0 or -1/0.
      ## Override that to +inf/1 or -inf/1.
      ii = (dr == 0 & nr > 0); dr(ii) = 1; nr(ii) = +inf;
      ii = (dr == 0 & nr < 0); dr(ii) = 1; nr(ii) = -inf;
      ii = (di == 0 & ni > 0); di(ii) = 1; ni(ii) = +inf;
      ii = (di == 0 & ni < 0); di(ii) = 1; ni(ii) = -inf;

      d = lcm (dr, di);  # now this should always be nonzero
      n = complex (nr .* (d ./ dr), ni .* (d ./ di));
    elseif (nargout <= 1)  # string output
      if (nargin == 2)
        realstr = rat (real (x), tol);
        imagstr = rat (imag (x), tol);
      else
        realstr = rat (real (x));
        imagstr = rat (imag (x));
      endif

      nn = rows (realstr);
      start  = repmat ("complex (", nn, 1);
      mid    = repmat (", ",        nn, 1);
      finish = repmat (")",         nn, 1);
      n = [start, realstr, mid, imagstr, finish];
    endif
    return;
  endif

  y = x(:);

  ## Replace Inf with 0 while calculating ratios.
  inf_idx = isinf (x);
  y(inf_idx(:)) = 0;

  if (nargin == 1)
    ## default norm
    tol = 1e-6 * norm (y, 1);
  else
    if (! (isscalar (tol) && isnumeric (tol) && tol >= 0))
      error ("rat: TOL must be a numeric scalar >= 0");
    endif
  endif

  ## First step in the approximation is the integer portion

  ## First element in the continued fraction.
  n = round (y);
  d = ones (size (y));
  frac = y - n;
  lastn = ones (size (y));
  lastd = zeros (size (y));

  nsz = numel (y);
  steps = zeros ([nsz, 0]);

  ## Grab new factors until all continued fractions converge.
  while (1)
    ## Determine which fractions have not yet converged.
    idx = find (y != 0 & abs (y - n./d) >= tol);
    if (isempty (idx))
      if (isempty (steps))
        steps = NaN (nsz, 1);
      endif
      break;
    endif

    ## Grab the next step in the continued fraction.
    flip = 1 ./ frac(idx);
    ## Next element in the continued fraction.
    step = round (flip);

    if (nargout < 2)
      tsteps = NaN (nsz, 1);
      tsteps(idx) = step;
      steps = [steps, tsteps];
    endif

    frac(idx) = flip - step;

    ## Update the numerator/denominator.
    savedn = n;
    savedd = d;
    n(idx) = n(idx).*step + lastn(idx);
    d(idx) = d(idx).*step + lastd(idx);
    lastn = savedn;
    lastd = savedd;
  endwhile

  if (nargout <= 1)
    ## string output
    n = "";
    nsteps = columns (steps);
    ## Loop over all values in array
    for i = 1:nsz

      if (inf_idx(i))
        s = ifelse (x(i) > 0, "Inf", "-Inf");
      elseif (y(i) == 0)
        s = "0";
      else
        ## Create partial fraction expansion of one value
        s = [int2str(y(i)), " "];
        j = 1;

        while (true)
          step = steps(i, j++);
          if (isnan (step))
            break;
          endif
          if (j > nsteps || isnan (steps(i, j)))
            if (step < 0)
              s = [s(1:end-1), " + 1/(", int2str(step), ")"];
            else
              s = [s(1:end-1), " + 1/", int2str(step)];
            endif
            break;
          else
            s = [s(1:end-1), " + 1/(", int2str(step), ")"];
          endif
        endwhile
        s = [s, repmat(")", 1, j-2)];
      endif

      ## Append result to output
      n_nc = columns (n);
      s_nc = columns (s);
      if (n_nc > s_nc)
        s(:, s_nc+1:n_nc) = " ";
      elseif (s_nc > n_nc && n_nc != 0)
        n(:, n_nc+1:s_nc) = " ";
      endif
      n = cat (1, n, s);
    endfor
  else
    ## numerator, denominator output

    ## Move the minus sign to the numerator.
    n .*= sign (d);
    d = abs (d);

    ## Return the same shape as the input.
    n = reshape (n, size (x));
    d = reshape (d, size (x));

    ## Use 1/0 for Inf.
    n(inf_idx) = sign (x(inf_idx));
    d(inf_idx) = 0;
  endif

endfunction


%!assert (rat (pi), "3 + 1/(7 + 1/16)")
%!assert (rat (pi, 1e-2), "3 + 1/7")
## Test exceptional values
%!assert (rat (0), "0")
%!assert (rat (Inf), "Inf")
%!assert (rat (-Inf), "-Inf")

%!test
%! [n, d] = rat ([0.5, 0.3, 1/3]);
%! assert (n, [1, 3, 1]);
%! assert (d, [2, 10, 3]);
## Test exceptional values
%!test
%! [n, d] = rat ([Inf, 0, -Inf]);
%! assert (n, [1, 0, -1]);
%! assert (d, [0, 1, 0]);

## Test complex scalar input
%!test <*55198>
%! assert (rat (complex (0.5, pi)), "complex (1 + 1/(-2), 3 + 1/(7 + 1/16))");
%! [n, d] = rat (complex (0.5, pi));
%! assert (n, 113 + 710*i);
%! assert (d, 226);

## Test complex vector input in all four quadrants
%!test <*55198>
%! theta = 72 * (1:4);
%! x = cosd (theta) + i * sind (theta);
%! [n, d] = rat (x);
%! assert (n, [274195+843885i, -39955+29029i, -39955-29029i, 274195-843885i]);
%! assert (d, [887313, 49387, 49387, 887313]);
%! assert (all (abs (n ./ d - x) <= 2e-6));
%! str = rat (x);
%! assert (str(1, :), "complex (0 + 1/(3 + 1/(4 + 1/(4 + 1/(4 + 1/4)))), 1 + 1/(-20 + 1/(-2 + 1/(-3 + 1/(-6)))))");
%! assert (str(2, :), "complex (-1 + 1/(5 + 1/(4 + 1/(4 + 1/4)))       , 1 + 1/(-2 + 1/(-2 + 1/(-3 + 1/8)))    )");
%! assert (str(3, :), "complex (-1 + 1/(5 + 1/(4 + 1/(4 + 1/4)))       , -1 + 1/(2 + 1/(2 + 1/(3 + 1/(-8))))   )");
%! assert (str(4, :), "complex (0 + 1/(3 + 1/(4 + 1/(4 + 1/(4 + 1/4)))), -1 + 1/(20 + 1/(2 + 1/(3 + 1/6)))     )");

## Test complex exceptional inputs
%!test <*55198>
%! assert (rat (complex (inf, 0)), "complex (Inf, 0)");
%! assert (rat (complex (0, inf)), "complex (0, Inf)");
%! assert (rat (complex (-inf, 0)), "complex (-Inf, 0)");
%! assert (rat (complex (0, -inf)), "complex (0, -Inf)");
%! assert (rat (complex (nan, 0)), "complex (NaN , 0)");
%! assert (rat (complex (0, nan)), "complex (0, NaN )");

%!test <*55198>
%! [n, d] = rat (complex (inf, 0));
%! assert (n, complex (inf, 0));
%! assert (d, 1);
%! [n, d] = rat (complex (0, inf));
%! assert (n, complex (0, inf));
%! assert (d, 1);
%! [n, d] = rat (complex (-inf, 0));
%! assert (n, complex (-inf, 0));
%! assert (d, 1);
%! [n, d] = rat (complex (0, -inf));
%! assert (n, complex (0, -inf));
%! assert (d, 1);
%! [n, d] = rat (complex (nan, 0));
%! assert (n, complex (nan, 0));
%! assert (d, 1);
%! [n, d] = rat (complex (0, nan));
%! assert (n, complex (0, nan));
%! assert (d, 1);

## Test eval with complex inputs
%!test <*55198>
%! x = complex (0.5, pi);
%! assert (eval (rat (x)), x, 1e-6 * norm (x, 1))

## Test eval with inf*i
%!test <*55198>
%! x = complex (0, inf);
%! assert (eval (rat (x)), x, 1e-6 * norm (x, 1))

%!assert <*43374> (eval (rat (0.75)), [0.75])

## Test input validation
%!error <Invalid call> rat ()
%!error <X must be a single or double array> rat (int8 (3))
%!error <TOL must be a numeric scalar> rat (1, "a")
%!error <TOL must be a numeric scalar> rat (1, [1 2])
%!error <TOL must be a numeric scalar .* 0> rat (1, -1)