File: Finding-Roots.html

package info (click to toggle)
octave 10.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 660; xml: 192
file content (198 lines) | stat: -rw-r--r-- 10,931 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Finding Roots (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Finding Roots (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Finding Roots (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html" rel="up" title="Polynomial Manipulations">
<link href="Products-of-Polynomials.html" rel="next" title="Products of Polynomials">
<link href="Evaluating-Polynomials.html" rel="prev" title="Evaluating Polynomials">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="section-level-extent" id="Finding-Roots">
<div class="nav-panel">
<p>
Next: <a href="Products-of-Polynomials.html" accesskey="n" rel="next">Products of Polynomials</a>, Previous: <a href="Evaluating-Polynomials.html" accesskey="p" rel="prev">Evaluating Polynomials</a>, Up: <a href="Polynomial-Manipulations.html" accesskey="u" rel="up">Polynomial Manipulations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Finding-Roots-1"><span>28.2 Finding Roots<a class="copiable-link" href="#Finding-Roots-1"> &para;</a></span></h3>

<p>Octave can find the roots of a given polynomial.  This is done by computing
the companion matrix of the polynomial (see the <code class="code">compan</code> function
for a definition), and then finding its eigenvalues.
</p>
<a class="anchor" id="XREFroots"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-roots"><span><code class="def-type"><var class="var">r</var> =</code> <strong class="def-name">roots</strong> <code class="def-code-arguments">(<var class="var">c</var>)</code><a class="copiable-link" href="#index-roots"> &para;</a></span></dt>
<dd>
<p>Compute the roots of the polynomial <var class="var">c</var>.
</p>
<p>For a vector <var class="var">c</var> with <em class="math">N</em> components, return the roots of the
polynomial
</p>
<div class="example">
<pre class="example-preformatted">c(1) * x^(N-1) + ... + c(N-1) * x + c(N)
</pre></div>


<p>As an example, the following code finds the roots of the quadratic
polynomial
</p>
<div class="example">
<pre class="example-preformatted">p(x) = x^2 - 5.
</pre></div>


<div class="example">
<div class="group"><pre class="example-preformatted">c = [1, 0, -5];
roots (c)
&rArr;  2.2361
&rArr; -2.2361
</pre></div></div>

<p>Note that the true result is
<em class="math">+/- sqrt(5)</em>
which is roughly
<em class="math">+/- 2.2361</em>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Miscellaneous-Functions.html#XREFpoly">poly</a>, <a class="ref" href="#XREFcompan">compan</a>, <a class="ref" href="Solvers.html#XREFfzero">fzero</a>.
</p></dd></dl>


<a class="anchor" id="XREFpolyeig"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-polyeig"><span><code class="def-type"><var class="var">z</var> =</code> <strong class="def-name">polyeig</strong> <code class="def-code-arguments">(<var class="var">C0</var>, <var class="var">C1</var>, &hellip;, <var class="var">Cl</var>)</code><a class="copiable-link" href="#index-polyeig"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-polyeig-1"><span><code class="def-type">[<var class="var">v</var>, <var class="var">z</var>] =</code> <strong class="def-name">polyeig</strong> <code class="def-code-arguments">(<var class="var">C0</var>, <var class="var">C1</var>, &hellip;, <var class="var">Cl</var>)</code><a class="copiable-link" href="#index-polyeig-1"> &para;</a></span></dt>
<dd>
<p>Solve the polynomial eigenvalue problem of degree <var class="var">l</var>.
</p>
<p>Given an <var class="var">n</var>x<var class="var">n</var> matrix polynomial
</p>
<p><code class="code"><var class="var">C</var>(<var class="var">s</var>) = <var class="var">C0</var> + <var class="var">C1</var> <var class="var">s</var> + &hellip; + <var class="var">Cl</var>
<var class="var">s</var>^<var class="var">l</var></code>
</p>
<p><code class="code">polyeig</code> solves the eigenvalue problem
</p>
<p><code class="code">(<var class="var">C0</var> + <var class="var">C1</var> <var class="var">z</var> + &hellip; + <var class="var">Cl</var> <var class="var">z</var>^<var class="var">l</var>)
<var class="var">v</var> = 0</code>.
</p>
<p>Note that the eigenvalues <var class="var">z</var> are the zeros of the matrix polynomial.
<var class="var">z</var> is a row vector with <code class="code"><var class="var">n</var>*<var class="var">l</var></code> elements.  <var class="var">v</var> is a
matrix (<var class="var">n</var> x <var class="var">n</var>*<var class="var">l</var>) with columns that correspond to the
eigenvectors.
</p>

<p><strong class="strong">See also:</strong> <a class="ref" href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a class="ref" href="Sparse-Linear-Algebra.html#XREFeigs">eigs</a>, <a class="ref" href="#XREFcompan">compan</a>.
</p></dd></dl>


<a class="anchor" id="XREFcompan"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-compan"><span><code class="def-type"><var class="var">A</var> =</code> <strong class="def-name">compan</strong> <code class="def-code-arguments">(<var class="var">c</var>)</code><a class="copiable-link" href="#index-compan"> &para;</a></span></dt>
<dd><p>Compute the companion matrix corresponding to polynomial coefficient vector
<var class="var">c</var>.
</p>
<p>The companion matrix is
</p>
<div class="example smallexample">
<div class="group"><pre class="example-preformatted">     _                                                        _
    |  -c(2)/c(1)   -c(3)/c(1)  ...  -c(N)/c(1)  -c(N+1)/c(1)  |
    |       1            0      ...       0             0      |
    |       0            1      ...       0             0      |
A = |       .            .      .         .             .      |
    |       .            .       .        .             .      |
    |       .            .        .       .             .      |
    |_      0            0      ...       1             0     _|
</pre></div></div>

<p>The eigenvalues of the companion matrix are equal to the roots of the
polynomial.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFroots">roots</a>, <a class="ref" href="Miscellaneous-Functions.html#XREFpoly">poly</a>, <a class="ref" href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>


<a class="anchor" id="XREFmpoles"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-mpoles"><span><code class="def-type">[<var class="var">multp</var>, <var class="var">idxp</var>] =</code> <strong class="def-name">mpoles</strong> <code class="def-code-arguments">(<var class="var">p</var>)</code><a class="copiable-link" href="#index-mpoles"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mpoles-1"><span><code class="def-type">[<var class="var">multp</var>, <var class="var">idxp</var>] =</code> <strong class="def-name">mpoles</strong> <code class="def-code-arguments">(<var class="var">p</var>, <var class="var">tol</var>)</code><a class="copiable-link" href="#index-mpoles-1"> &para;</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-mpoles-2"><span><code class="def-type">[<var class="var">multp</var>, <var class="var">idxp</var>] =</code> <strong class="def-name">mpoles</strong> <code class="def-code-arguments">(<var class="var">p</var>, <var class="var">tol</var>, <var class="var">reorder</var>)</code><a class="copiable-link" href="#index-mpoles-2"> &para;</a></span></dt>
<dd><p>Identify unique poles in <var class="var">p</var> and their associated multiplicity.
</p>
<p>By default, the output is ordered from the pole with the largest magnitude
to the smallest magnitude.
</p>
<p>Two poles are considered to be multiples if the difference between them
is less than the relative tolerance <var class="var">tol</var>.
</p>
<div class="example">
<pre class="example-preformatted">abs (<var class="var">p1</var> - <var class="var">p0</var>) / abs (<var class="var">p0</var>) &lt; <var class="var">tol</var>
</pre></div>

<p>If the pole is 0 then no scaling is done and <var class="var">tol</var> is interpreted as an
absolute tolerance.  The default value for <var class="var">tol</var> is 0.001.
</p>
<p>If the optional parameter <var class="var">reorder</var> is false/zero, poles are not
sorted.
</p>
<p>The output <var class="var">multp</var> is a vector specifying the multiplicity of the poles.
<code class="code"><var class="var">multp</var>(n)</code> refers to the multiplicity of the Nth pole
<code class="code"><var class="var">p</var>(<var class="var">idxp</var>(n))</code>.
</p>
<p>For example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">p = [2 3 1 1 2];
[m, n] = mpoles (p)
   &rArr; m = [1; 1; 2; 1; 2]
   &rArr; n = [2; 5; 1; 4; 3]
   &rArr; p(n) = [3, 2, 2, 1, 1]
</pre></div></div>


<p><strong class="strong">See also:</strong> <a class="ref" href="Products-of-Polynomials.html#XREFresidue">residue</a>, <a class="ref" href="Miscellaneous-Functions.html#XREFpoly">poly</a>, <a class="ref" href="#XREFroots">roots</a>, <a class="ref" href="Products-of-Polynomials.html#XREFconv">conv</a>, <a class="ref" href="Products-of-Polynomials.html#XREFdeconv">deconv</a>.
</p></dd></dl>


</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Products-of-Polynomials.html">Products of Polynomials</a>, Previous: <a href="Evaluating-Polynomials.html">Evaluating Polynomials</a>, Up: <a href="Polynomial-Manipulations.html">Polynomial Manipulations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>