1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Linear Least Squares (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Linear Least Squares (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Linear Least Squares (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Optimization.html" rel="up" title="Optimization">
<link href="Nonlinear-Programming.html" rel="prev" title="Nonlinear Programming">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
ul.mark-bullet {list-style-type: disc}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="section-level-extent" id="Linear-Least-Squares">
<div class="nav-panel">
<p>
Previous: <a href="Nonlinear-Programming.html" accesskey="p" rel="prev">Nonlinear Programming</a>, Up: <a href="Optimization.html" accesskey="u" rel="up">Optimization</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Linear-Least-Squares-1"><span>25.4 Linear Least Squares<a class="copiable-link" href="#Linear-Least-Squares-1"> ¶</a></span></h3>
<p>Octave also supports linear least squares minimization. That is,
Octave can find the parameter <em class="math">b</em> such that the model
<em class="math">y = x*b</em>
fits data <em class="math">(x,y)</em> as well as possible, assuming zero-mean
Gaussian noise. If the noise is assumed to be isotropic the problem
can be solved using the ‘<samp class="samp">\</samp>’ or ‘<samp class="samp">/</samp>’ operators, or the <code class="code">ols</code>
function. In the general case where the noise is assumed to be anisotropic
the <code class="code">gls</code> is needed.
</p>
<a class="anchor" id="XREFols"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ols"><span><code class="def-type">[<var class="var">beta</var>, <var class="var">sigma</var>, <var class="var">r</var>] =</code> <strong class="def-name">ols</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">x</var>)</code><a class="copiable-link" href="#index-ols"> ¶</a></span></dt>
<dd><p>Ordinary least squares (OLS) estimation.
</p>
<p>OLS applies to the multivariate model
<em class="math"><var class="var">y</var> = <var class="var">x</var>*<var class="var">b</var> + <var class="var">e</var></em><!-- /@w -->
where
<em class="math"><var class="var">y</var></em> is a <em class="math">t</em>-by-<em class="math">p</em> matrix, <em class="math"><var class="var">x</var></em> is a
<em class="math">t</em>-by-<em class="math">k</em> matrix, <var class="var">b</var> is a <em class="math">k</em>-by-<em class="math">p</em> matrix, and
<var class="var">e</var> is a <em class="math">t</em>-by-<em class="math">p</em> matrix.
</p>
<p>Each row of <var class="var">y</var> is a <em class="math">p</em>-variate observation in which each column
represents a variable. Likewise, the rows of <var class="var">x</var> represent
<em class="math">k</em>-variate observations or possibly designed values. Furthermore,
the collection of observations <var class="var">x</var> must be of adequate rank, <em class="math">k</em>,
otherwise <var class="var">b</var> cannot be uniquely estimated.
</p>
<p>The observation errors, <var class="var">e</var>, are assumed to originate from an
underlying <em class="math">p</em>-variate distribution with zero mean and
<em class="math">p</em>-by-<em class="math">p</em> covariance matrix <var class="var">S</var>, both constant conditioned
on <var class="var">x</var>. Furthermore, the matrix <var class="var">S</var> is constant with respect to
each observation such that
<code class="code">mean (<var class="var">e</var>) = 0</code> and
<code class="code">cov (vec (<var class="var">e</var>)) = kron (<var class="var">s</var>, <var class="var">I</var>)</code>.
(For cases
that don’t meet this criteria, such as autocorrelated errors, see
generalized least squares, gls, for more efficient estimations.)
</p>
<p>The return values <var class="var">beta</var>, <var class="var">sigma</var>, and <var class="var">r</var> are defined as
follows.
</p>
<dl class="table">
<dt><var class="var">beta</var></dt>
<dd><p>The OLS estimator for matrix <var class="var">b</var>.
<var class="var">beta</var> is calculated directly via
<code class="code">inv (<var class="var">x</var>'*<var class="var">x</var>) * <var class="var">x</var>' * <var class="var">y</var></code> if the matrix
<code class="code"><var class="var">x</var>'*<var class="var">x</var></code> is of full rank.
Otherwise, <code class="code"><var class="var">beta</var> = pinv (<var class="var">x</var>) * <var class="var">y</var></code> where
<code class="code">pinv (<var class="var">x</var>)</code> denotes the pseudoinverse of <var class="var">x</var>.
</p>
</dd>
<dt><var class="var">sigma</var></dt>
<dd><p>The OLS estimator for the matrix <var class="var">s</var>,
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">sigma</var> = (<var class="var">y</var>-<var class="var">x</var>*<var class="var">beta</var>)' * (<var class="var">y</var>-<var class="var">x</var>*<var class="var">beta</var>) / (<em class="math">t</em>-rank(<var class="var">x</var>))
</pre></div></div>
</dd>
<dt><var class="var">r</var></dt>
<dd><p>The matrix of OLS residuals, <code class="code"><var class="var">r</var> = <var class="var">y</var> - <var class="var">x</var>*<var class="var">beta</var></code>.
</p></dd>
</dl>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFgls">gls</a>, <a class="ref" href="Basic-Matrix-Functions.html#XREFpinv">pinv</a>.
</p></dd></dl>
<a class="anchor" id="XREFgls"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-gls"><span><code class="def-type">[<var class="var">beta</var>, <var class="var">v</var>, <var class="var">r</var>] =</code> <strong class="def-name">gls</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">x</var>, <var class="var">o</var>)</code><a class="copiable-link" href="#index-gls"> ¶</a></span></dt>
<dd><p>Generalized least squares (GLS) model.
</p>
<p>Perform a generalized least squares estimation for the multivariate model
<em class="math"><var class="var">y</var> = <var class="var">x</var>*<var class="var">B</var> + <var class="var">E</var></em><!-- /@w -->
where
<var class="var">y</var> is a <em class="math">t</em>-by-<em class="math">p</em> matrix, <var class="var">x</var> is a
<em class="math">t</em>-by-<em class="math">k</em> matrix, <var class="var">b</var> is a <em class="math">k</em>-by-<em class="math">p</em> matrix
and <var class="var">e</var> is a <em class="math">t</em>-by-<em class="math">p</em> matrix.
</p>
<p>Each row of <var class="var">y</var> is a <em class="math">p</em>-variate observation in which each column
represents a variable. Likewise, the rows of <var class="var">x</var> represent
<em class="math">k</em>-variate observations or possibly designed values. Furthermore,
the collection of observations <var class="var">x</var> must be of adequate rank, <em class="math">k</em>,
otherwise <var class="var">b</var> cannot be uniquely estimated.
</p>
<p>The observation errors, <var class="var">e</var>, are assumed to originate from an
underlying <em class="math">p</em>-variate distribution with zero mean but possibly
heteroscedastic observations. That is, in general,
<code class="code"><em class="math">mean (<var class="var">e</var>) = 0</em></code> and
<code class="code"><em class="math">cov (vec (<var class="var">e</var>)) = (<em class="math">s</em>^2)*<var class="var">o</var></em></code>
in which <em class="math">s</em> is a scalar and <var class="var">o</var> is a
<em class="math">t*p</em>-by-<em class="math">t*p</em>
matrix.
</p>
<p>The return values <var class="var">beta</var>, <var class="var">v</var>, and <var class="var">r</var> are
defined as follows.
</p>
<dl class="table">
<dt><var class="var">beta</var></dt>
<dd><p>The GLS estimator for matrix <var class="var">b</var>.
</p>
</dd>
<dt><var class="var">v</var></dt>
<dd><p>The GLS estimator for scalar <em class="math">s^2</em>.
</p>
</dd>
<dt><var class="var">r</var></dt>
<dd><p>The matrix of GLS residuals, <em class="math"><var class="var">r</var> = <var class="var">y</var> - <var class="var">x</var>*<var class="var">beta</var></em>.
</p></dd>
</dl>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFols">ols</a>.
</p></dd></dl>
<a class="anchor" id="XREFlsqnonneg"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-lsqnonneg"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">lsqnonneg</strong> <code class="def-code-arguments">(<var class="var">c</var>, <var class="var">d</var>)</code><a class="copiable-link" href="#index-lsqnonneg"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lsqnonneg-1"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">lsqnonneg</strong> <code class="def-code-arguments">(<var class="var">c</var>, <var class="var">d</var>, <var class="var">x0</var>)</code><a class="copiable-link" href="#index-lsqnonneg-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lsqnonneg-2"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">lsqnonneg</strong> <code class="def-code-arguments">(<var class="var">c</var>, <var class="var">d</var>, <var class="var">x0</var>, <var class="var">options</var>)</code><a class="copiable-link" href="#index-lsqnonneg-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lsqnonneg-3"><span><code class="def-type">[<var class="var">x</var>, <var class="var">resnorm</var>] =</code> <strong class="def-name">lsqnonneg</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-lsqnonneg-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lsqnonneg-4"><span><code class="def-type">[<var class="var">x</var>, <var class="var">resnorm</var>, <var class="var">residual</var>] =</code> <strong class="def-name">lsqnonneg</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-lsqnonneg-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lsqnonneg-5"><span><code class="def-type">[<var class="var">x</var>, <var class="var">resnorm</var>, <var class="var">residual</var>, <var class="var">exitflag</var>] =</code> <strong class="def-name">lsqnonneg</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-lsqnonneg-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lsqnonneg-6"><span><code class="def-type">[<var class="var">x</var>, <var class="var">resnorm</var>, <var class="var">residual</var>, <var class="var">exitflag</var>, <var class="var">output</var>] =</code> <strong class="def-name">lsqnonneg</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-lsqnonneg-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lsqnonneg-7"><span><code class="def-type">[<var class="var">x</var>, <var class="var">resnorm</var>, <var class="var">residual</var>, <var class="var">exitflag</var>, <var class="var">output</var>, <var class="var">lambda</var>] =</code> <strong class="def-name">lsqnonneg</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-lsqnonneg-7"> ¶</a></span></dt>
<dd>
<p>Minimize <code class="code">norm (<var class="var">c</var>*<var class="var">x</var> - <var class="var">d</var>)</code> subject to
<code class="code"><var class="var">x</var> >= 0</code>.
</p>
<p><var class="var">c</var> and <var class="var">d</var> must be real matrices.
</p>
<p><var class="var">x0</var> is an optional initial guess for the solution <var class="var">x</var>.
</p>
<p><var class="var">options</var> is an options structure to change the behavior of the
algorithm (see <a class="pxref" href="#XREFoptimset"><code class="code">optimset</code></a>). <code class="code">lsqnonneg</code>
recognizes these options: <code class="code">"MaxIter"</code>, <code class="code">"TolX"</code>.
</p>
<p>Outputs:
</p>
<dl class="table">
<dt><var class="var">resnorm</var></dt>
<dd><p>The squared 2-norm of the residual: <code class="code">norm (<var class="var">c</var>*<var class="var">x</var>-<var class="var">d</var>)^2</code>
</p>
</dd>
<dt><var class="var">residual</var></dt>
<dd><p>The residual: <code class="code"><var class="var">d</var>-<var class="var">c</var>*<var class="var">x</var></code>
</p>
</dd>
<dt><var class="var">exitflag</var></dt>
<dd><p>An indicator of convergence. 0 indicates that the iteration count was
exceeded, and therefore convergence was not reached; >0 indicates that the
algorithm converged. (The algorithm is stable and will converge given
enough iterations.)
</p>
</dd>
<dt><var class="var">output</var></dt>
<dd><p>A structure with two fields:
</p>
<ul class="itemize mark-bullet">
<li><code class="code">"algorithm"</code>: The algorithm used (<code class="code">"nnls"</code>)
</li><li><code class="code">"iterations"</code>: The number of iterations taken.
</li></ul>
</dd>
<dt><var class="var">lambda</var></dt>
<dd><p>Lagrange multipliers. If these are nonzero, the corresponding <var class="var">x</var>
values should be zero, indicating the solution is pressed up against a
coordinate plane. The magnitude indicates how much the residual would
improve if the <code class="code"><var class="var">x</var> >= 0</code> constraints were relaxed in that
direction.
</p>
</dd>
</dl>
<p><strong class="strong">See also:</strong> <a class="ref" href="Quadratic-Programming.html#XREFpqpnonneg">pqpnonneg</a>, <a class="ref" href="#XREFlscov">lscov</a>, <a class="ref" href="#XREFoptimset">optimset</a>.
</p></dd></dl>
<a class="anchor" id="XREFlscov"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-lscov"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">lscov</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">b</var>)</code><a class="copiable-link" href="#index-lscov"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lscov-1"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">lscov</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">b</var>, <var class="var">V</var>)</code><a class="copiable-link" href="#index-lscov-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lscov-2"><span><code class="def-type"><var class="var">x</var> =</code> <strong class="def-name">lscov</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">b</var>, <var class="var">V</var>, <var class="var">alg</var>)</code><a class="copiable-link" href="#index-lscov-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lscov-3"><span><code class="def-type">[<var class="var">x</var>, <var class="var">stdx</var>, <var class="var">mse</var>, <var class="var">S</var>] =</code> <strong class="def-name">lscov</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-lscov-3"> ¶</a></span></dt>
<dd>
<p>Compute a generalized linear least squares fit.
</p>
<p>Estimate <var class="var">x</var> under the model <var class="var">b</var> = <var class="var">A</var><var class="var">x</var> + <var class="var">w</var>, where
the noise <var class="var">w</var> is assumed to follow a normal distribution with covariance
matrix <em class="math">{\sigma^2} V</em>.
</p>
<p>If the size of the coefficient matrix <var class="var">A</var> is n-by-p, the size of the
vector/array of constant terms <var class="var">b</var> must be n-by-k.
</p>
<p>The optional input argument <var class="var">V</var> may be an n-element vector of positive
weights (inverse variances), or an n-by-n symmetric positive semi-definite
matrix representing the covariance of <var class="var">b</var>. If <var class="var">V</var> is not supplied,
the ordinary least squares solution is returned.
</p>
<p>The <var class="var">alg</var> input argument, a guidance on solution method to use, is
currently ignored.
</p>
<p>Besides the least-squares estimate matrix <var class="var">x</var> (p-by-k), the function
also returns <var class="var">stdx</var> (p-by-k), the error standard deviation of estimated
<var class="var">x</var>; <var class="var">mse</var> (k-by-1), the estimated data error covariance scale
factors (<em class="math">\sigma^2</em>); and <var class="var">S</var> (p-by-p, or p-by-p-by-k if k > 1),
the error covariance of <var class="var">x</var>.
</p>
<p>Reference: Golub and Van Loan (1996),
<cite class="cite">Matrix Computations (3rd Ed.)</cite>, Johns Hopkins, Section 5.6.3
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFols">ols</a>, <a class="ref" href="#XREFgls">gls</a>, <a class="ref" href="#XREFlsqnonneg">lsqnonneg</a>.
</p></dd></dl>
<a class="anchor" id="XREFoptimset"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-optimset"><span><strong class="def-name">optimset</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-optimset"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-optimset-1"><span><code class="def-type"><var class="var">options</var> =</code> <strong class="def-name">optimset</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-optimset-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-optimset-2"><span><code class="def-type"><var class="var">options</var> =</code> <strong class="def-name">optimset</strong> <code class="def-code-arguments">(<var class="var">par</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-optimset-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-optimset-3"><span><code class="def-type"><var class="var">options</var> =</code> <strong class="def-name">optimset</strong> <code class="def-code-arguments">(<var class="var">old</var>, <var class="var">par</var>, <var class="var">val</var>, …)</code><a class="copiable-link" href="#index-optimset-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-optimset-4"><span><code class="def-type"><var class="var">options</var> =</code> <strong class="def-name">optimset</strong> <code class="def-code-arguments">(<var class="var">old</var>, <var class="var">new</var>)</code><a class="copiable-link" href="#index-optimset-4"> ¶</a></span></dt>
<dd><p>Create options structure for optimization functions.
</p>
<p>When called without any input or output arguments, <code class="code">optimset</code> prints
a list of all valid optimization parameters.
</p>
<p>When called with one output and no inputs, return an options structure with
all valid option parameters initialized to <code class="code">[]</code>.
</p>
<p>When called with a list of parameter/value pairs, return an options
structure with only the named parameters initialized.
</p>
<p>When the first input is an existing options structure <var class="var">old</var>, the values
are updated from either the <var class="var">par</var>/<var class="var">val</var> list or from the options
structure <var class="var">new</var>.
</p>
<p>If <var class="var">par</var> does not exactly match the name of a standard parameter,
<code class="code">optimset</code> will attempt to match <var class="var">par</var> to a standard parameter
and will set the value of that parameter if a match is found. Matching is
case insensitive and is based on character matching at the start of the
parameter name. <code class="code">optimset</code> produces an error if it finds multiple
ambiguous matches. If no standard parameter matches are found a warning is
issued and the non-standard parameter is created.
</p>
<p>Standard list of valid parameters:
</p>
<dl class="table">
<dt>AutoScaling</dt>
<dt>ComplexEqn</dt>
<dt>Display</dt>
<dd><p>Request verbose display of results from optimizations. Values are:
</p>
<dl class="table">
<dt><code class="code">"off"</code> [default]</dt>
<dd><p>No display.
</p>
</dd>
<dt><code class="code">"iter"</code></dt>
<dd><p>Display intermediate results for every loop iteration.
</p>
</dd>
<dt><code class="code">"final"</code></dt>
<dd><p>Display the result of the final loop iteration.
</p>
</dd>
<dt><code class="code">"notify"</code></dt>
<dd><p>Display the result of the final loop iteration if the function has
failed to converge.
</p></dd>
</dl>
</dd>
<dt>FinDiffType</dt>
<dt>FunValCheck</dt>
<dd><p>When enabled, display an error if the objective function returns an invalid
value (a complex number, NaN, or Inf). Must be set to <code class="code">"on"</code> or
<code class="code">"off"</code> [default]. Note: the functions <code class="code">fzero</code> and
<code class="code">fminbnd</code> correctly handle Inf values and only complex values or NaN
will cause an error in this case.
</p>
</dd>
<dt>GradObj</dt>
<dd><p>When set to <code class="code">"on"</code>, the function to be minimized must return a
second argument which is the gradient, or first derivative, of the
function at the point <var class="var">x</var>. If set to <code class="code">"off"</code> [default], the
gradient is computed via finite differences.
</p>
</dd>
<dt>Jacobian</dt>
<dd><p>When set to <code class="code">"on"</code>, the function to be minimized must return a
second argument which is the Jacobian, or first derivative, of the
function at the point <var class="var">x</var>. If set to <code class="code">"off"</code> [default], the
Jacobian is computed via finite differences.
</p>
</dd>
<dt>MaxFunEvals</dt>
<dd><p>Maximum number of function evaluations before optimization stops.
Must be a positive integer.
</p>
</dd>
<dt>MaxIter</dt>
<dd><p>Maximum number of algorithm iterations before optimization stops.
Must be a positive integer.
</p>
</dd>
<dt>OutputFcn</dt>
<dd><p>A user-defined function executed once per algorithm iteration.
</p>
</dd>
<dt>TolFun</dt>
<dd><p>Termination criterion for the function output. If the difference in the
calculated objective function between one algorithm iteration and the next
is less than <code class="code">TolFun</code> the optimization stops. Must be a positive
scalar.
</p>
</dd>
<dt>TolX</dt>
<dd><p>Termination criterion for the function input. If the difference in <var class="var">x</var>,
the current search point, between one algorithm iteration and the next is
less than <code class="code">TolX</code> the optimization stops. Must be a positive scalar.
</p>
</dd>
<dt>TypicalX</dt>
<dt>Updating</dt>
</dl>
<p>This list can be extended by the user or other loaded Octave packages. An
updated valid parameters list can be queried using the no-argument form of
<code class="code">optimset</code>.
</p>
<p>Note 1: Only parameter names from the standard list are considered when
matching short parameter names, and <var class="var">par</var> will always be expanded
to match a standard parameter even if an exact non-standard match exists.
The value of a non-standard parameter that is ambiguous with one or more
standard parameters cannot be set by <code class="code">optimset</code> and can only be set
using <code class="code">setfield</code> or dot notation for structs.
</p>
<p>Note 2: The optimization options structure is primarily intended for
manipulation of known parameters by <code class="code">optimset</code> and <code class="code">optimget</code>.
Unpredictable behavior on future calls to <code class="code">optimset</code> or
<code class="code">optimget</code> can result from creating non-standard or ambiguous
parameters or from loading/unloading packages that change the known
parameter list after creation of an optimization options structure.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFoptimget">optimget</a>.
</p></dd></dl>
<a class="anchor" id="XREFoptimget"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-optimget"><span><code class="def-type"><var class="var">val</var> =</code> <strong class="def-name">optimget</strong> <code class="def-code-arguments">(<var class="var">options</var>, <var class="var">par</var>)</code><a class="copiable-link" href="#index-optimget"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-optimget-1"><span><code class="def-type"><var class="var">val</var> =</code> <strong class="def-name">optimget</strong> <code class="def-code-arguments">(<var class="var">options</var>, <var class="var">par</var>, <var class="var">default</var>)</code><a class="copiable-link" href="#index-optimget-1"> ¶</a></span></dt>
<dd><p>Return the value of the specific parameter <var class="var">par</var> from the optimization
options structure <var class="var">options</var> created by <code class="code">optimset</code>.
</p>
<p>If <var class="var">par</var> is not defined then return the <var class="var">default</var> value if
supplied, otherwise return an empty matrix.
</p>
<p>If <var class="var">par</var> does not exactly match the name of a standard parameter,
<code class="code">optimget</code> will attempt to match <var class="var">par</var> to a standard parameter
and will return that parameter’s value if a match is found. Matching is
case insensitive and is based on character matching at the start of the
parameter name. <code class="code">optimget</code> produces an error if it finds multiple
ambiguous matches. If no standard parameter matches are found a warning is
issued. See <code class="code">optimset</code> for information about the standard options
list.
</p>
<p>Note: Only parameter names from the standard list are considered when
matching short parameter names, and <var class="var">par</var> will always be expanded to
match a standard parameter even if an exact non-standard match exists. The
value of a non-standard parameter that is ambiguous with one or more
standard parameters cannot be returned by <code class="code">optimget</code> and can only be
accessed using <code class="code">getfield</code> or dot notation for structs.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFoptimset">optimset</a>.
</p></dd></dl>
</div>
<hr>
<div class="nav-panel">
<p>
Previous: <a href="Nonlinear-Programming.html">Nonlinear Programming</a>, Up: <a href="Optimization.html">Optimization</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|