1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 2007-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <https://www.gnu.org/licenses/>.
@node Geometry
@chapter Geometry
Much of the geometry code in Octave is based on the Qhull
library@footnote{@nospell{Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T.},
@cite{The Quickhull Algorithm for Convex Hulls}, @nospell{ACM} Trans.@: on
Mathematical Software, 22(4):469--483, Dec 1996, @url{http://www.qhull.org}}.
Some of the documentation for Qhull, particularly for the options that
can be passed to @code{delaunay}, @code{voronoi} and @code{convhull},
etc., is relevant to Octave users.
@menu
* Delaunay Triangulation::
* Voronoi Diagrams::
* Convex Hull::
* Interpolation on Scattered Data::
* Vector Rotation Matrices::
@end menu
@node Delaunay Triangulation
@section Delaunay Triangulation
The Delaunay triangulation is constructed from a set of
circum-circles. These circum-circles are chosen so that there are at
least three of the points in the set to triangulation on the
circumference of the circum-circle. None of the points in the set of
points falls within any of the circum-circles.
In general there are only three points on the circumference of any
circum-circle. However, in some cases, and in particular for the
case of a regular grid, 4 or more points can be on a single
circum-circle. In this case the Delaunay triangulation is not unique.
@c delaunay scripts/geometry/delaunay.m
@anchor{XREFdelaunay}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{tri} =} delaunay (@var{x}, @var{y})
@deftypefnx {} {@var{tetr} =} delaunay (@var{x}, @var{y}, @var{z})
@deftypefnx {} {@var{tri} =} delaunay (@var{x})
@deftypefnx {} {@var{tri} =} delaunay (@dots{}, @var{options})
Compute the Delaunay triangulation for a 2-D or 3-D set of points.
For 2-D sets, the return value @var{tri} is a set of triangles which
satisfies the Delaunay circum-circle criterion, i.e., no data point from
[@var{x}, @var{y}] is within the circum-circle of the defining triangle.
The set of triangles @var{tri} is a matrix of size [n, 3]. Each row defines
a triangle and the three columns are the three vertices of the triangle.
The value of @code{@var{tri}(i,j)} is an index into @var{x} and @var{y} for
the location of the j-th vertex of the i-th triangle.
For 3-D sets, the return value @var{tetr} is a set of tetrahedrons which
satisfies the Delaunay circum-circle criterion, i.e., no data point from
[@var{x}, @var{y}, @var{z}] is within the circum-circle of the defining
tetrahedron. The set of tetrahedrons is a matrix of size [n, 4]. Each row
defines a tetrahedron and the four columns are the four vertices of the
tetrahedron. The value of @code{@var{tetr}(i,j)} is an index into @var{x},
@var{y}, @var{z} for the location of the j-th vertex of the i-th
tetrahedron.
The input @var{x} may also be a matrix with two or three columns where the
first column contains x-data, the second y-data, and the optional third
column contains z-data.
An optional final argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default options are @code{@{"Qt", "Qbb", "Qc"@}}.
If Qhull fails for 2-D input the triangulation is attempted again with
the options @code{@{"Qt", "Qbb", "Qc", "Qz"@}} which may result in
reduced accuracy.
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
@example
@group
x = rand (1, 10);
y = rand (1, 10);
tri = delaunay (x, y);
triplot (tri, x, y);
hold on;
plot (x, y, "r*");
axis ([0,1,0,1]);
@end group
@end example
@xseealso{@ref{XREFdelaunayn,,delaunayn}, @ref{XREFconvhull,,convhull}, @ref{XREFvoronoi,,voronoi}, @ref{XREFtriplot,,triplot}, @ref{XREFtrimesh,,trimesh}, @ref{XREFtetramesh,,tetramesh}, @ref{XREFtrisurf,,trisurf}}
@end deftypefn
For 3-D inputs @code{delaunay} returns a set of tetrahedra that satisfy the
Delaunay circum-circle criteria. Similarly, @code{delaunayn} returns the
N-dimensional simplex satisfying the Delaunay circum-circle criteria.
The N-dimensional extension of a triangulation is called a tessellation.
@c delaunayn scripts/geometry/delaunayn.m
@anchor{XREFdelaunayn}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{T} =} delaunayn (@var{pts})
@deftypefnx {} {@var{T} =} delaunayn (@var{pts}, @var{options})
Compute the Delaunay triangulation for an N-dimensional set of points.
The Delaunay triangulation is a tessellation of the convex hull of a set of
points such that no N-sphere defined by the N-triangles contains any other
points from the set.
The input matrix @var{pts} of size [n, dim] contains n points in a space of
dimension dim. The return matrix @var{T} has size [m, dim+1]. Each row of
@var{T} contains a set of indices back into the original set of points
@var{pts} which describes a simplex of dimension dim. For example, a 2-D
simplex is a triangle and 3-D simplex is a tetrahedron.
An optional second argument, which must be a string or cell array of
strings, contains options passed to the underlying qhull command. See the
documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default options depend on the dimension of the input:
@itemize
@item 2-D and 3-D: @var{options} = @code{@{"Qt", "Qbb", "Qc"@}}
@item 4-D and higher: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qx"@}}
@end itemize
If Qhull fails for 2-D input the triangulation is attempted again with
the options @code{@{"Qt", "Qbb", "Qc", "Qz"@}} which may result in
reduced accuracy.
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
@xseealso{@ref{XREFdelaunay,,delaunay}, @ref{XREFconvhulln,,convhulln}, @ref{XREFvoronoin,,voronoin}, @ref{XREFtrimesh,,trimesh}, @ref{XREFtetramesh,,tetramesh}}
@end deftypefn
An example of a Delaunay triangulation of a set of points is
@example
@group
rand ("state", 1);
x = rand (1, 10);
y = rand (1, 10);
T = delaunay (x, y);
X = [ x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1)) ];
Y = [ y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1)) ];
axis ([0, 1, 0, 1]);
plot (X, Y, "b", x, y, "r*");
@end group
@end example
@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:delaunay}.
@float Figure,fig:delaunay
@center @image{delaunay,4in}
@caption{Delaunay triangulation of a random set of points}
@end float
@end ifnotinfo
@menu
* Plotting the Triangulation::
* Identifying Points in Triangulation::
@end menu
@node Plotting the Triangulation
@subsection Plotting the Triangulation
Octave has the functions @code{triplot}, @code{trimesh}, and @code{trisurf}
to plot the Delaunay triangulation of a 2-dimensional set of points.
@code{tetramesh} will plot the triangulation of a 3-dimensional set of points.
@c triplot scripts/plot/draw/triplot.m
@anchor{XREFtriplot}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} triplot (@var{tri}, @var{x}, @var{y})
@deftypefnx {} {} triplot (@var{tri}, @var{x}, @var{y}, @var{linespec})
@deftypefnx {} {@var{h} =} triplot (@dots{})
Plot a 2-D triangular mesh.
@var{tri} is typically the output of a Delaunay triangulation over the
grid of @var{x}, @var{y}. Every row of @var{tri} represents one triangle
and contains three indices into [@var{x}, @var{y}] which are the
vertices of the triangles in the x-y plane.
The linestyle to use for the plot can be defined with the argument
@var{linespec} of the same format as the @code{plot} command.
The optional return value @var{h} is a graphics handle to the created
patch object.
@xseealso{@ref{XREFplot,,plot}, @ref{XREFtrimesh,,trimesh}, @ref{XREFtrisurf,,trisurf}, @ref{XREFdelaunay,,delaunay}}
@end deftypefn
@c trimesh scripts/plot/draw/trimesh.m
@anchor{XREFtrimesh}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} trimesh (@var{tri}, @var{x}, @var{y}, @var{z}, @var{c})
@deftypefnx {} {} trimesh (@var{tri}, @var{x}, @var{y}, @var{z})
@deftypefnx {} {} trimesh (@var{tri}, @var{x}, @var{y})
@deftypefnx {} {} trimesh (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {@var{h} =} trimesh (@dots{})
Plot a 3-D triangular wireframe mesh.
In contrast to @code{mesh}, which plots a mesh using rectangles,
@code{trimesh} plots the mesh using triangles.
@var{tri} is typically the output of a Delaunay triangulation over the
grid of @var{x}, @var{y}. Every row of @var{tri} represents one triangle
and contains three indices into [@var{x}, @var{y}] which are the
vertices of the triangles in the x-y plane. @var{z} determines the
height above the plane of each vertex. If no @var{z} input is given then
the triangles are plotted as a 2-D figure.
The color of the trimesh is computed by linearly scaling the @var{z} values
to fit the range of the current colormap. Use @code{clim} and/or
change the colormap to control the appearance.
Optionally, the color of the mesh can be specified independently of @var{z}
by supplying @var{c}, which is a vector for colormap data, or a matrix with
three columns for RGB data. The number of colors specified in @var{c} must
either equal the number of vertices in @var{z} or the number of triangles
in @var{tri}.
Any property/value pairs are passed directly to the underlying patch object.
The full list of properties is documented at @ref{Patch Properties}.
The optional return value @var{h} is a graphics handle to the created patch
object.
@xseealso{@ref{XREFmesh,,mesh}, @ref{XREFtetramesh,,tetramesh}, @ref{XREFtriplot,,triplot}, @ref{XREFtrisurf,,trisurf}, @ref{XREFdelaunay,,delaunay}, @ref{XREFpatch,,patch}, @ref{XREFhidden,,hidden}}
@end deftypefn
@c trisurf scripts/plot/draw/trisurf.m
@anchor{XREFtrisurf}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} trisurf (@var{tri}, @var{x}, @var{y}, @var{z}, @var{c})
@deftypefnx {} {} trisurf (@var{tri}, @var{x}, @var{y}, @var{z})
@deftypefnx {} {} trisurf (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {@var{h} =} trisurf (@dots{})
Plot a 3-D triangular surface.
In contrast to @code{surf}, which plots a surface mesh using rectangles,
@code{trisurf} plots the mesh using triangles.
@var{tri} is typically the output of a Delaunay triangulation over the
grid of @var{x}, @var{y}. Every row of @var{tri} represents one triangle
and contains three indices into [@var{x}, @var{y}] which are the vertices of
the triangles in the x-y plane. @var{z} determines the height above the
plane of each vertex.
The color of the trisurf is computed by linearly scaling the @var{z} values
to fit the range of the current colormap. Use @code{clim} and/or change
the colormap to control the appearance.
Optionally, the color of the mesh can be specified independently of @var{z}
by supplying @var{c}, which is a vector for colormap data, or a matrix with
three columns for RGB data. The number of colors specified in @var{c} must
either equal the number of vertices in @var{z} or the number of triangles
in @var{tri}. When specifying the color at each vertex the triangle will
be colored according to the color of the first vertex only (see patch
documentation and the @qcode{"FaceColor"} property when set to
@qcode{"flat"}).
Any property/value pairs are passed directly to the underlying patch object.
The full list of properties is documented at @ref{Patch Properties}.
The optional return value @var{h} is a graphics handle to the created patch
object.
@xseealso{@ref{XREFsurf,,surf}, @ref{XREFtriplot,,triplot}, @ref{XREFtrimesh,,trimesh}, @ref{XREFdelaunay,,delaunay}, @ref{XREFpatch,,patch}, @ref{XREFshading,,shading}}
@end deftypefn
@c tetramesh scripts/plot/draw/tetramesh.m
@anchor{XREFtetramesh}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} tetramesh (@var{T}, @var{X})
@deftypefnx {} {} tetramesh (@var{T}, @var{X}, @var{C})
@deftypefnx {} {} tetramesh (@dots{}, @var{property}, @var{val}, @dots{})
@deftypefnx {} {@var{h} =} tetramesh (@dots{})
Display the tetrahedrons defined in the m-by-4 matrix @var{T} as 3-D
patches.
@var{T} is typically the output of a Delaunay triangulation of a 3-D set
of points. Every row of @var{T} contains four indices into the n-by-3
matrix @var{X} of the vertices of a tetrahedron. Every row in @var{X}
represents one point in 3-D space.
The vector @var{C} specifies the color of each tetrahedron as an index
into the current colormap. The default value is 1:m where m is the number
of tetrahedrons; the indices are scaled to map to the full range of the
colormap. If there are more tetrahedrons than colors in the colormap then
the values in @var{C} are cyclically repeated.
Calling @code{tetramesh (@dots{}, "property", "value", @dots{})} passes all
property/value pairs directly to the patch function as additional arguments.
The full list of properties is documented at @ref{Patch Properties}.
The optional return value @var{h} is a vector of patch handles where each
handle represents one tetrahedron in the order given by @var{T}.
A typical use case for @var{h} is to turn the respective patch
@qcode{"visible"} property @qcode{"on"} or @qcode{"off"}.
Type @code{demo tetramesh} to see examples on using @code{tetramesh}.
@xseealso{@ref{XREFtrimesh,,trimesh}, @ref{XREFdelaunay,,delaunay}, @ref{XREFdelaunayn,,delaunayn}, @ref{XREFpatch,,patch}}
@end deftypefn
The difference between @code{triplot}, and @code{trimesh} or @code{trisurf},
is that the former only plots the 2-dimensional triangulation itself, whereas
the second two plot the value of a function @code{f (@var{x}, @var{y})}. An
example of the use of the @code{triplot} function is
@example
@group
rand ("state", 2)
x = rand (20, 1);
y = rand (20, 1);
tri = delaunay (x, y);
triplot (tri, x, y);
@end group
@end example
@noindent
which plots the Delaunay triangulation of a set of random points in
2-dimensions.
@ifnotinfo
The output of the above can be seen in @ref{fig:triplot}.
@float Figure,fig:triplot
@center @image{triplot,4in}
@caption{Delaunay triangulation of a random set of points}
@end float
@end ifnotinfo
@node Identifying Points in Triangulation
@subsection Identifying Points in Triangulation
It is often necessary to identify whether a particular point in the
N-dimensional space is within the Delaunay tessellation of a set of
points in this N-dimensional space, and if so which N-simplex contains
the point and which point in the tessellation is closest to the desired
point. The function @code{tsearch} performs this function in a triangulation,
and the functions @code{tsearchn} and @code{dsearchn} in an N-dimensional
tessellation.
To identify whether a particular point represented by a vector @var{p}
falls within one of the simplices of an N-simplex, we can write the
Cartesian coordinates of the point in a parametric form with respect to
the N-simplex. This parametric form is called the Barycentric
Coordinates of the point. If the points defining the N-simplex are given
by @var{N} + 1 vectors @code{@var{t}(@var{i},:)}, then the Barycentric
coordinates defining the point @var{p} are given by
@example
@var{p} = @var{beta} * @var{t}
@end example
@noindent
where @var{beta} contains @var{N} + 1 values that together as a vector
represent the Barycentric coordinates of the point @var{p}. To ensure a unique
solution for the values of @var{beta} an additional criteria of
@example
sum (@var{beta}) == 1
@end example
@noindent
is imposed, and we can therefore write the above as
@example
@group
@var{p} - @var{t}(end, :) = @var{beta}(1:end-1) * (@var{t}(1:end-1, :)
- ones (@var{N}, 1) * @var{t}(end, :)
@end group
@end example
@noindent
Solving for @var{beta} we can then write
@example
@group
@var{beta}(1:end-1) = (@var{p} - @var{t}(end, :)) /
(@var{t}(1:end-1, :) - ones (@var{N}, 1) * @var{t}(end, :))
@var{beta}(end) = sum (@var{beta}(1:end-1))
@end group
@end example
@noindent
which gives the formula for the conversion of the Cartesian coordinates
of the point @var{p} to the Barycentric coordinates @var{beta}. An
important property of the Barycentric coordinates is that for all points
in the N-simplex
@example
0 <= @var{beta}(@var{i}) <= 1
@end example
@noindent
Therefore, the test in @code{tsearch} and @code{tsearchn} essentially
only needs to express each point in terms of the Barycentric coordinates
of each of the simplices of the N-simplex and test the values of
@var{beta}. This is exactly the implementation used in
@code{tsearchn}. @code{tsearch} is optimized for 2-dimensions and the
Barycentric coordinates are not explicitly formed.
@c tsearch libinterp/corefcn/tsearch.cc
@anchor{XREFtsearch}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{idx} =} tsearch (@var{x}, @var{y}, @var{t}, @var{xi}, @var{yi})
Search for the enclosing Delaunay convex hull.
For @code{@var{t} = delaunay (@var{x}, @var{y})}, finds the index in @var{t}
containing the points @code{(@var{xi}, @var{yi})}. For points outside the
convex hull, @var{idx} is NaN.
Programming Note: The algorithm is @qcode{O}(@var{M}*@var{N}) for locating
@var{M} points in @var{N} triangles. Performance is typically much faster if
the points to be located are in a single continuous path; a point is first
checked against the region its predecessor was found in, speeding up lookups
for points along a continuous path.
@xseealso{@ref{XREFdelaunay,,delaunay}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
@c tsearchn scripts/geometry/tsearchn.m
@anchor{XREFtsearchn}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{idx} =} tsearchn (@var{x}, @var{t}, @var{xi})
@deftypefnx {} {[@var{idx}, @var{p}] =} tsearchn (@var{x}, @var{t}, @var{xi})
Find the simplexes enclosing the given points.
@code{tsearchn} is typically used with @code{delaunayn}:
@code{@var{t} = delaunayn (@var{x})} returns a set of simplexes @code{t},
then @code{tsearchn} returns the row index of @var{t} containing each point
of @var{xi}. For points outside the convex hull, @var{idx} is NaN.
If requested, @code{tsearchn} also returns the barycentric coordinates
@var{p} of the enclosing simplexes.
@xseealso{@ref{XREFtsearch,,tsearch}, @ref{XREFdsearchn,,dsearchn}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
An example of the use of @code{tsearch} can be seen with the simple
triangulation
@example
@group
@var{x} = [-1; -1; 1; 1];
@var{y} = [-1; 1; -1; 1];
@var{tri} = [1, 2, 3; 2, 3, 4];
@end group
@end example
@noindent
consisting of two triangles defined by @var{tri}. We can then identify
which triangle a point falls in like
@example
@group
tsearch (@var{x}, @var{y}, @var{tri}, -0.5, -0.5)
@result{} 1
tsearch (@var{x}, @var{y}, @var{tri}, 0.5, 0.5)
@result{} 2
@end group
@end example
@noindent
and we can confirm that a point doesn't lie within one of the triangles like
@example
@group
tsearch (@var{x}, @var{y}, @var{tri}, 2, 2)
@result{} NaN
@end group
@end example
The @code{dsearchn} function finds the closest point in a tessellation to the
desired point. The desired point does not necessarily have to be in the
tessellation, and even if it the returned point of the tessellation does not
have to be one of the vertices of the N-simplex within which the desired point
is found.
@c dsearchn scripts/geometry/dsearchn.m
@anchor{XREFdsearchn}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{idx} =} dsearchn (@var{x}, @var{tri}, @var{xi})
@deftypefnx {} {@var{idx} =} dsearchn (@var{x}, @var{tri}, @var{xi}, @var{outval})
@deftypefnx {} {@var{idx} =} dsearchn (@var{x}, @var{xi})
@deftypefnx {} {[@var{idx}, @var{d}] =} dsearchn (@dots{})
Return the index @var{idx} of the closest point in @var{x} to the elements
@var{xi}.
If @var{outval} is supplied, then the values of @var{xi} that are not
contained within one of the simplices @var{tri} are set to @var{outval}.
Generally, @var{tri} is returned from @code{delaunayn (@var{x})}.
The optional output @var{d} contains a column vector of distances between
the query points @var{xi} and the nearest simplex points @var{x}.
Compatibility note: The @code{dsearchn} algorithm only uses the input
@var{tri} when @var{outdim} is specified to determine if any points lie
outside of the triangulation region. For compatibility, @var{tri} is
accepted as an input even when @var{outdim} is not specified, but it is not
used or checked to be a valid triangulation, and providing it will not
affect either the output @var{idx} or the calculation efficiency.
@xseealso{@ref{XREFtsearchn,,tsearchn}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
An example of the use of @code{dsearchn}, using the above values of @var{x},
@var{y} and @var{tri} is
@example
@group
dsearchn ([@var{x}, @var{y}], @var{tri}, [-2, -2])
@result{} 1
@end group
@end example
If you wish the points that are outside the tessellation to be flagged,
then @code{dsearchn} can be used as
@example
@group
dsearchn ([@var{x}, @var{y}], @var{tri}, [-2, -2], NaN)
@result{} NaN
dsearchn ([@var{x}, @var{y}], @var{tri}, [-0.5, -0.5], NaN)
@result{} 1
@end group
@end example
@noindent
where the point outside the tessellation are then flagged with @code{NaN}.
@node Voronoi Diagrams
@section Voronoi Diagrams
A Voronoi diagram or Voronoi tessellation of a set of points @var{s} in
an N-dimensional space, is the tessellation of the N-dimensional space
such that all points in @code{@var{v}(@var{p})}, a partitions of the
tessellation where @var{p} is a member of @var{s}, are closer to @var{p}
than any other point in @var{s}. The Voronoi diagram is related to the
Delaunay triangulation of a set of points, in that the vertices of the
Voronoi tessellation are the centers of the circum-circles of the
simplices of the Delaunay tessellation.
@c voronoi scripts/geometry/voronoi.m
@anchor{XREFvoronoi}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {} voronoi (@var{x}, @var{y})
@deftypefnx {} {} voronoi (@var{x}, @var{y}, @var{options})
@deftypefnx {} {} voronoi (@dots{}, "linespec")
@deftypefnx {} {} voronoi (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} voronoi (@dots{})
@deftypefnx {} {[@var{vx}, @var{vy}] =} voronoi (@dots{})
Plot the Voronoi diagram of points @code{(@var{x}, @var{y})}.
The Voronoi facets with points at infinity are not drawn.
The @var{options} argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
If @qcode{"linespec"} is given it is used to set the color and line style of
the plot.
If an axes graphics handle @var{hax} is supplied then the Voronoi diagram is
drawn on the specified axes rather than in a new figure.
If a single output argument is requested then the Voronoi diagram will be
plotted and a graphics handle @var{h} to the plot is returned.
[@var{vx}, @var{vy}] = voronoi (@dots{}) returns the Voronoi vertices
instead of plotting the diagram.
@example
@group
x = rand (10, 1);
y = rand (size (x));
h = convhull (x, y);
[vx, vy] = voronoi (x, y);
plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g");
legend ("", "points", "hull");
@end group
@end example
@xseealso{@ref{XREFvoronoin,,voronoin}, @ref{XREFdelaunay,,delaunay}, @ref{XREFconvhull,,convhull}}
@end deftypefn
@c voronoin scripts/geometry/voronoin.m
@anchor{XREFvoronoin}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {[@var{C}, @var{F}] =} voronoin (@var{pts})
@deftypefnx {} {[@var{C}, @var{F}] =} voronoin (@var{pts}, @var{options})
Compute N-dimensional Voronoi facets.
The input matrix @var{pts} of size [n, dim] contains n points in a space of
dimension dim.
@var{C} contains the points of the Voronoi facets. The list @var{F}
contains, for each facet, the indices of the Voronoi points.
An optional second argument, which must be a string or cell array of
strings, contains options passed to the underlying qhull command. See the
documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default options depend on the dimension of the input:
@itemize
@item 2-D and 3-D: @var{options} = @code{@{"Qbb"@}}
@item 4-D and higher: @var{options} = @code{@{"Qbb", "Qx"@}}
@end itemize
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
@xseealso{@ref{XREFvoronoi,,voronoi}, @ref{XREFconvhulln,,convhulln}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
An example of the use of @code{voronoi} is
@example
@group
rand ("state",9);
x = rand (10,1);
y = rand (10,1);
tri = delaunay (x, y);
[vx, vy] = voronoi (x, y, tri);
triplot (tri, x, y, "b");
hold on;
plot (vx, vy, "r");
@end group
@end example
@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:voronoi}. Note that the
circum-circle of one of the triangles has been added to this figure, to
make the relationship between the Delaunay tessellation and the Voronoi
diagram clearer.
@float Figure,fig:voronoi
@center @image{voronoi,4in}
@caption{Delaunay triangulation (blue lines) and Voronoi diagram (red lines)
of a random set of points}
@end float
@end ifnotinfo
Additional information about the size of the facets of a Voronoi
diagram, and which points of a set of points is in a polygon can be had
with the @code{polyarea} and @code{inpolygon} functions respectively.
@c polyarea scripts/general/polyarea.m
@anchor{XREFpolyarea}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{a} =} polyarea (@var{x}, @var{y})
@deftypefnx {} {@var{a} =} polyarea (@var{x}, @var{y}, @var{dim})
Determine area of a polygon by triangle method.
The variables @var{x} and @var{y} define the vertex pairs, and must
therefore have the same shape. They can be either vectors or arrays. If
they are arrays then the columns of @var{x} and @var{y} are treated
separately and an area returned for each.
If the optional @var{dim} argument is given, then @code{polyarea} works
along this dimension of the arrays @var{x} and @var{y}.
@end deftypefn
An example of the use of @code{polyarea} might be
@example
@group
rand ("state", 2);
x = rand (10, 1);
y = rand (10, 1);
[c, f] = voronoin ([x, y]);
af = zeros (size (f));
for i = 1 : length (f)
af(i) = polyarea (c (f @{i, :@}, 1), c (f @{i, :@}, 2));
endfor
@end group
@end example
Facets of the Voronoi diagram with a vertex at infinity have infinity
area. A simplified version of @code{polyarea} for rectangles is
available with @code{rectint}
@c rectint scripts/geometry/rectint.m
@anchor{XREFrectint}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{area} =} rectint (@var{a}, @var{b})
Compute area or volume of intersection of rectangles or N-D boxes.
Compute the area of intersection of rectangles in @var{a} and rectangles in
@var{b}. N-dimensional boxes are supported in which case the volume, or
hypervolume is computed according to the number of dimensions.
2-dimensional rectangles are defined as @code{[xpos ypos width height]}
where xpos and ypos are the position of the bottom left corner. Higher
dimensions are supported where the coordinates for the minimum value of each
dimension follow the length of the box in that dimension, e.g.,
@code{[xpos ypos zpos kpos @dots{} width height depth k_length @dots{}]}.
Each row of @var{a} and @var{b} define a rectangle, and if both define
multiple rectangles, then the output, @var{area}, is a matrix where the i-th
row corresponds to the i-th row of a and the j-th column corresponds to the
j-th row of b.
@xseealso{@ref{XREFpolyarea,,polyarea}}
@end deftypefn
@c inpolygon scripts/geometry/inpolygon.m
@anchor{XREFinpolygon}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{in} =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
@deftypefnx {} {[@var{in}, @var{on}] =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
For a polygon defined by vertex points @code{(@var{xv}, @var{yv})}, return
true if the points @code{(@var{x}, @var{y})} are inside (or on the boundary)
of the polygon; Otherwise, return false.
The input variables @var{x} and @var{y}, must have the same dimension.
The optional output @var{on} returns true if the points are exactly on the
polygon edge, and false otherwise.
@xseealso{@ref{XREFdelaunay,,delaunay}}
@end deftypefn
An example of the use of @code{inpolygon} might be
@example
@group
randn ("state", 2);
x = randn (100, 1);
y = randn (100, 1);
vx = cos (pi * [-1 : 0.1: 1]);
vy = sin (pi * [-1 : 0.1 : 1]);
in = inpolygon (x, y, vx, vy);
plot (vx, vy, x(in), y(in), "r+", x(!in), y(!in), "bo");
axis ([-2, 2, -2, 2]);
@end group
@end example
@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:inpolygon}.
@float Figure,fig:inpolygon
@center @image{inpolygon,4in}
@caption{Demonstration of the @code{inpolygon} function to determine the
points inside a polygon}
@end float
@end ifnotinfo
@node Convex Hull
@section Convex Hull
The convex hull of a set of points is the minimum convex envelope
containing all of the points. Octave has the functions @code{convhull}
and @code{convhulln} to calculate the convex hull of 2-dimensional and
N-dimensional sets of points.
@c convhull scripts/geometry/convhull.m
@anchor{XREFconvhull}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{H} =} convhull (@var{x}, @var{y})
@deftypefnx {} {@var{H} =} convhull (@var{x}, @var{y}, @var{z})
@deftypefnx {} {@var{H} =} convhull (@var{x})
@deftypefnx {} {@var{H} =} convhull (@dots{}, @var{options})
@deftypefnx {} {[@var{H}, @var{V}] =} convhull (@dots{})
Compute the convex hull of a 2-D or 3-D set of points.
The hull @var{H} is a linear index vector into the original set of points
that specifies which points form the enclosing hull. For 2-D inputs only,
the output is ordered in a counterclockwise manner around the hull.
The input @var{x} may also be a matrix with two or three columns where the
first column contains x-data, the second y-data, and the optional third
column contains z-data.
An optional final argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default option is @code{@{"Qt"@}}.
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
If the second output @var{V} is requested the volume of the enclosing
convex hull is calculated.
@xseealso{@ref{XREFconvhulln,,convhulln}, @ref{XREFdelaunay,,delaunay}, @ref{XREFvoronoi,,voronoi}}
@end deftypefn
@c convhulln libinterp/dldfcn/convhulln.cc
@anchor{XREFconvhulln}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{h} =} convhulln (@var{pts})
@deftypefnx {} {@var{h} =} convhulln (@var{pts}, @var{options})
@deftypefnx {} {[@var{h}, @var{v}] =} convhulln (@dots{})
Compute the convex hull of the set of points @var{pts}.
@var{pts} is a matrix of size [n, dim] containing n points in a space of
dimension dim.
The hull @var{h} is an index vector into the set of points and specifies
which points form the enclosing hull.
An optional second argument, which must be a string or cell array of
strings, contains options passed to the underlying qhull command. See the
documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default options depend on the dimension of the input:
@itemize
@item 2D, 3D, 4D: @var{options} = @code{@{"Qt"@}}
@item 5D and higher: @var{options} = @code{@{"Qt", "Qx"@}}
@end itemize
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
If the second output @var{v} is requested the volume of the enclosing
convex hull is calculated.
@xseealso{@ref{XREFconvhull,,convhull}, @ref{XREFdelaunayn,,delaunayn}, @ref{XREFvoronoin,,voronoin}}
@end deftypefn
An example of the use of @code{convhull} is
@example
@group
x = -3:0.05:3;
y = abs (sin (x));
k = convhull (x, y);
plot (x(k), y(k), "r-", x, y, "b+");
axis ([-3.05, 3.05, -0.05, 1.05]);
@end group
@end example
@ifnotinfo
@noindent
The output of the above can be seen in @ref{fig:convhull}.
@float Figure,fig:convhull
@center @image{convhull,4in}
@caption{The convex hull of a simple set of points}
@end float
@end ifnotinfo
@node Interpolation on Scattered Data
@section Interpolation on Scattered Data
An important use of the Delaunay tessellation is that it can be used to
interpolate from scattered data to an arbitrary set of points. To do
this the N-simplex of the known set of points is calculated with
@code{delaunay} or @code{delaunayn}. Then the simplices in to which the
desired points are found are identified. Finally the vertices of the simplices
are used to interpolate to the desired points. The functions that perform this
interpolation are @code{griddata}, @code{griddata3} and @code{griddatan}.
@c griddata scripts/geometry/griddata.m
@anchor{XREFgriddata}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
@deftypefnx {} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method})
@deftypefnx {} {[@var{xi}, @var{yi}, @var{zi}] =} griddata (@dots{})
@deftypefnx {} {@var{vi} =} griddata (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
@deftypefnx {} {@var{vi} =} griddata (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}, @var{method})
@deftypefnx {} {@var{vi} =} griddata (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}, @var{method}, @var{options})
Interpolate irregular 2-D and 3-D source data at specified points.
For 2-D interpolation, the inputs @var{x} and @var{y} define the points
where the function @code{@var{z} = f (@var{x}, @var{y})} is evaluated.
The inputs @var{x}, @var{y}, @var{z} are either vectors of the same length,
or the unequal vectors @var{x}, @var{y} are expanded to a 2-D grid with
@code{meshgrid} and @var{z} is a 2-D matrix matching the resulting size of
the X-Y grid.
The interpolation points are (@var{xi}, @var{yi}). If either @var{xi} or
@var{y} is a row vector and the other is a column vector, then
@code{meshgrid (@var{xi}, @var{yi})} will be used to create a mesh of
interpolation points.
For 3-D interpolation, the inputs @var{x}, @var{y}, and @var{z} define the
points where the function @code{@var{v} = f (@var{x}, @var{y}, @var{z})}
is evaluated. The inputs @var{x}, @var{y}, @var{z} are either vectors of
the same length, or if they are of unequal length, then they are expanded to
a 3-D grid with @code{meshgrid}. The size of the input @var{v} must match
the size of the original data, either as a vector or a matrix.
The outputs @var{zi} (for 2-D) or @var{vi} (for 3-D) will contain the
interpolated values of @var{z} or @var{v}, respectively, with the output
size matching that of the interpolation points.
The optional input interpolation @var{method} can be @qcode{"nearest"},
@qcode{"linear"}, or for 2-D data @qcode{"v4"}. When the method is
@qcode{"nearest"}, the output @var{vi} will be the closest point in the
original data (@var{x}, @var{y}, @var{z}) to the query point (@var{xi},
@var{yi}, @var{zi}). When the method is @qcode{"linear"}, the output
@var{vi} will be a linear interpolation between the two closest points in
the original source data in each dimension. For 2-D cases only, the
@qcode{"v4"} method is also available which implements a biharmonic spline
interpolation. If @var{method} is omitted or empty, it defaults to
@qcode{"linear"}.
For 3-D interpolation, the optional argument @var{options} is passed
directly to Qhull when computing the Delaunay triangulation used for
interpolation. For more information on the defaults and how to pass
different values, @pxref{XREFdelaunayn,,@code{delaunayn}}.
Programming Notes: If the input is complex the real and imaginary parts
are interpolated separately. Interpolation is normally based on a
Delaunay triangulation. Any query values outside the convex hull of the
input points will return @code{NaN}. However, the @qcode{"v4"} method does
not use the triangulation and will return values outside the original data
(extrapolation).
@xseealso{@ref{XREFgriddata3,,griddata3}, @ref{XREFgriddatan,,griddatan}, @ref{XREFdelaunay,,delaunay}}
@end deftypefn
@c griddata3 scripts/geometry/griddata3.m
@anchor{XREFgriddata3}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{vi} =} griddata3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
@deftypefnx {} {@var{vi} =} griddata3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}, @var{method})
@deftypefnx {} {@var{vi} =} griddata3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}, @var{method}, @var{options})
Interpolate irregular 3-D source data at specified points.
The inputs @var{x}, @var{y}, and @var{z} define the points where the
function @code{@var{v} = f (@var{x}, @var{y}, @var{z})} is evaluated. The
inputs @var{x}, @var{y}, @var{z} are either vectors of the same length, or
if they are of unequal length, then they are expanded to a 3-D grid with
@code{meshgrid}. The size of the input @var{v} must match the size of the
original data, either as a vector or a matrix.
The interpolation points are specified by @var{xi}, @var{yi}, @var{zi}.
The optional input interpolation @var{method} can be @qcode{"nearest"} or
@qcode{"linear"}. When the method is @qcode{"nearest"}, the output @var{vi}
will be the closest point in the original data (@var{x}, @var{y}, @var{z})
to the query point (@var{xi}, @var{yi}, @var{zi}). When the method is
@qcode{"linear"}, the output @var{vi} will be a linear interpolation between
the two closest points in the original source data in each dimension.
If @var{method} is omitted or empty, it defaults to @qcode{"linear"}.
The optional argument @var{options} is passed directly to Qhull when
computing the Delaunay triangulation used for interpolation. See
@code{delaunayn} for information on the defaults and how to pass different
values.
Programming Notes: If the input is complex the real and imaginary parts
are interpolated separately. Interpolation is based on a Delaunay
triangulation and any query values outside the convex hull of the input
points will return @code{NaN}.
@xseealso{@ref{XREFgriddata,,griddata}, @ref{XREFgriddatan,,griddatan}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
@c griddatan scripts/geometry/griddatan.m
@anchor{XREFgriddatan}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi})
@deftypefnx {} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi}, @var{method})
@deftypefnx {} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi}, @var{method}, @var{options})
Interpolate irregular source data @var{x}, @var{y} at points specified by
@var{xi}.
The input @var{x} is an MxN matrix representing M points in an N-dimensional
space. The input @var{y} is a single-valued column vector (Mx1)
representing a function evaluated at the points @var{x}, i.e.,
@code{@var{y} = fcn (@var{x})}. The input @var{xi} is a list of points
for which the function output @var{yi} should be approximated through
interpolation. @var{xi} must have the same number of columns (@var{N})
as @var{x} so that the dimensionality matches.
The optional input interpolation @var{method} can be @qcode{"nearest"} or
@qcode{"linear"}. When the method is @qcode{"nearest"}, the output @var{yi}
will be the closest point in the original data @var{x} to the query point
@var{xi}. When the method is @qcode{"linear"}, the output @var{yi} will
be a linear interpolation between the two closest points in the original
source data. If @var{method} is omitted or empty, it defaults to
@qcode{"linear"}.
The optional argument @var{options} is passed directly to Qhull when
computing the Delaunay triangulation used for interpolation. See
@code{delaunayn} for information on the defaults and how to pass different
values.
Example
@example
@group
## Evaluate sombrero() function at irregular data points
x = 16*gallery ("uniformdata", [200,1], 1) - 8;
y = 16*gallery ("uniformdata", [200,1], 11) - 8;
z = sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
## Create a regular grid and interpolate data
[xi, yi] = ndgrid (linspace (-8, 8, 50));
zi = griddatan ([x, y], z, [xi(:), yi(:)]);
zi = reshape (zi, size (xi));
## Plot results
clf ();
plot3 (x, y, z, "or");
hold on
surf (xi, yi, zi);
legend ("Original Data", "Interpolated Data");
@end group
@end example
Programming Notes: If the input is complex the real and imaginary parts
are interpolated separately. Interpolation is based on a Delaunay
triangulation and any query values outside the convex hull of the input
points will return @code{NaN}. For 2-D and 3-D data additional
interpolation methods are available by using the @code{griddata} function.
@xseealso{@ref{XREFgriddata,,griddata}, @ref{XREFgriddata3,,griddata3}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
An example of the use of the @code{griddata} function is
@example
@group
rand ("state", 1);
x = 2*rand (1000,1) - 1;
y = 2*rand (size (x)) - 1;
z = sin (2*(x.^2+y.^2));
[xx,yy] = meshgrid (linspace (-1,1,32));
zz = griddata (x, y, z, xx, yy);
mesh (xx, yy, zz);
@end group
@end example
@noindent
that interpolates from a random scattering of points, to a uniform grid.
@ifnotinfo
The output of the above can be seen in @ref{fig:griddata}.
@float Figure,fig:griddata
@center @image{griddata,4in}
@caption{Interpolation from a scattered data to a regular grid}
@end float
@end ifnotinfo
@node Vector Rotation Matrices
@section Vector Rotation Matrices
Also included in Octave's geometry functions are primitive functions to enable
vector rotations in 3-dimensional space. Separate functions are provided for
rotation about each of the principle axes, @var{x}, @var{y}, and @var{z}.
According to Euler's rotation theorem, any arbitrary rotation, @var{R}, of any
vector, @var{p}, can be expressed as a product of the three principle
rotations:
@tex
$p' = R \cdot p = R_z \cdot R_y \cdot R_x \cdot p$
@end tex
@ifnottex
@example
p' = Rp = Rz*Ry*Rx*p
@end example
@end ifnottex
@c rotx scripts/geometry/rotx.m
@anchor{XREFrotx}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{T} =} rotx (@var{angle})
@code{rotx} returns the 3x3 transformation matrix corresponding to an active
rotation of a vector about the x-axis by the specified @var{angle}, given in
degrees, where a positive angle corresponds to a counterclockwise
rotation when viewing the y-z plane from the positive x side.
The form of the transformation matrix is:
@tex
$$
T = \left[\matrix{ 1 & 0 & 0 \cr
0 & \cos(angle) & -\sin(angle)\cr
0 & \sin(angle) & \cos(angle)}\right].
$$
@end tex
@ifnottex
@example
@group
| 1 0 0 |
T = | 0 cos(@var{angle}) -sin(@var{angle}) |
| 0 sin(@var{angle}) cos(@var{angle}) |
@end group
@end example
@end ifnottex
This rotation matrix is intended to be used as a left-multiplying matrix
when acting on a column vector, using the notation
@code{@var{v} = @var{T}*@var{u}}.
For example, a vector, @var{u}, pointing along the positive y-axis, rotated
90-degrees about the x-axis, will result in a vector pointing along the
positive z-axis:
@example
@group
>> u = [0 1 0]'
u =
0
1
0
>> T = rotx (90)
T =
1.00000 0.00000 0.00000
0.00000 0.00000 -1.00000
0.00000 1.00000 0.00000
>> v = T*u
v =
0.00000
0.00000
1.00000
@end group
@end example
@xseealso{@ref{XREFroty,,roty}, @ref{XREFrotz,,rotz}}
@end deftypefn
@c roty scripts/geometry/roty.m
@anchor{XREFroty}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{T} =} roty (@var{angle})
@code{roty} returns the 3x3 transformation matrix corresponding to an active
rotation of a vector about the y-axis by the specified @var{angle}, given in
degrees, where a positive angle corresponds to a counterclockwise
rotation when viewing the z-x plane from the positive y side.
The form of the transformation matrix is:
@tex
$$
T = \left[\matrix{ \cos(angle) & 0 & \sin(angle) \cr
0 & 1 & 0 \cr
-\sin(angle) & 0 & \cos(angle)}\right].
$$
@end tex
@ifnottex
@example
@group
| cos(@var{angle}) 0 sin(@var{angle}) |
T = | 0 1 0 |
| -sin(@var{angle}) 0 cos(@var{angle}) |
@end group
@end example
@end ifnottex
This rotation matrix is intended to be used as a left-multiplying matrix
when acting on a column vector, using the notation
@code{@var{v} = @var{T}*@var{u}}.
For example, a vector, @var{u}, pointing along the positive z-axis, rotated
90-degrees about the y-axis, will result in a vector pointing along the
positive x-axis:
@example
@group
>> u = [0 0 1]'
u =
0
0
1
>> T = roty (90)
T =
0.00000 0.00000 1.00000
0.00000 1.00000 0.00000
-1.00000 0.00000 0.00000
>> v = T*u
v =
1.00000
0.00000
0.00000
@end group
@end example
@xseealso{@ref{XREFrotx,,rotx}, @ref{XREFrotz,,rotz}}
@end deftypefn
@c rotz scripts/geometry/rotz.m
@anchor{XREFrotz}
@html
<span style="display:block; margin-top:-4.5ex;"> </span>
@end html
@deftypefn {} {@var{T} =} rotz (@var{angle})
@code{rotz} returns the 3x3 transformation matrix corresponding to an active
rotation of a vector about the z-axis by the specified @var{angle}, given in
degrees, where a positive angle corresponds to a counterclockwise
rotation when viewing the x-y plane from the positive z side.
The form of the transformation matrix is:
@tex
$$
T = \left[\matrix{ \cos(angle) & -\sin(angle) & 0 \cr
\sin(angle) & \cos(angle) & 0 \cr
0 & 0 & 1}\right].
$$
@end tex
@ifnottex
@example
@group
| cos(@var{angle}) -sin(@var{angle}) 0 |
T = | sin(@var{angle}) cos(@var{angle}) 0 |
| 0 0 1 |
@end group
@end example
@end ifnottex
This rotation matrix is intended to be used as a left-multiplying matrix
when acting on a column vector, using the notation
@code{@var{v} = @var{T}*@var{u}}.
For example, a vector, @var{u}, pointing along the positive x-axis, rotated
90-degrees about the z-axis, will result in a vector pointing along the
positive y-axis:
@example
@group
>> u = [1 0 0]'
u =
1
0
0
>> T = rotz (90)
T =
0.00000 -1.00000 0.00000
1.00000 0.00000 0.00000
0.00000 0.00000 1.00000
>> v = T*u
v =
0.00000
1.00000
0.00000
@end group
@end example
@xseealso{@ref{XREFrotx,,rotx}, @ref{XREFroty,,roty}}
@end deftypefn
|