File: nchoosek.m

package info (click to toggle)
octave 10.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 659; xml: 192
file content (342 lines) | stat: -rw-r--r-- 10,767 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
########################################################################
##
## Copyright (C) 2001-2025 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{c} =} nchoosek (@var{n}, @var{k})
## @deftypefnx {} {@var{c} =} nchoosek (@var{set}, @var{k})
##
## Compute the binomial coefficient of @var{n} or list all possible
## combinations of a @var{set} of items.
##
## If @var{n} is a scalar then calculate the binomial coefficient
## of @var{n} and @var{k} which is defined as
## @tex
## $$
##  {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
##                = {n! \over k! (n-k)!}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##  /   \
##  | n |    n (n-1) (n-2) @dots{} (n-k+1)       n!
##  |   |  = ------------------------- =  ---------
##  | k |               k!                k! (n-k)!
##  \   /
## @end group
## @end example
##
## @end ifnottex
## @noindent
## This is the number of combinations of @var{n} items taken in groups of
## size @var{k}.
##
## If the first argument is a vector, @var{set}, then generate all
## combinations of the elements of @var{set}, taken @var{k} at a time, with
## one row per combination.  The result @var{c} has @var{k} columns and
## @w{@code{nchoosek (length (@var{set}), @var{k})}}@ rows.
##
## For example:
##
## How many ways can three items be grouped into pairs?
##
## @example
## @group
## nchoosek (3, 2)
##    @result{} 3
## @end group
## @end example
##
## What are the possible pairs?
##
## @example
## @group
## nchoosek (1:3, 2)
##    @result{}  1   2
##        1   3
##        2   3
## @end group
## @end example
##
## Programming Note: When calculating the binomial coefficient @code{nchoosek}
## works only for non-negative, integer arguments.  Use @code{bincoeff} for
## non-integer and negative scalar arguments, or for computing many binomial
## coefficients at once with vector inputs for @var{n} or @var{k}.
##
## @seealso{bincoeff, perms}
## @end deftypefn

function C = nchoosek (v, k)

  if (nargin != 2)
    print_usage ();
  endif

  if (! isvector (v))
    error ("nchoosek: first argument must be a scalar or a vector");
  endif
  if (! (isreal (k) && isscalar (k) && k >= 0 && k == fix (k)))
    error ("nchoosek: K must be an integer >= 0");
  endif
  if (isscalar (v))
    if (isnumeric (v) && (iscomplex (v) || v < k || v < 0 || v != fix (v)))
      error ("nchoosek: N must be a non-negative integer >= K");
    endif
  endif

  v = v(:).';  # convert to row vector
  n = numel (v);

  if (n == 1 && isnumeric (v))
    ## Compute number of combinations rather than actual set combinations.
    try
      ## Use subtraction operation to validate combining integer data types
      ## and for type propagation rules between integer and floating point.
      k = min (k, v-k);
    catch
      error ("nchoosek: incompatible input types for N (%s), K (%s)", ...
             class (v), class (k));
    end_try_catch
    is_int = isinteger (k);
    if (is_int)
      imax = intmax (k);
    else
      imax = flintmax (k);
    endif
    C = 1;
    for i = 1:k
      if (C * (v - k + i) >= imax)
        ## Avoid overflow / precision loss by determining the smallest
        ## possible factor of (C * (n-k+i)) and i via the gcd.
        ## Note that by design in each iteration
        ##   1) C will always increase (factor is always > 1).
        ##   2) C will always be a whole number.
        ## Therefore, using the gcd will always provide the best possible
        ## solution until saturation / has the least precision loss.
        g1 = gcd (C, i);
        g2 = gcd (v - k + i, i/g1);
        C /= g1;

        ## In theory and (always for integers) i/(g1 * g2) is identical to 1 by
        ## design. Or for floats and beyond flintmax, the gcd may not be
        ## correctly derived by the gcd function and i/(g1 * g2) may not be 1.
        C_next = C * ((v - k + i)/g2);
        if (is_int || (i/(g1 * g2) == 1) || ! isinf (C_next))
          C = C_next;
          C /= i/(g1 * g2);
        else
          C /= i/(g1 * g2);
          ## We have potential precision loss by dividing (too) early, but
          ## advantage is that we prevent possible interim overflows
          C *= (v - k + i)/g2;
        endif
        if (is_int && (C == imax)) || (! is_int && isinf (C))
          break;  # Stop here; saturation reached.
        endif
      else
        C *= (v - k + i);
        C /= i;
      endif
    endfor
    if (! is_int && C > imax)
      warning ("Octave:nchoosek:large-output-float", ...
               "nchoosek: possible loss of precision");
    elseif (is_int && C == imax)
      warning ("Octave:nchoosek:large-output-integer", ...
               "nchoosek: result may have saturated at intmax");
    endif

  ## Compute actual set combinations
  elseif (k == 0)
    C = v(zeros (1, 0));  # Return 1x0 object for Matlab compatibility
  elseif (k == 1)
    C = v(:);
  elseif (k == n)
    C = v;
  elseif (k > n)
    C = v(zeros (0, k));  # return 0xk object for Matlab compatibility
  elseif (k == 2)
    ## Can do it without transpose.
    x = repelem (v(1:n-1), [n-1:-1:1]).';
    y = cat (1, cellslices (v(:), 2:n, n*ones (1, n-1)){:});
    C = [x, y];
  elseif (k < n)
    C = v(k:n);
    l = 1:n-k+1;
    for j = 2:k
      c = columns (C);
      cA = cellslices (C, l, c*ones (1, n-k+1), 2);
      l = c-l+1;
      b = repelem (v(k-j+1:n-j+1), l);
      C = [b; cA{:}];
      l = cumsum (l);
      l = [1, 1 + l(1:n-k)];
    endfor
    C = C.';
  endif

endfunction


%!assert (nchoosek (80, 10), bincoeff (80, 10))
%!assert (nchoosek (1:5, 3),
%!        [1:3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2:4;2,3,5;2,4,5;3:5])

## Test basic behavior for various input types
%!assert (nchoosek ('a':'b', 2), 'ab')
%!assert (nchoosek ("a":"b", 2), "ab")
%!assert (nchoosek ({1,2}, 2), {1,2})
%!test
%! s(1).a = 1;
%! s(2).a = 2;
%! assert (nchoosek (s, 1), s(:));
%! assert (nchoosek (s, 2), s);

## Verify Matlab compatibility of return sizes & types
%!test
%! x = nchoosek (1:2, 0);
%! assert (size (x), [1, 0]);
%! assert (isa (x, "double"));
%! x = nchoosek (1:2, 3);
%! assert (size (x), [0, 3]);
%! assert (isa (x, "double"));

%!test
%! x = nchoosek (single (1:2), 0);
%! assert (size (x), [1, 0]);
%! assert (isa (x, "single"));
%! x = nchoosek (single (1:2), 3);
%! assert (size (x), [0, 3]);
%! assert (isa (x, "single"));

%!test
%! x = nchoosek ('a':'b', 0);
%! assert (size (x), [1, 0]);
%! assert (is_sq_string (x));
%! x = nchoosek ('a':'b', 3);
%! assert (size (x), [0, 3]);
%! assert (is_sq_string (x));

%!test
%! x = nchoosek ("a":"b", 0);
%! assert (size (x), [1, 0]);
%! assert (is_dq_string (x));
%! x = nchoosek ("a":"b", 3);
%! assert (size (x), [0, 3]);
%! assert (is_dq_string (x));

%!test
%! x = nchoosek (uint8(1):uint8(2), 0);
%! assert (size (x), [1, 0]);
%! assert (isa (x, "uint8"));
%! x = nchoosek (uint8(1):uint8(2), 3);
%! assert (size (x), [0, 3]);
%! assert (isa (x, "uint8"));

%!test
%! x = nchoosek ({1, 2}, 0);
%! assert (size (x), [1, 0]);
%! assert (iscell (x));
%! x = nchoosek ({1, 2}, 3);
%! assert (size (x), [0, 3]);
%! assert (iscell (x));

%!test
%! s.a = [1 2 3];
%! s.b = [4 5 6];
%! x = nchoosek (s, 0);
%! assert (size (x), [1, 0]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});
%! x = nchoosek (s, 3);
%! assert (size (x), [0, 3]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});

%!test
%! s.a = [1 2 3];
%! s.b = [4 5 6];
%! s(2).a = 1;  # make s a struct array rather than scalar struct
%! s(3).b = 2;  # make s at least three elements for k == 2 test below
%! x = nchoosek (s, 0);
%! assert (size (x), [1, 0]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});
%! x = nchoosek (s, 2);
%! assert (size (x), [3, 2]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});
%! x = nchoosek (s, 4);
%! assert (size (x), [0, 4]);
%! assert (isstruct (x));
%! assert (fieldnames (x), {"a"; "b"});

%!test <61565>
%! x = nchoosek (uint8 (10), uint8 (5));
%! assert (x, uint8 (252));
%! assert (class (x), "uint8");

## Floating point number above flintmax
%!test <*65495>
%! warning ("off", "Octave:nchoosek:large-output-float", "local");
%! assert (! isinf (nchoosek (1024, 512)))

## Test combining rules for integers and floating point
%!test
%! x = nchoosek (uint8 (10), single (5));
%! assert (x, uint8 (252));

%!test
%! x = nchoosek (double (10), single (5));
%! assert (x, single (252));

%!test <*63538>
%! x = nchoosek ([1:3]', 2);
%! assert (x, [1 2; 1 3; 2 3]);

## Test input validation
%!error <Invalid call> nchoosek ()
%!error <Invalid call> nchoosek (1)
%!error <first argument must be a scalar or a vector> nchoosek (ones (3, 3), 1)
%!error <K must be an integer .= 0> nchoosek (100, 2i)
%!error <K must be an integer .= 0> nchoosek (100, [2 3])
%!error <K must be an integer .= 0> nchoosek (100, -45)
%!error <K must be an integer .= 0> nchoosek (100, 45.5)
%!error <N must be a non-negative integer .= K> nchoosek (100i, 2)
%!error <N must be a non-negative integer .= K> nchoosek (100, 145)
%!error <N must be a non-negative integer .= K> nchoosek (-100, 45)
%!error <N must be a non-negative integer .= K> nchoosek (100.5, 45)
%!error <incompatible input types> nchoosek (uint8 (15), uint16 (5))
%!warning <possible loss of precision> nchoosek (100, 45);
%!warning <result .* saturated> nchoosek (uint64 (80), uint64 (40));
%!warning <result .* saturated> nchoosek (uint32 (80), uint32 (40));
%!warning <result .* saturated> nchoosek (uint16 (80), uint16 (40));
%!warning <result .* saturated> nchoosek ( uint8 (80),  uint8 (40));
%!warning <result .* saturated> nchoosek ( int64 (80),  int64 (40));
%!warning <result .* saturated> nchoosek ( int32 (80),  int32 (40));
%!warning <result .* saturated> nchoosek ( int16 (80),  int16 (40));
%!warning <result .* saturated> nchoosek (  int8 (80),   int8 (40));