File: diffeq.texi

package info (click to toggle)
octave 10.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 660; xml: 192
file content (1814 lines) | stat: -rw-r--r-- 64,329 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <https://www.gnu.org/licenses/>.

@node Differential Equations
@chapter Differential Equations

Octave has built-in functions for solving ordinary differential equations
(ODEs), and differential-algebraic equations (DAEs).

@menu
* Ordinary Differential Equations::
* Differential-Algebraic Equations::
* Matlab-compatible solvers::
@end menu

@cindex differential equations
@cindex ODE
@cindex DAE

@node Ordinary Differential Equations
@section Ordinary Differential Equations

The function @code{lsode} can be used to solve ODEs of the form
@tex
$$
 {dx\over dt} = f (x, t)
$$
@end tex
@ifnottex

@example
@group
dx
-- = f (x, t)
dt
@end group
@end example

@end ifnottex

@noindent
using @nospell{Hindmarsh's} ODE solver @sc{lsode}.

@c lsode libinterp/corefcn/lsode.cc
@anchor{XREFlsode}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{x}, @var{istate}, @var{msg}] =} lsode (@var{fcn}, @var{x_0}, @var{t})
@deftypefnx {} {[@var{x}, @var{istate}, @var{msg}] =} lsode (@var{fcn}, @var{x_0}, @var{t}, @var{t_crit})
Ordinary Differential Equation (ODE) solver.

The set of differential equations to solve is
@tex
$$ {dx \over dt} = f (x, t) $$
with
$$ x(t_0) = x_0 $$
@end tex
@ifnottex

@example
@group
dx
-- = f (x, t)
dt
@end group
@end example

@noindent
with

@example
x(t_0) = x_0
@end example

@end ifnottex
The solution is returned in the matrix @var{x}, with each row
corresponding to an element of the vector @var{t}.  The first element
of @var{t} should be @math{t_0} and should correspond to the initial
state of the system @var{x_0}, so that the first row of the output
is @var{x_0}.

The first argument, @var{fcn}, is a string, inline, or function handle
that names the function @math{f} to call to compute the vector of right
hand sides for the set of equations.  The function must have the form

@example
@var{xdot} = f (@var{x}, @var{t})
@end example

@noindent
in which @var{xdot} and @var{x} are vectors and @var{t} is a scalar.

If @var{fcn} is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function @math{f} described above, and the second element names a
function to compute the Jacobian of @math{f}.  The Jacobian function
must have the form

@example
@var{jac} = j (@var{x}, @var{t})
@end example

@noindent
in which @var{jac} is the matrix of partial derivatives
@tex
$$ J = {\partial f_i \over \partial x_j} = \left[\matrix{
{\partial f_1 \over \partial x_1}
  & {\partial f_1 \over \partial x_2}
  & \cdots
  & {\partial f_1 \over \partial x_N} \cr
{\partial f_2 \over \partial x_1}
  & {\partial f_2 \over \partial x_2}
  & \cdots
  & {\partial f_2 \over \partial x_N} \cr
 \vdots & \vdots & \ddots & \vdots \cr
{\partial f_M \over \partial x_1}
  & {\partial f_M \over \partial x_2}
  & \cdots
  & {\partial f_M \over \partial x_N} \cr}\right]$$
@end tex
@ifnottex

@example
@group
             | df_1  df_1       df_1 |
             | ----  ----  ...  ---- |
             | dx_1  dx_2       dx_N |
             |                       |
             | df_2  df_2       df_2 |
             | ----  ----  ...  ---- |
      df_i   | dx_1  dx_2       dx_N |
jac = ---- = |                       |
      dx_j   |  .    .     .    .    |
             |  .    .      .   .    |
             |  .    .       .  .    |
             |                       |
             | df_M  df_M       df_M |
             | ----  ----  ...  ---- |
             | dx_1  dx_2       dx_N |
@end group
@end example

@end ifnottex

The second argument specifies the initial state of the system @math{x_0}.  The
third argument is a vector, @var{t}, specifying the time values for which a
solution is sought.

The fourth argument is optional, and may be used to specify a set of
times that the ODE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.

After a successful computation, the value of @var{istate} will be 2
(consistent with the Fortran version of @sc{lsode}).

If the computation is not successful, @var{istate} will be something
other than 2 and @var{msg} will contain additional information.

You can use the function @code{lsode_options} to set optional
parameters for @code{lsode}.

See @nospell{Alan C. Hindmarsh},
@cite{ODEPACK, A Systematized Collection of ODE Solvers},
in Scientific Computing, @nospell{R. S. Stepleman}, editor, (1983)
or @url{https://computing.llnl.gov/projects/odepack}
for more information about the inner workings of @code{lsode}.

Example: Solve the @nospell{Van der Pol} equation

@example
@group
fvdp = @@(@var{y},@var{t}) [@var{y}(2); (1 - @var{y}(1)^2) * @var{y}(2) - @var{y}(1)];
@var{t} = linspace (0, 20, 100);
@var{y} = lsode (fvdp, [2; 0], @var{t});
@end group
@end example
@xseealso{@ref{XREFdaspk,,daspk}, @ref{XREFdassl,,dassl}, @ref{XREFdasrt,,dasrt}}
@end deftypefn


@c lsode_options libinterp/corefcn/LSODE-opts.cc
@anchor{XREFlsode_options}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {} lsode_options ()
@deftypefnx {} {val =} lsode_options (@var{opt})
@deftypefnx {} {} lsode_options (@var{opt}, @var{val})
Query or set options for the function @code{lsode}.

When called with no arguments, the names of all available options and
their current values are displayed.

Given one argument, return the value of the option @var{opt}.

When called with two arguments, @code{lsode_options} sets the option
@var{opt} to value @var{val}.

Options include

@table @asis
@item @qcode{"absolute tolerance"}
Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector.

@item @qcode{"relative tolerance"}
Relative tolerance parameter.  Unlike the absolute tolerance, this
parameter may only be a scalar.

The local error test applied at each integration step is

@example
@group
  abs (local error in x(i)) <= ...
      rtol * abs (y(i)) + atol(i)
@end group
@end example

@item @qcode{"integration method"}
A string specifying the method of integration to use to solve the ODE
system.  Valid values are

@table @asis
@item  @qcode{"adams"}
@itemx @qcode{"non-stiff"}
No Jacobian used (even if it is available).

@item  @qcode{"bdf"}
@itemx @qcode{"stiff"}
Use stiff backward differentiation formula (BDF) method.  If a
function to compute the Jacobian is not supplied, @code{lsode} will
compute a finite difference approximation of the Jacobian matrix.
@end table

@item @qcode{"initial step size"}
The step size to be attempted on the first step (default is determined
automatically).

@item @qcode{"maximum order"}
Restrict the maximum order of the solution method.  If using the Adams
method, this option must be between 1 and 12.  Otherwise, it must be
between 1 and 5, inclusive.

@item @qcode{"maximum step size"}
Setting the maximum stepsize will avoid passing over very large
regions  (default is not specified).

@item @qcode{"minimum step size"}
The minimum absolute step size allowed (default is 0).

@item @qcode{"step limit"}
Maximum number of steps allowed (default is 100000).

@item @qcode{"jacobian type"}
A string specifying the type of Jacobian used with the stiff backward
differentiation formula (BDF) integration method.  Valid values are

@table @asis
@item @qcode{"full"}
The default.  All partial derivatives are approximated or used from the
user-supplied Jacobian function.

@item @qcode{"banded"}
Only the diagonal and the number of lower and upper subdiagonals specified by
the options @qcode{"lower jacobian subdiagonals"} and @qcode{"upper jacobian
subdiagonals"}, respectively, are approximated or used from the user-supplied
Jacobian function.  A user-supplied Jacobian function may set all other
partial derivatives to arbitrary values.

@item @qcode{"diagonal"}
If a Jacobian function is supplied by the user, this setting has no effect.
A Jacobian approximated by @code{lsode} is restricted to the diagonal, where
each partial derivative is computed by applying a finite change to all
elements of the state together; if the real Jacobian is indeed always diagonal,
this has the same effect as applying the finite change only to the respective
element of the state, but is more efficient.
@end table

@item @qcode{"lower jacobian subdiagonals"}
Number of lower subdiagonals used if option @qcode{"jacobian type"} is set to
@qcode{"banded"}.  The default is zero.

@item @qcode{"upper jacobian subdiagonals"}
Number of upper subdiagonals used if option @qcode{"jacobian type"} is set to
@qcode{"banded"}.  The default is zero.

@end table
@end deftypefn


Here is an example of solving a set of three differential equations using
@code{lsode}.  Given the function

@cindex oregonator

@example
@group
## oregonator differential equation
function xdot = f (x, t)

  xdot = zeros (3,1);

  xdot(1) = 77.27 * (x(2) - x(1)*x(2) + x(1) ...
            - 8.375e-06*x(1)^2);
  xdot(2) = (x(3) - x(1)*x(2) - x(2)) / 77.27;
  xdot(3) = 0.161*(x(1) - x(3));

endfunction
@end group
@end example

@noindent
and the initial condition @code{x0 = [ 4; 1.1; 4 ]}, the set of
equations can be integrated using the command

@example
@group
t = linspace (0, 500, 1000);

y = lsode ("f", x0, t);
@end group
@end example

If you try this, you will see that the value of the result changes
dramatically between @var{t} = 0 and 5, and again around @var{t} = 305.
A more efficient set of output points might be

@example
@group
t = [0, logspace(-1, log10(303), 150), ...
        logspace(log10(304), log10(500), 150)];
@end group
@end example

An m-file for the differential equation used above is included with the
Octave distribution in the examples directory under the name
@file{oregonator.m}.


@node Differential-Algebraic Equations
@section Differential-Algebraic Equations

The function @code{daspk} can be used to solve DAEs of the form
@tex
$$
 0 = f (\dot{x}, x, t), \qquad x(t=0) = x_0, \dot{x}(t=0) = \dot{x}_0
$$
@end tex
@ifnottex

@example
0 = f (x-dot, x, t),    x(t=0) = x_0, x-dot(t=0) = x-dot_0
@end example

@end ifnottex

@noindent
where
@tex
$\dot{x} = {dx \over dt}$
@end tex
@ifnottex
@math{x-dot}
@end ifnottex
is the derivative of @math{x}.  The equation is solved using
@nospell{Petzold's} DAE solver @sc{daspk}.

@c daspk libinterp/corefcn/daspk.cc
@anchor{XREFdaspk}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {[@var{x}, @var{xdot}, @var{istate}, @var{msg}] =} daspk (@var{fcn}, @var{x_0}, @var{xdot_0}, @var{t}, @var{t_crit})
Solve a set of differential-algebraic equations.

@code{daspk} solves the set of equations
@tex
$$ 0 = f (x, \dot{x}, t) $$
with
$$ x(t_0) = x_0, \dot{x}(t_0) = \dot{x}_0 $$
@end tex
@ifnottex

@example
0 = f (x, xdot, t)
@end example

@noindent
with

@example
x(t_0) = x_0, xdot(t_0) = xdot_0
@end example

@end ifnottex
The solution is returned in the matrices @var{x} and @var{xdot},
with each row in the result matrices corresponding to one of the
elements in the vector @var{t}.  The first element of @var{t}
should be @math{t_0} and correspond to the initial state of the
system @var{x_0} and its derivative @var{xdot_0}, so that the first
row of the output @var{x} is @var{x_0} and the first row
of the output @var{xdot} is @var{xdot_0}.

The first argument, @var{fcn}, is a string, inline, or function handle
that names the function @math{f} to call to compute the vector of
residuals for the set of equations.  It must have the form

@example
@var{res} = f (@var{x}, @var{xdot}, @var{t})
@end example

@noindent
in which @var{x}, @var{xdot}, and @var{res} are vectors, and @var{t} is a
scalar.

If @var{fcn} is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function @math{f} described above, and the second element names a
function to compute the modified Jacobian
@tex
$$
J = {\partial f \over \partial x}
  + c {\partial f \over \partial \dot{x}}
$$
@end tex
@ifnottex

@example
@group
      df       df
jac = -- + c ------
      dx     d xdot
@end group
@end example

@end ifnottex

The modified Jacobian function must have the form

@example
@group

@var{jac} = j (@var{x}, @var{xdot}, @var{t}, @var{c})

@end group
@end example

The second and third arguments to @code{daspk} specify the initial
condition of the states and their derivatives, and the fourth argument
specifies a vector of output times at which the solution is desired,
including the time corresponding to the initial condition.

The set of initial states and derivatives are not strictly required to
be consistent.  If they are not consistent, you must use the
@code{daspk_options} function to provide additional information so
that @code{daspk} can compute a consistent starting point.

The fifth argument is optional, and may be used to specify a set of
times that the DAE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.

After a successful computation, the value of @var{istate} will be
greater than zero (consistent with the Fortran version of @sc{daspk}).

If the computation is not successful, the value of @var{istate} will be
less than zero and @var{msg} will contain additional information.

You can use the function @code{daspk_options} to set optional
parameters for @code{daspk}.
@xseealso{@ref{XREFdassl,,dassl}}
@end deftypefn


@c daspk_options libinterp/corefcn/DASPK-opts.cc
@anchor{XREFdaspk_options}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {} daspk_options ()
@deftypefnx {} {val =} daspk_options (@var{opt})
@deftypefnx {} {} daspk_options (@var{opt}, @var{val})
Query or set options for the function @code{daspk}.

When called with no arguments, the names of all available options and
their current values are displayed.

Given one argument, return the value of the option @var{opt}.

When called with two arguments, @code{daspk_options} sets the option
@var{opt} to value @var{val}.

Options include

@table @asis
@item @qcode{"absolute tolerance"}
Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.

@item @qcode{"relative tolerance"}
Relative tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.

The local error test applied at each integration step is

@example
@group
  abs (local error in x(i))
       <= rtol(i) * abs (Y(i)) + atol(i)
@end group
@end example

@item @qcode{"compute consistent initial condition"}
Denoting the differential variables in the state vector by @samp{Y_d}
and the algebraic variables by @samp{Y_a}, @code{ddaspk} can solve
one of two initialization problems:

@enumerate
@item Given Y_d, calculate Y_a and Y'_d

@item Given Y', calculate Y.
@end enumerate

In either case, initial values for the given components are input, and
initial guesses for the unknown components must also be provided as
input.  Set this option to 1 to solve the first problem, or 2 to solve
the second (the default is 0, so you must provide a set of
initial conditions that are consistent).

If this option is set to a nonzero value, you must also set the
@qcode{"algebraic variables"} option to declare which variables in the
problem are algebraic.

@item @qcode{"use initial condition heuristics"}
Set to a nonzero value to use the initial condition heuristics options
described below.

@item @qcode{"initial condition heuristics"}
A vector of the following parameters that can be used to control the
initial condition calculation.

@table @code
@item MXNIT
Maximum number of Newton iterations (default is 5).

@item MXNJ
Maximum number of Jacobian evaluations (default is 6).

@item MXNH
Maximum number of values of the artificial stepsize parameter to be
tried if the @qcode{"compute consistent initial condition"} option has
been set to 1 (default is 5).

Note that the maximum total number of Newton iterations allowed is
@code{MXNIT*MXNJ*MXNH} if the @qcode{"compute consistent initial
condition"} option has been set to 1 and @code{MXNIT*MXNJ} if it is
set to 2.

@item LSOFF
Set to a nonzero value to disable the linesearch algorithm (default is
0).

@item STPTOL
Minimum scaled step in linesearch algorithm (default is eps^(2/3)).

@item EPINIT
Swing factor in the Newton iteration convergence test.  The test is
applied to the residual vector, premultiplied by the approximate
Jacobian.  For convergence, the weighted RMS norm of this vector
(scaled by the error weights) must be less than @code{EPINIT*EPCON},
where @code{EPCON} = 0.33 is the analogous test constant used in the
time steps.  The default is @code{EPINIT} = 0.01.
@end table

@item @qcode{"print initial condition info"}
Set this option to a nonzero value to display detailed information
about the initial condition calculation (default is 0).

@item @qcode{"exclude algebraic variables from error test"}
Set to a nonzero value to exclude algebraic variables from the error
test.  You must also set the @qcode{"algebraic variables"} option to
declare which variables in the problem are algebraic (default is 0).

@item @qcode{"algebraic variables"}
A vector of the same length as the state vector.  A nonzero element
indicates that the corresponding element of the state vector is an
algebraic variable (i.e., its derivative does not appear explicitly
in the equation set).

This option is required by the
@qcode{"compute consistent initial condition"} and
@qcode{"exclude algebraic variables from error test"} options.

@item @qcode{"enforce inequality constraints"}
Set to one of the following values to enforce the inequality
constraints specified by the @qcode{"inequality constraint types"}
option (default is 0).

@enumerate
@item To have constraint checking only in the initial condition calculation.

@item To enforce constraint checking during the integration.

@item To enforce both options 1 and 2.
@end enumerate

@item @qcode{"inequality constraint types"}
A vector of the same length as the state specifying the type of
inequality constraint.  Each element of the vector corresponds to an
element of the state and should be assigned one of the following
codes

@table @asis
@item -2
Less than zero.

@item -1
Less than or equal to zero.

@item 0
Not constrained.

@item 1
Greater than or equal to zero.

@item 2
Greater than zero.
@end table

This option only has an effect if the
@qcode{"enforce inequality constraints"} option is nonzero.

@item @qcode{"initial step size"}
Differential-algebraic problems may occasionally suffer from severe
scaling difficulties on the first step.  If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize (default is computed
automatically).

@item @qcode{"maximum order"}
Restrict the maximum order of the solution method.  This option must
be between 1 and 5, inclusive (default is 5).

@item @qcode{"maximum step size"}
Setting the maximum stepsize will avoid passing over very large
regions (default is not specified).
@end table
@end deftypefn


Octave also includes @sc{dassl}, an earlier version of @sc{daspk},
and @sc{dasrt}, which can be used to solve DAEs with constraints
(stopping conditions).

@c dassl libinterp/corefcn/dassl.cc
@anchor{XREFdassl}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {[@var{x}, @var{xdot}, @var{istate}, @var{msg}] =} dassl (@var{fcn}, @var{x_0}, @var{xdot_0}, @var{t}, @var{t_crit})
Solve a set of differential-algebraic equations.

@code{dassl} solves the set of equations
@tex
$$ 0 = f (x, \dot{x}, t) $$
with
$$ x(t_0) = x_0, \dot{x}(t_0) = \dot{x}_0 $$
@end tex
@ifnottex

@example
0 = f (x, xdot, t)
@end example

@noindent
with

@example
x(t_0) = x_0, xdot(t_0) = xdot_0
@end example

@end ifnottex
The solution is returned in the matrices @var{x} and @var{xdot},
with each row in the result matrices corresponding to one of the
elements in the vector @var{t}.  The first element of @var{t}
should be @math{t_0} and correspond to the initial state of the
system @var{x_0} and its derivative @var{xdot_0}, so that the first
row of the output @var{x} is @var{x_0} and the first row
of the output @var{xdot} is @var{xdot_0}.

The first argument, @var{fcn}, is a string, inline, or function handle
that names the function @math{f} to call to compute the vector of
residuals for the set of equations.  It must have the form

@example
@var{res} = f (@var{x}, @var{xdot}, @var{t})
@end example

@noindent
in which @var{x}, @var{xdot}, and @var{res} are vectors, and @var{t} is a
scalar.

If @var{fcn} is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function @math{f} described above, and the second element names a
function to compute the modified Jacobian
@tex
$$
J = {\partial f \over \partial x}
  + c {\partial f \over \partial \dot{x}}
$$
@end tex
@ifnottex

@example
@group
      df       df
jac = -- + c ------
      dx     d xdot
@end group
@end example

@end ifnottex

The modified Jacobian function must have the form

@example
@group

@var{jac} = j (@var{x}, @var{xdot}, @var{t}, @var{c})

@end group
@end example

The second and third arguments to @code{dassl} specify the initial
condition of the states and their derivatives, and the fourth argument
specifies a vector of output times at which the solution is desired,
including the time corresponding to the initial condition.

The set of initial states and derivatives are not strictly required to
be consistent.  In practice, however, @sc{dassl} is not very good at
determining a consistent set for you, so it is best if you ensure that
the initial values result in the function evaluating to zero.

The fifth argument is optional, and may be used to specify a set of
times that the DAE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.

After a successful computation, the value of @var{istate} will be
greater than zero (consistent with the Fortran version of @sc{dassl}).

If the computation is not successful, the value of @var{istate} will be
less than zero and @var{msg} will contain additional information.

You can use the function @code{dassl_options} to set optional
parameters for @code{dassl}.
@xseealso{@ref{XREFdaspk,,daspk}, @ref{XREFdasrt,,dasrt}, @ref{XREFlsode,,lsode}}
@end deftypefn


@c dassl_options libinterp/corefcn/DASSL-opts.cc
@anchor{XREFdassl_options}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {} dassl_options ()
@deftypefnx {} {val =} dassl_options (@var{opt})
@deftypefnx {} {} dassl_options (@var{opt}, @var{val})
Query or set options for the function @code{dassl}.

When called with no arguments, the names of all available options and
their current values are displayed.

Given one argument, return the value of the option @var{opt}.

When called with two arguments, @code{dassl_options} sets the option
@var{opt} to value @var{val}.

Options include

@table @asis
@item @qcode{"absolute tolerance"}
Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.

@item @qcode{"relative tolerance"}
Relative tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.

The local error test applied at each integration step is

@example
@group
  abs (local error in x(i))
       <= rtol(i) * abs (Y(i)) + atol(i)
@end group
@end example

@item @qcode{"compute consistent initial condition"}
If nonzero, @code{dassl} will attempt to compute a consistent set of initial
conditions.  This is generally not reliable, so it is best to provide
a consistent set and leave this option set to zero.

@item @qcode{"enforce nonnegativity constraints"}
If you know that the solutions to your equations will always be
non-negative, it may help to set this parameter to a nonzero
value.  However, it is probably best to try leaving this option set to
zero first, and only setting it to a nonzero value if that doesn't
work very well.

@item @qcode{"initial step size"}
Differential-algebraic problems may occasionally suffer from severe
scaling difficulties on the first step.  If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize.

@item @qcode{"maximum order"}
Restrict the maximum order of the solution method.  This option must
be between 1 and 5, inclusive.

@item @qcode{"maximum step size"}
Setting the maximum stepsize will avoid passing over very large
regions  (default is not specified).

@item @qcode{"step limit"}
Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.
@end table
@end deftypefn


@c dasrt libinterp/corefcn/dasrt.cc
@anchor{XREFdasrt}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{x}, @var{xdot}, @var{t_out}, @var{istat}, @var{msg}] =} dasrt (@var{fcn}, @var{g}, @var{x_0}, @var{xdot_0}, @var{t})
@deftypefnx {} {@dots{} =} dasrt (@var{fcn}, @var{g}, @var{x_0}, @var{xdot_0}, @var{t}, @var{t_crit})
@deftypefnx {} {@dots{} =} dasrt (@var{fcn}, @var{x_0}, @var{xdot_0}, @var{t})
@deftypefnx {} {@dots{} =} dasrt (@var{fcn}, @var{x_0}, @var{xdot_0}, @var{t}, @var{t_crit})
Solve a set of differential-algebraic equations.

@code{dasrt} solves the set of equations
@tex
$$ 0 = f (x, \dot{x}, t) $$
with
$$ x(t_0) = x_0, \dot{x}(t_0) = \dot{x}_0 $$
@end tex
@ifnottex

@example
0 = f (x, xdot, t)
@end example

@noindent
with

@example
x(t_0) = x_0, xdot(t_0) = xdot_0
@end example

@end ifnottex
with functional stopping criteria (root solving).

The solution is returned in the matrices @var{x} and @var{xdot},
with each row in the result matrices corresponding to one of the
elements in the vector @var{t_out}.  The first element of @var{t}
should be @math{t_0} and correspond to the initial state of the
system @var{x_0} and its derivative @var{xdot_0}, so that the first
row of the output @var{x} is @var{x_0} and the first row
of the output @var{xdot} is @var{xdot_0}.

The vector @var{t} provides an upper limit on the length of the
integration.  If the stopping condition is met, the vector
@var{t_out} will be shorter than @var{t}, and the final element of
@var{t_out} will be the point at which the stopping condition was met,
and may not correspond to any element of the vector @var{t}.

The first argument, @var{fcn}, is a string, inline, or function handle
that names the function @math{f} to call to compute the vector of
residuals for the set of equations.  It must have the form

@example
@var{res} = f (@var{x}, @var{xdot}, @var{t})
@end example

@noindent
in which @var{x}, @var{xdot}, and @var{res} are vectors, and @var{t} is a
scalar.

If @var{fcn} is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function @math{f} described above, and the second element names a
function to compute the modified Jacobian
@tex
$$
J = {\partial f \over \partial x}
  + c {\partial f \over \partial \dot{x}}
$$
@end tex
@ifnottex

@example
@group
      df       df
jac = -- + c ------
      dx     d xdot
@end group
@end example

@end ifnottex

The modified Jacobian function must have the form

@example
@group

@var{jac} = j (@var{x}, @var{xdot}, @var{t}, @var{c})

@end group
@end example

The optional second argument names a function that defines the
constraint functions whose roots are desired during the integration.
This function must have the form

@example
@var{g_out} = g (@var{x}, @var{t})
@end example

@noindent
and return a vector of the constraint function values.
If the value of any of the constraint functions changes sign, @sc{dasrt}
will attempt to stop the integration at the point of the sign change.

If the name of the constraint function is omitted, @code{dasrt} solves
the same problem as @code{daspk} or @code{dassl}.

Note that because of numerical errors in the constraint functions
due to round-off and integration error, @sc{dasrt} may return false
roots, or return the same root at two or more nearly equal values of
@var{T}.  If such false roots are suspected, the user should consider
smaller error tolerances or higher precision in the evaluation of the
constraint functions.

If a root of some constraint function defines the end of the problem,
the input to @sc{dasrt} should nevertheless allow integration to a
point slightly past that root, so that @sc{dasrt} can locate the root
by interpolation.

The third and fourth arguments to @code{dasrt} specify the initial
condition of the states and their derivatives, and the fourth argument
specifies a vector of output times at which the solution is desired,
including the time corresponding to the initial condition.

The set of initial states and derivatives are not strictly required to
be consistent.  In practice, however, @sc{dassl} is not very good at
determining a consistent set for you, so it is best if you ensure that
the initial values result in the function evaluating to zero.

The sixth argument is optional, and may be used to specify a set of
times that the DAE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.

After a successful computation, the value of @var{istate} will be
greater than zero (consistent with the Fortran version of @sc{dassl}).

If the computation is not successful, the value of @var{istate} will be
less than zero and @var{msg} will contain additional information.

You can use the function @code{dasrt_options} to set optional
parameters for @code{dasrt}.
@xseealso{@ref{XREFdasrt_options,,dasrt_options}, @ref{XREFdaspk,,daspk}, @ref{XREFdasrt,,dasrt}, @ref{XREFlsode,,lsode}}
@end deftypefn


@c dasrt_options libinterp/corefcn/DASRT-opts.cc
@anchor{XREFdasrt_options}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {} dasrt_options ()
@deftypefnx {} {val =} dasrt_options (@var{opt})
@deftypefnx {} {} dasrt_options (@var{opt}, @var{val})
Query or set options for the function @code{dasrt}.

When called with no arguments, the names of all available options and
their current values are displayed.

Given one argument, return the value of the option @var{opt}.

When called with two arguments, @code{dasrt_options} sets the option
@var{opt} to value @var{val}.

Options include

@table @asis
@item @qcode{"absolute tolerance"}
Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.

@item @qcode{"relative tolerance"}
Relative tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.

The local error test applied at each integration step is

@example
@group
  abs (local error in x(i)) <= ...
      rtol(i) * abs (Y(i)) + atol(i)
@end group
@end example

@item @qcode{"initial step size"}
Differential-algebraic problems may occasionally suffer from severe
scaling difficulties on the first step.  If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize.

@item @qcode{"maximum order"}
Restrict the maximum order of the solution method.  This option must
be between 1 and 5, inclusive.

@item @qcode{"maximum step size"}
Setting the maximum stepsize will avoid passing over very large
regions.

@item @qcode{"step limit"}
Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.
@end table
@end deftypefn


See @nospell{K. E. Brenan}, et al., @cite{Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations}, North-Holland (1989),
@nospell{DOI}: @url{https://doi.org/10.1137/1.9781611971224},
for more information about the implementation of @sc{dassl}.


@node Matlab-compatible solvers
@section Matlab-compatible solvers

Octave also provides a set of solvers for initial value problems for ordinary
differential equations (ODEs) that have a @sc{matlab}-compatible interface.
The options for this class of methods are set using the functions.

@itemize
  @item @ref{XREFodeset,,odeset}

  @item @ref{XREFodeget,,odeget}
@end itemize

Currently implemented solvers are:

@itemize
  @item @nospell{Runge-Kutta} methods

  @itemize
    @item @ref{XREFode45,,ode45} integrates a system of non-stiff ODEs or
    index-1 differential-algebraic equations (DAEs) using the high-order,
    variable-step @nospell{Dormand-Prince} method.  It requires six function
    evaluations per integration step, but may take larger steps on smooth
    problems than @code{ode23}: potentially offering improved efficiency at
    smaller tolerances.

    @item @ref{XREFode23,,ode23} integrates a system of non-stiff ODEs or (or
    index-1 DAEs).  It uses the third-order @nospell{Bogacki-Shampine} method
    and adapts the local step size in order to satisfy a user-specified
    tolerance.  The solver requires three function evaluations per integration
    step.

    @item @ref{XREFode23s,,ode23s} integrates a system of stiff ODEs (or
    index-1 DAEs) using a modified second-order @nospell{Rosenbrock} method.
  @end itemize

  @item Linear multistep methods

  @itemize
    @item @ref{XREFode15s,,ode15s} integrates a system of stiff ODEs (or
    index-1 DAEs) using a variable step, variable order method based on
    Backward Difference Formulas (BDF).

    @item @ref{XREFode15i,,ode15i} integrates a system of fully-implicit ODEs
    (or index-1 DAEs) using the same variable step, variable order method as
    @code{ode15s}.  @ref{XREFdecic,,decic} can be used to compute consistent
    initial conditions for @code{ode15i}.
  @end itemize
@end itemize

Detailed information on the solvers are given in @nospell{L. F. Shampine} and
@nospell{M. W. Reichelt}, @cite{The MATLAB ODE Suite}, SIAM Journal on
Scientific Computing, Vol. 18, 1997, pp. 1–22,
@nospell{DOI}: @url{https://doi.org/10.1137/S1064827594276424}.

@c ode45 scripts/ode/ode45.m
@anchor{XREFode45}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{t}, @var{y}] =} ode45 (@var{fcn}, @var{trange}, @var{init})
@deftypefnx {} {[@var{t}, @var{y}] =} ode45 (@var{fcn}, @var{trange}, @var{init}, @var{ode_opt})
@deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode45 (@dots{})
@deftypefnx {} {@var{solution} =} ode45 (@dots{})
@deftypefnx {} {} ode45 (@dots{})

Solve a set of non-stiff Ordinary Differential Equations (non-stiff ODEs)
with the well known explicit @nospell{Dormand-Prince} method of order 4.

@var{fcn} is a function handle, inline function, or string containing the
name of the function that defines the ODE: @code{y' = f(t,y)}.  The function
must accept two inputs where the first is time @var{t} and the second is a
column vector of unknowns @var{y}.

@var{trange} specifies the time interval over which the ODE will be
evaluated.  Typically, it is a two-element vector specifying the initial and
final times (@code{[tinit, tfinal]}).  If there are more than two elements
then the solution will also be evaluated at these intermediate time
instances.

By default, @code{ode45} uses an adaptive timestep with the
@code{integrate_adaptive} algorithm.  The tolerance for the timestep
computation may be changed by using the options @qcode{"RelTol"} and
@qcode{"AbsTol"}.

@var{init} contains the initial value for the unknowns.  If it is a row
vector then the solution @var{y} will be a matrix in which each column is
the solution for the corresponding initial value in @var{init}.

The optional fourth argument @var{ode_opt} specifies non-default options to
the ODE solver.  It is a structure generated by @code{odeset}.

The function typically returns two outputs.  Variable @var{t} is a
column vector and contains the times where the solution was found.  The
output @var{y} is a matrix in which each column refers to a different
unknown of the problem and each row corresponds to a time in @var{t}.

The output can also be returned as a structure @var{solution} which has a
field @var{x} containing a row vector of times where the solution was
evaluated and a field @var{y} containing the solution matrix such that each
column corresponds to a time in @var{x}.  Use
@w{@code{fieldnames (@var{solution})}}@ to see the other fields and
additional information returned.

If no output arguments are requested, and no @qcode{"OutputFcn"} is
specified in @var{ode_opt}, then the @qcode{"OutputFcn"} is set to
@code{odeplot} and the results of the solver are plotted immediately.

If using the @qcode{"Events"} option then three additional outputs may be
returned.  @var{te} holds the time when an Event function returned a zero.
@var{ye} holds the value of the solution at time @var{te}.  @var{ie}
contains an index indicating which Event function was triggered in the case
of multiple Event functions.

Example: Solve the @nospell{Van der Pol} equation

@example
@group
fvdp = @@(@var{t},@var{y}) [@var{y}(2); (1 - @var{y}(1)^2) * @var{y}(2) - @var{y}(1)];
[@var{t},@var{y}] = ode45 (fvdp, [0, 20], [2, 0]);
@end group
@end example
@xseealso{@ref{XREFodeset,,odeset}, @ref{XREFodeget,,odeget}, @ref{XREFode23,,ode23}, @ref{XREFode15s,,ode15s}}
@end deftypefn


@c ode23 scripts/ode/ode23.m
@anchor{XREFode23}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{t}, @var{y}] =} ode23 (@var{fcn}, @var{trange}, @var{init})
@deftypefnx {} {[@var{t}, @var{y}] =} ode23 (@var{fcn}, @var{trange}, @var{init}, @var{ode_opt})
@deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode23 (@dots{})
@deftypefnx {} {@var{solution} =} ode23 (@dots{})
@deftypefnx {} {} ode23 (@dots{})

Solve a set of non-stiff Ordinary Differential Equations (non-stiff ODEs)
with the well known explicit @nospell{Bogacki-Shampine} method of order 3.

@var{fcn} is a function handle, inline function, or string containing the
name of the function that defines the ODE: @code{y' = f(t,y)}.  The function
must accept two inputs where the first is time @var{t} and the second is a
column vector of unknowns @var{y}.

@var{trange} specifies the time interval over which the ODE will be
evaluated.  Typically, it is a two-element vector specifying the initial and
final times (@code{[tinit, tfinal]}).  If there are more than two elements
then the solution will also be evaluated at these intermediate time
instances.

By default, @code{ode23} uses an adaptive timestep with the
@code{integrate_adaptive} algorithm.  The tolerance for the timestep
computation may be changed by using the options @qcode{"RelTol"} and
@qcode{"AbsTol"}.

@var{init} contains the initial value for the unknowns.  If it is a row
vector then the solution @var{y} will be a matrix in which each column is
the solution for the corresponding initial value in @var{init}.

The optional fourth argument @var{ode_opt} specifies non-default options to
the ODE solver.  It is a structure generated by @code{odeset}.

The function typically returns two outputs.  Variable @var{t} is a
column vector and contains the times where the solution was found.  The
output @var{y} is a matrix in which each column refers to a different
unknown of the problem and each row corresponds to a time in @var{t}.

The output can also be returned as a structure @var{solution} which has a
field @var{x} containing a row vector of times where the solution was
evaluated and a field @var{y} containing the solution matrix such that each
column corresponds to a time in @var{x}.  Use
@w{@code{fieldnames (@var{solution})}}@ to see the other fields and
additional information returned.

If no output arguments are requested, and no @qcode{"OutputFcn"} is
specified in @var{ode_opt}, then the @qcode{"OutputFcn"} is set to
@code{odeplot} and the results of the solver are plotted immediately.

If using the @qcode{"Events"} option then three additional outputs may be
returned.  @var{te} holds the time when an Event function returned a zero.
@var{ye} holds the value of the solution at time @var{te}.  @var{ie}
contains an index indicating which Event function was triggered in the case
of multiple Event functions.

Example: Solve the @nospell{Van der Pol} equation

@example
@group
fvdp = @@(@var{t},@var{y}) [@var{y}(2); (1 - @var{y}(1)^2) * @var{y}(2) - @var{y}(1)];
[@var{t},@var{y}] = ode23 (fvdp, [0, 20], [2, 0]);
@end group
@end example

Reference: For the definition of this method see
@url{https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods}.
@xseealso{@ref{XREFodeset,,odeset}, @ref{XREFodeget,,odeget}, @ref{XREFode45,,ode45}, @ref{XREFode15s,,ode15s}}
@end deftypefn


@c ode23s scripts/ode/ode23s.m
@anchor{XREFode23s}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{t}, @var{y}] =} ode23s (@var{fcn}, @var{trange}, @var{init})
@deftypefnx {} {[@var{t}, @var{y}] =} ode23s (@var{fcn}, @var{trange}, @var{init}, @var{ode_opt})
@deftypefnx {} {[@var{t}, @var{y}] =} ode23s (@dots{}, @var{par1}, @var{par2}, @dots{})
@deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode23s (@dots{})
@deftypefnx {} {@var{solution} =} ode23s (@dots{})

Solve a set of stiff Ordinary Differential Equations (stiff ODEs) with a
@nospell{Rosenbrock} method of order (2,3).

@var{fcn} is a function handle, inline function, or string containing the
name of the function that defines the ODE: @code{M y' = f(t,y)}.  The
function must accept two inputs where the first is time @var{t} and the
second is a column vector of unknowns @var{y}.  @var{M} is a constant mass
matrix, non-singular and possibly sparse.  Set the field @qcode{"Mass"} in
@var{odeopts} using @var{odeset} to specify a mass matrix.

@var{trange} specifies the time interval over which the ODE will be
evaluated.  Typically, it is a two-element vector specifying the initial
and final times (@code{[tinit, tfinal]}).  If there are more than two
elements then the solution will also be evaluated at these intermediate
time instances using an interpolation procedure of the same order as the
one of the solver.

By default, @code{ode23s} uses an adaptive timestep with the
@code{integrate_adaptive} algorithm.  The tolerance for the timestep
computation may be changed by using the options @qcode{"RelTol"} and
@qcode{"AbsTol"}.

@var{init} contains the initial value for the unknowns.  If it is a row
vector then the solution @var{y} will be a matrix in which each column is
the solution for the corresponding initial value in @var{init}.

The optional fourth argument @var{ode_opt} specifies non-default options to
the ODE solver.  It is a structure generated by @code{odeset}.
@code{ode23s} will ignore the following options: @qcode{"BDF"},
@qcode{"InitialSlope"}, @qcode{"MassSingular"}, @qcode{"MStateDependence"},
@qcode{"MvPattern"}, @qcode{"MaxOrder"}, @qcode{"Non-negative"}.

The function typically returns two outputs.  Variable @var{t} is a
column vector and contains the times where the solution was found.  The
output @var{y} is a matrix in which each column refers to a different
unknown of the problem and each row corresponds to a time in @var{t}.  If
@var{trange} specifies intermediate time steps, only those will be returned.

The output can also be returned as a structure @var{solution} which has a
field @var{x} containing a row vector of times where the solution was
evaluated and a field @var{y} containing the solution matrix such that each
column corresponds to a time in @var{x}.  Use
@w{@code{fieldnames (@var{solution})}}@ to see the other fields and
additional information returned.

If using the @qcode{"Events"} option then three additional outputs may be
returned.  @var{te} holds the time when an Event function returned a zero.
@var{ye} holds the value of the solution at time @var{te}.  @var{ie}
contains an index indicating which Event function was triggered in the case
of multiple Event functions.

Example: Solve the stiff @nospell{Van der Pol} equation

@example
@group
f = @@(@var{t},@var{y}) [@var{y}(2); 1000*(1 - @var{y}(1)^2) * @var{y}(2) - @var{y}(1)];
opt = odeset ('Mass', [1 0; 0 1], 'MaxStep', 1e-1);
[vt, vy] = ode23s (f, [0 2000], [2 0], opt);
@end group
@end example
@xseealso{@ref{XREFodeset,,odeset}, @ref{XREFdaspk,,daspk}, @ref{XREFdassl,,dassl}}
@end deftypefn


@c ode15s scripts/ode/ode15s.m
@anchor{XREFode15s}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{t}, @var{y}] =} ode15s (@var{fcn}, @var{trange}, @var{y0})
@deftypefnx {} {[@var{t}, @var{y}] =} ode15s (@var{fcn}, @var{trange}, @var{y0}, @var{ode_opt})
@deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode15s (@dots{})
@deftypefnx {} {@var{solution} =} ode15s (@dots{})
@deftypefnx {} {} ode15s (@dots{})
Solve a set of stiff Ordinary Differential Equations (ODEs) or stiff
semi-explicit index 1 Differential Algebraic Equations (DAEs).

@code{ode15s} uses a variable step, variable order BDF (Backward
Differentiation Formula) method that ranges from order 1 to 5.

@var{fcn} is a function handle, inline function, or string containing the
name of the function that defines the ODE: @code{y' = f(t,y)}.  The function
must accept two inputs where the first is time @var{t} and the second is a
column vector of unknowns @var{y}.

@var{trange} specifies the time interval over which the ODE will be
evaluated.  Typically, it is a two-element vector specifying the initial and
final times (@code{[tinit, tfinal]}).  If there are more than two elements
then the solution will also be evaluated at these intermediate time
instances.

@var{init} contains the initial value for the unknowns.  If it is a row
vector then the solution @var{y} will be a matrix in which each column is
the solution for the corresponding initial value in @var{init}.

The optional fourth argument @var{ode_opt} specifies non-default options to
the ODE solver.  It is a structure generated by @code{odeset}.

The function typically returns two outputs.  Variable @var{t} is a
column vector and contains the times where the solution was found.  The
output @var{y} is a matrix in which each column refers to a different
unknown of the problem and each row corresponds to a time in @var{t}.

The output can also be returned as a structure @var{solution} which has a
field @var{x} containing a row vector of times where the solution was
evaluated and a field @var{y} containing the solution matrix such that each
column corresponds to a time in @var{x}.  Use
@w{@code{fieldnames (@var{solution})}}@ to see the other fields and
additional information returned.

If no output arguments are requested, and no @qcode{"OutputFcn"} is
specified in @var{ode_opt}, then the @qcode{"OutputFcn"} is set to
@code{odeplot} and the results of the solver are plotted immediately.

If using the @qcode{"Events"} option then three additional outputs may be
returned.  @var{te} holds the time when an Event function returned a zero.
@var{ye} holds the value of the solution at time @var{te}.  @var{ie}
contains an index indicating which Event function was triggered in the case
of multiple Event functions.

Example: Solve @nospell{Robertson's} equations:

@smallexample
@group
function r = robertson_dae (@var{t}, @var{y})
  r = [ -0.04*@var{y}(1) + 1e4*@var{y}(2)*@var{y}(3)
         0.04*@var{y}(1) - 1e4*@var{y}(2)*@var{y}(3) - 3e7*@var{y}(2)^2
@var{y}(1) + @var{y}(2) + @var{y}(3) - 1 ];
endfunction
opt = odeset ("Mass", [1 0 0; 0 1 0; 0 0 0], "MStateDependence", "none");
[@var{t},@var{y}] = ode15s (@@robertson_dae, [0, 1e3], [1; 0; 0], opt);
@end group
@end smallexample
@xseealso{@ref{XREFdecic,,decic}, @ref{XREFodeset,,odeset}, @ref{XREFodeget,,odeget}, @ref{XREFode23,,ode23}, @ref{XREFode45,,ode45}}
@end deftypefn


@c ode15i scripts/ode/ode15i.m
@anchor{XREFode15i}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{t}, @var{y}] =} ode15i (@var{fcn}, @var{trange}, @var{y0}, @var{yp0})
@deftypefnx {} {[@var{t}, @var{y}] =} ode15i (@var{fcn}, @var{trange}, @var{y0}, @var{yp0}, @var{ode_opt})
@deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode15i (@dots{})
@deftypefnx {} {@var{solution} =} ode15i (@dots{})
@deftypefnx {} {} ode15i (@dots{})
Solve a set of fully-implicit Ordinary Differential Equations (ODEs) or
index 1 Differential Algebraic Equations (DAEs).

@code{ode15i} uses a variable step, variable order BDF (Backward
Differentiation Formula) method that ranges from order 1 to 5.

@var{fcn} is a function handle, inline function, or string containing the
name of the function that defines the ODE: @code{0 = f(t,y,yp)}.  The
function must accept three inputs where the first is time @var{t}, the
second is the function value @var{y} (a column vector), and the third
is the derivative value @var{yp} (a column vector).

@var{trange} specifies the time interval over which the ODE will be
evaluated.  Typically, it is a two-element vector specifying the initial and
final times (@code{[tinit, tfinal]}).  If there are more than two elements
then the solution will also be evaluated at these intermediate time
instances.

@var{y0} and @var{yp0} contain the initial values for the unknowns @var{y}
and @var{yp}.  If they are row vectors then the solution @var{y} will be a
matrix in which each column is the solution for the corresponding initial
value in @var{y0} and @var{yp0}.

@var{y0} and @var{yp0} must be consistent initial conditions, meaning that
@code{f(t,y0,yp0) = 0} is satisfied.  The function @code{decic} may be used
to compute consistent initial conditions given initial guesses.

The optional fifth argument @var{ode_opt} specifies non-default options to
the ODE solver.  It is a structure generated by @code{odeset}.

The function typically returns two outputs.  Variable @var{t} is a
column vector and contains the times where the solution was found.  The
output @var{y} is a matrix in which each column refers to a different
unknown of the problem and each row corresponds to a time in @var{t}.

The output can also be returned as a structure @var{solution} which has a
field @var{x} containing a row vector of times where the solution was
evaluated and a field @var{y} containing the solution matrix such that each
column corresponds to a time in @var{x}.  Use
@w{@code{fieldnames (@var{solution})}}@ to see the other fields and
additional information returned.

If no output arguments are requested, and no @qcode{"OutputFcn"} is
specified in @var{ode_opt}, then the @qcode{"OutputFcn"} is set to
@code{odeplot} and the results of the solver are plotted immediately.

If using the @qcode{"Events"} option then three additional outputs may be
returned.  @var{te} holds the time when an Event function returned a zero.
@var{ye} holds the value of the solution at time @var{te}.  @var{ie}
contains an index indicating which Event function was triggered in the case
of multiple Event functions.

Example: Solve @nospell{Robertson's} equations:

@smallexample
@group
function r = robertson_dae (@var{t}, @var{y}, @var{yp})
  r = [ -(@var{yp}(1) + 0.04*@var{y}(1) - 1e4*@var{y}(2)*@var{y}(3))
        -(@var{yp}(2) - 0.04*@var{y}(1) + 1e4*@var{y}(2)*@var{y}(3) + 3e7*@var{y}(2)^2)
@var{y}(1) + @var{y}(2) + @var{y}(3) - 1 ];
endfunction
[@var{t},@var{y}] = ode15i (@@robertson_dae, [0, 1e3], [1; 0; 0], [-1e-4; 1e-4; 0]);
@end group
@end smallexample
@xseealso{@ref{XREFdecic,,decic}, @ref{XREFodeset,,odeset}, @ref{XREFodeget,,odeget}}
@end deftypefn


@c decic scripts/ode/decic.m
@anchor{XREFdecic}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {[@var{y0_new}, @var{yp0_new}] =} decic (@var{fcn}, @var{t0}, @var{y0}, @var{fixed_y0}, @var{yp0}, @var{fixed_yp0})
@deftypefnx {} {[@var{y0_new}, @var{yp0_new}] =} decic (@var{fcn}, @var{t0}, @var{y0}, @var{fixed_y0}, @var{yp0}, @var{fixed_yp0}, @var{options})
@deftypefnx {} {[@var{y0_new}, @var{yp0_new}, @var{resnorm}] =} decic (@dots{})

Compute consistent implicit ODE initial conditions @var{y0_new} and
@var{yp0_new} given initial guesses @var{y0} and @var{yp0}.

A maximum of @code{length (@var{y0})} components between @var{fixed_y0} and
@var{fixed_yp0} may be chosen as fixed values.

@var{fcn} is a function handle.  The function must accept three inputs where
the first is time @var{t}, the second is a column vector of unknowns
@var{y}, and the third is a column vector of unknowns @var{yp}.

@var{t0} is the initial time such that
@code{@var{fcn}(@var{t0}, @var{y0_new}, @var{yp0_new}) = 0}, specified as a
scalar.

@var{y0} is a vector used as the initial guess for @var{y}.

@var{fixed_y0} is a vector which specifies the components of @var{y0} to
hold fixed.  Choose a maximum of @code{length (@var{y0})} components between
@var{fixed_y0} and @var{fixed_yp0} as fixed values.
Set @var{fixed_y0}(i) component to 1 if you want to fix the value of
@var{y0}(i).
Set @var{fixed_y0}(i) component to 0 if you want to allow the value of
@var{y0}(i) to change.

@var{yp0} is a vector used as the initial guess for @var{yp}.

@var{fixed_yp0} is a vector which specifies the components of @var{yp0} to
hold fixed.  Choose a maximum of @code{length (@var{yp0})} components
between @var{fixed_y0} and @var{fixed_yp0} as fixed values.
Set @var{fixed_yp0}(i) component to 1 if you want to fix the value of
@var{yp0}(i).
Set @var{fixed_yp0}(i) component to 0 if you want to allow the value of
@var{yp0}(i) to change.

The optional seventh argument @var{options} is a structure array.  Use
@code{odeset} to generate this structure.  The relevant options are
@code{RelTol} and @code{AbsTol} which specify the error thresholds used to
compute the initial conditions.

The function typically returns two outputs.  Variable @var{y0_new} is a
column vector and contains the consistent initial value of @var{y}.  The
output @var{yp0_new} is a column vector and contains the consistent initial
value of @var{yp}.

The optional third output @var{resnorm} is the norm of the vector of
residuals.  If @var{resnorm} is small, @code{decic} has successfully
computed the initial conditions.  If the value of @var{resnorm} is large,
use @code{RelTol} and @code{AbsTol} to adjust it.

Example: Compute initial conditions for @nospell{Robertson's} equations:

@smallexample
@group
function r = robertson_dae (@var{t}, @var{y}, @var{yp})
  r = [ -(@var{yp}(1) + 0.04*@var{y}(1) - 1e4*@var{y}(2)*@var{y}(3))
        -(@var{yp}(2) - 0.04*@var{y}(1) + 1e4*@var{y}(2)*@var{y}(3) + 3e7*@var{y}(2)^2)
@var{y}(1) + @var{y}(2) + @var{y}(3) - 1 ];
endfunction
@end group
[@var{y0_new},@var{yp0_new}] = decic (@@robertson_dae, 0, [1; 0; 0], [1; 1; 0],
[-1e-4; 1; 0], [0; 0; 0]);
@end smallexample
@xseealso{@ref{XREFode15i,,ode15i}, @ref{XREFodeset,,odeset}}
@end deftypefn


@c odeset scripts/ode/odeset.m
@anchor{XREFodeset}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{odestruct} =} odeset ()
@deftypefnx {} {@var{odestruct} =} odeset (@var{"field1"}, @var{value1}, @var{"field2"}, @var{value2}, @dots{})
@deftypefnx {} {@var{odestruct} =} odeset (@var{oldstruct}, @var{"field1"}, @var{value1}, @var{"field2"}, @var{value2}, @dots{})
@deftypefnx {} {@var{odestruct} =} odeset (@var{oldstruct}, @var{newstruct})
@deftypefnx {} {} odeset ()

Create or modify an ODE options structure.

When called with no input argument and one output argument, return a new ODE
options structure that contains all possible fields initialized to their
default values.  If no output argument is requested, display a list of
the common ODE solver options along with their default value.

If called with name-value input argument pairs @var{"field1"},
@var{"value1"}, @var{"field2"}, @var{"value2"}, @dots{} return a new
ODE options structure with all the most common option fields
initialized, @strong{and} set the values of the fields @var{"field1"},
@var{"field2"}, @dots{} to the values @var{value1}, @var{value2},
@enddots{}

If called with an input structure @var{oldstruct} then overwrite the
values of the options @var{"field1"}, @var{"field2"}, @dots{} with
new values @var{value1}, @var{value2}, @dots{} and return the
modified structure.

When called with two input ODE options structures @var{oldstruct} and
@var{newstruct} overwrite all values from the structure
@var{oldstruct} with new values from the structure @var{newstruct}.
Empty values in @var{newstruct} will not overwrite values in
@var{oldstruct}.

The most commonly used ODE options, which are always assigned a value
by @code{odeset}, are the following:

@table @asis
@item @code{AbsTol}: positive scalar | vector, def. @code{1e-6}
Absolute error tolerance.

@item @code{BDF}: @{@qcode{"off"}@} | @qcode{"on"}
Use BDF formulas in implicit multistep methods.
@emph{Note}: This option is not yet implemented.

@item @code{Events}: function_handle
Event function.  An event function must have the form
@code{[value, isterminal, direction] = my_events_f (t, y)}

@item @code{InitialSlope}: vector
Consistent initial slope vector for DAE solvers.

@item @code{InitialStep}: positive scalar
Initial time step size.

@item @code{Jacobian}: matrix | function_handle
Jacobian matrix, specified as a constant matrix or a function of
time and state.

@item @code{JConstant}: @{@qcode{"off"}@} | @qcode{"on"}
Specify whether the Jacobian is a constant matrix or depends on the
state.

@item @code{JPattern}: sparse matrix
If the Jacobian matrix is sparse and non-constant but maintains a
constant sparsity pattern, specify the sparsity pattern.

@item @code{Mass}: matrix | function_handle
Mass matrix, specified as a constant matrix or a function of
time and state.

@item @code{MassSingular}: @{@qcode{"maybe"}@} | @qcode{"yes"} | @qcode{"on"}
Specify whether the mass matrix is singular.

@item @code{MaxOrder}: @{@qcode{5}@} | @qcode{4} | @qcode{3} | @qcode{2} | @qcode{1}
Maximum order of formula.

@item @code{MaxStep}: positive scalar
Maximum time step value.

@item @code{MStateDependence}: @{@qcode{"weak"}@} | @qcode{"none"} | @qcode{"strong"}
Specify whether the mass matrix depends on the state or only on time.

@item @code{MvPattern}: sparse matrix
If the mass matrix is sparse and non-constant but maintains a
constant sparsity pattern, specify the sparsity pattern.
@emph{Note}: This option is not yet implemented.

@item @code{NonNegative}: scalar | vector
Specify elements of the state vector that are expected to remain
non-negative during the simulation.

@item @code{NormControl}: @{@qcode{"off"}@} | @qcode{"on"}
Control error relative to the 2-norm of the solution, rather than its
absolute value.

@item @code{OutputFcn}: function_handle
Function to monitor the state during the simulation.  For the form of
the function to use @pxref{XREFodeplot,,@code{odeplot}}.

@item @code{OutputSel}: scalar | vector
Indices of elements of the state vector to be passed to the output
monitoring function.

@item @code{Refine}: positive scalar
Specify whether output should be returned only at the end of each
time step or also at intermediate time instances.  The value should be
a scalar indicating the number of equally spaced time points to use
within each timestep at which to return output.

@item @code{RelTol}: positive scalar
Relative error tolerance.

@item @code{Stats}: @{@qcode{"off"}@} | @qcode{"on"}
Print solver statistics after simulation.

@item @code{Vectorized}: @{@qcode{"off"}@} | @qcode{"on"}
Specify whether @code{odefcn} can be passed multiple values of the
state at once.

@end table

Field names that are not in the above list are also accepted and
added to the result structure.

@xseealso{@ref{XREFodeget,,odeget}}
@end deftypefn


@c odeget scripts/ode/odeget.m
@anchor{XREFodeget}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{val} =} odeget (@var{ode_opt}, @var{field})
@deftypefnx {} {@var{val} =} odeget (@var{ode_opt}, @var{field}, @var{default})

Query the value of the property @var{field} in the ODE options structure
@var{ode_opt}.

If called with two input arguments and the first input argument
@var{ode_opt} is an ODE option structure and the second input argument
@var{field} is a string specifying an option name, then return the option
value @var{val} corresponding to @var{field} from @var{ode_opt}.

If called with an optional third input argument, and @var{field} is
not set in the structure @var{ode_opt}, then return the default value
@var{default} instead.
@xseealso{@ref{XREFodeset,,odeset}}
@end deftypefn


@c odeplot scripts/ode/odeplot.m
@anchor{XREFodeplot}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn {} {@var{stop_solve} =} odeplot (@var{t}, @var{y}, @var{flag})

Open a new figure window and plot the solution of an ode problem at each
time step during the integration.

The types and values of the input parameters @var{t} and @var{y} depend on
the input @var{flag} that is of type string.  Valid values of @var{flag}
are:

@table @option
@item @qcode{"init"}
The input @var{t} must be a column vector of length 2 with the first and
last time step (@code{[@var{tfirst} @var{tlast}]}.  The input @var{y}
contains the initial conditions for the ode problem (@var{y0}).

@item @qcode{""}
The input @var{t} must be a scalar double or vector specifying the time(s)
for which the solution in input @var{y} was calculated.

@item @qcode{"done"}
The inputs should be empty, but are ignored if they are present.
@end table

@code{odeplot} always returns false, i.e., don't stop the ode solver.

Example: solve an anonymous implementation of the
@nospell{@qcode{"Van der Pol"}} equation and display the results while
solving.

@example
@group
fvdp = @@(t,y) [y(2); (1 - y(1)^2) * y(2) - y(1)];

opt = odeset ("OutputFcn", @@odeplot, "RelTol", 1e-6);
sol = ode45 (fvdp, [0 20], [2 0], opt);
@end group
@end example

Background Information:
This function is called by an ode solver function if it was specified in
the @qcode{"OutputFcn"} property of an options structure created with
@code{odeset}.  The ode solver will initially call the function with the
syntax @code{odeplot ([@var{tfirst}, @var{tlast}], @var{y0}, "init")}.  The
function initializes internal variables, creates a new figure window, and
sets the x limits of the plot.  Subsequently, at each time step during the
integration the ode solver calls @code{odeplot (@var{t}, @var{y}, [])}.
At the end of the solution the ode solver calls
@code{odeplot ([], [], "done")} so that odeplot can perform any clean-up
actions required.
@xseealso{@ref{XREFodeset,,odeset}, @ref{XREFodeget,,odeget}, @ref{XREFode23,,ode23}, @ref{XREFode45,,ode45}}
@end deftypefn