File: Expressions-Involving-Permutation-Matrices.html

package info (click to toggle)
octave 10.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 660; xml: 192
file content (95 lines) | stat: -rw-r--r-- 5,023 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Expressions Involving Permutation Matrices (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Expressions Involving Permutation Matrices (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Expressions Involving Permutation Matrices (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Matrix-Algebra.html" rel="up" title="Matrix Algebra">
<link href="Expressions-Involving-Diagonal-Matrices.html" rel="prev" title="Expressions Involving Diagonal Matrices">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="subsection-level-extent" id="Expressions-Involving-Permutation-Matrices">
<div class="nav-panel">
<p>
Previous: <a href="Expressions-Involving-Diagonal-Matrices.html" accesskey="p" rel="prev">Expressions Involving Diagonal Matrices</a>, Up: <a href="Matrix-Algebra.html" accesskey="u" rel="up">Linear Algebra with Diagonal/Permutation Matrices</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h4 class="subsection" id="Expressions-Involving-Permutation-Matrices-1"><span>21.2.2 Expressions Involving Permutation Matrices<a class="copiable-link" href="#Expressions-Involving-Permutation-Matrices-1"> &para;</a></span></h4>

<p>If <var class="var">P</var> is a permutation matrix and <var class="var">M</var> a matrix, the expression
<code class="code">P*M</code> will permute the rows of <var class="var">M</var>.  Similarly, <code class="code">M*P</code> will
yield a column permutation.
Matrix division <code class="code">P\M</code> and <code class="code">M/P</code> can be used to do inverse
permutation.
</p>
<p>The previously described syntax for creating permutation matrices can actually
help an user to understand the connection between a permutation matrix and
a permuting vector.  Namely, the following holds, where <code class="code">I = eye (n)</code>
is an identity matrix:
</p>
<div class="example">
<pre class="example-preformatted">  I(p,:) * M = (I*M) (p,:) = M(p,:)
</pre></div>

<p>Similarly,
</p>
<div class="example">
<pre class="example-preformatted">  M * I(:,p) = (M*I) (:,p) = M(:,p)
</pre></div>

<p>The expressions <code class="code">I(p,:)</code> and <code class="code">I(:,p)</code> are permutation matrices.
</p>
<p>A permutation matrix can be transposed (or conjugate-transposed, which is the
same, because a permutation matrix is never complex), inverting the
permutation, or equivalently, turning a row-permutation matrix into a
column-permutation one.  For permutation matrices, transpose is equivalent to
inversion, thus <code class="code">P\M</code> is equivalent to <code class="code">P'*M</code>.  Transpose of a
permutation matrix (or inverse) is a constant-time operation, flipping only a
flag internally, and thus the choice between the two above equivalent
expressions for inverse permuting is completely up to the user&rsquo;s taste.
</p>
<p>Multiplication and division by permutation matrices works efficiently also when
combined with sparse matrices, i.e., <code class="code">P*S</code>, where <var class="var">P</var> is a permutation
matrix and <var class="var">S</var> is a sparse matrix permutes the rows of the sparse matrix
and returns a sparse matrix.  The expressions <code class="code">S*P</code>, <code class="code">P\S</code>,
<code class="code">S/P</code> work analogically.
</p>
<p>Two permutation matrices can be multiplied or divided (if their sizes match),
performing a composition of permutations.  Also a permutation matrix can be
indexed by a permutation vector (or two vectors), giving again a permutation
matrix.  Any other operations do not generally yield a permutation matrix and
will thus trigger the implicit conversion.
</p>
</div>
<hr>
<div class="nav-panel">
<p>
Previous: <a href="Expressions-Involving-Diagonal-Matrices.html">Expressions Involving Diagonal Matrices</a>, Up: <a href="Matrix-Algebra.html">Linear Algebra with Diagonal/Permutation Matrices</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>