File: Linear-Programming.html

package info (click to toggle)
octave 10.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 660; xml: 192
file content (591 lines) | stat: -rw-r--r-- 18,242 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Linear Programming (GNU Octave (version 10.3.0))</title>

<meta name="description" content="Linear Programming (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Linear Programming (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Optimization.html" rel="up" title="Optimization">
<link href="Quadratic-Programming.html" rel="next" title="Quadratic Programming">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="section-level-extent" id="Linear-Programming">
<div class="nav-panel">
<p>
Next: <a href="Quadratic-Programming.html" accesskey="n" rel="next">Quadratic Programming</a>, Up: <a href="Optimization.html" accesskey="u" rel="up">Optimization</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Linear-Programming-1"><span>25.1 Linear Programming<a class="copiable-link" href="#Linear-Programming-1"> &para;</a></span></h3>

<p>Octave can solve Linear Programming problems using the <code class="code">glpk</code>
function.  That is, Octave can solve
</p>

<div class="example">
<pre class="example-preformatted">min C'*x
</pre></div>

<p>subject to the linear constraints
<em class="math">A*x = b</em> where <em class="math">x &ge; 0</em>.
</p>
<p>The <code class="code">glpk</code> function also supports variations of this problem.
</p>
<a class="anchor" id="XREFglpk"></a><span style="display:block; margin-top:-4.5ex;">&nbsp;</span>


<dl class="first-deftypefn">
<dt class="deftypefn" id="index-glpk"><span><code class="def-type">[<var class="var">xopt</var>, <var class="var">fmin</var>, <var class="var">errnum</var>, <var class="var">extra</var>] =</code> <strong class="def-name">glpk</strong> <code class="def-code-arguments">(<var class="var">c</var>, <var class="var">A</var>, <var class="var">b</var>, <var class="var">lb</var>, <var class="var">ub</var>, <var class="var">ctype</var>, <var class="var">vartype</var>, <var class="var">sense</var>, <var class="var">param</var>)</code><a class="copiable-link" href="#index-glpk"> &para;</a></span></dt>
<dd><p>Solve a linear program using the GNU <small class="sc">GLPK</small> library.
</p>
<p>Given three arguments, <code class="code">glpk</code> solves the following standard LP:
</p>
<div class="example">
<pre class="example-preformatted">min C'*x
</pre></div>

<p>subject to
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">A*x  = b
  x &gt;= 0
</pre></div></div>

<p>but may also solve problems of the form
</p>
<div class="example">
<pre class="example-preformatted">[ min | max ] C'*x
</pre></div>

<p>subject to
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">A*x [ &quot;=&quot; | &quot;&lt;=&quot; | &quot;&gt;=&quot; ] b
  x &gt;= LB
  x &lt;= UB
</pre></div></div>


<p>Input arguments:
</p>
<dl class="table">
<dt><var class="var">c</var></dt>
<dd><p>A column array containing the objective function coefficients.
</p>
</dd>
<dt><var class="var">A</var></dt>
<dd><p>A matrix containing the constraints coefficients.
</p>
</dd>
<dt><var class="var">b</var></dt>
<dd><p>A column array containing the right-hand side value for each constraint in
the constraint matrix.
</p>
</dd>
<dt><var class="var">lb</var></dt>
<dd><p>An array containing the lower bound on each of the variables.  If <var class="var">lb</var>
is not supplied, the default lower bound for the variables is zero.
</p>
</dd>
<dt><var class="var">ub</var></dt>
<dd><p>An array containing the upper bound on each of the variables.  If <var class="var">ub</var>
is not supplied, the default upper bound is assumed to be infinite.
</p>
</dd>
<dt><var class="var">ctype</var></dt>
<dd><p>An array of characters containing the sense of each constraint in the
constraint matrix.  Each element of the array may be one of the following
values
</p>
<dl class="table">
<dt><code class="code">&quot;F&quot;</code></dt>
<dd><p>A free (unbounded) constraint (the constraint is ignored).
</p>
</dd>
<dt><code class="code">&quot;U&quot;</code></dt>
<dd><p>An inequality constraint with an upper bound (<code class="code">A(i,:)*x &lt;= b(i)</code>).
</p>
</dd>
<dt><code class="code">&quot;S&quot;</code></dt>
<dd><p>An equality constraint (<code class="code">A(i,:)*x = b(i)</code>).
</p>
</dd>
<dt><code class="code">&quot;L&quot;</code></dt>
<dd><p>An inequality with a lower bound (<code class="code">A(i,:)*x &gt;= b(i)</code>).
</p>
</dd>
<dt><code class="code">&quot;D&quot;</code></dt>
<dd><p>An inequality constraint with both upper and lower bounds
(<code class="code">A(i,:)*x &gt;= -b(i)</code>) <em class="emph">and</em> (<code class="code">A(i,:)*x &lt;= b(i)</code>).
</p></dd>
</dl>

</dd>
<dt><var class="var">vartype</var></dt>
<dd><p>A column array containing the types of the variables.
</p>
<dl class="table">
<dt><code class="code">&quot;C&quot;</code></dt>
<dd><p>A continuous variable.
</p>
</dd>
<dt><code class="code">&quot;I&quot;</code></dt>
<dd><p>An integer variable.
</p></dd>
</dl>

</dd>
<dt><var class="var">sense</var></dt>
<dd><p>If <var class="var">sense</var> is 1, the problem is a minimization.  If <var class="var">sense</var> is -1,
the problem is a maximization.  The default value is 1.
</p>
</dd>
<dt><var class="var">param</var></dt>
<dd><p>A structure containing the following parameters used to define the
behavior of solver.  Missing elements in the structure take on default
values, so you only need to set the elements that you wish to change from
the default.
</p>
<p>Integer parameters:
</p>
<dl class="table">
<dt><code class="code">msglev (default: 1)</code></dt>
<dd><p>Level of messages output by solver routines:
</p>
<dl class="table">
<dt>0 (<code class="code">GLP_MSG_OFF</code><!-- /@w -->)</dt>
<dd><p>No output.
</p>
</dd>
<dt>1 (<code class="code">GLP_MSG_ERR</code><!-- /@w -->)</dt>
<dd><p>Error and warning messages only.
</p>
</dd>
<dt>2 (<code class="code">GLP_MSG_ON</code><!-- /@w -->)</dt>
<dd><p>Normal output.
</p>
</dd>
<dt>3 (<code class="code">GLP_MSG_ALL</code><!-- /@w -->)</dt>
<dd><p>Full output (includes informational messages).
</p></dd>
</dl>

</dd>
<dt><code class="code">scale (default: 16)</code></dt>
<dd><p>Scaling option.  The values can be combined with the bitwise OR operator and
may be the following:
</p>
<dl class="table">
<dt>1 (<code class="code">GLP_SF_GM</code><!-- /@w -->)</dt>
<dd><p>Geometric mean scaling.
</p>
</dd>
<dt>16 (<code class="code">GLP_SF_EQ</code><!-- /@w -->)</dt>
<dd><p>Equilibration scaling.
</p>
</dd>
<dt>32 (<code class="code">GLP_SF_2N</code><!-- /@w -->)</dt>
<dd><p>Round scale factors to power of two.
</p>
</dd>
<dt>64 (<code class="code">GLP_SF_SKIP</code><!-- /@w -->)</dt>
<dd><p>Skip if problem is well scaled.
</p></dd>
</dl>

<p>Alternatively, a value of 128 (<code class="env">GLP_SF_AUTO</code><!-- /@w -->) may be also
specified, in which case the routine chooses the scaling options
automatically.
</p>
</dd>
<dt><code class="code">dual (default: 1)</code></dt>
<dd><p>Simplex method option:
</p>
<dl class="table">
<dt>1 (<code class="code">GLP_PRIMAL</code><!-- /@w -->)</dt>
<dd><p>Use two-phase primal simplex.
</p>
</dd>
<dt>2 (<code class="code">GLP_DUALP</code><!-- /@w -->)</dt>
<dd><p>Use two-phase dual simplex, and if it fails, switch to the primal simplex.
</p>
</dd>
<dt>3 (<code class="code">GLP_DUAL</code><!-- /@w -->)</dt>
<dd><p>Use two-phase dual simplex.
</p></dd>
</dl>

</dd>
<dt><code class="code">price (default: 34)</code></dt>
<dd><p>Pricing option (for both primal and dual simplex):
</p>
<dl class="table">
<dt>17 (<code class="code">GLP_PT_STD</code><!-- /@w -->)</dt>
<dd><p>Textbook pricing.
</p>
</dd>
<dt>34 (<code class="code">GLP_PT_PSE</code><!-- /@w -->)</dt>
<dd><p>Steepest edge pricing.
</p></dd>
</dl>

</dd>
<dt><code class="code">itlim (default: intmax)</code></dt>
<dd><p>Simplex iterations limit.  It is decreased by one each time when one simplex
iteration has been performed, and reaching zero value signals the solver to
stop the search.
</p>
</dd>
<dt><code class="code">outfrq (default: 200)</code></dt>
<dd><p>Output frequency, in iterations.  This parameter specifies how frequently
the solver sends information about the solution to the standard output.
</p>
</dd>
<dt><code class="code">branch (default: 4)</code></dt>
<dd><p>Branching technique option (for MIP only):
</p>
<dl class="table">
<dt>1 (<code class="code">GLP_BR_FFV</code><!-- /@w -->)</dt>
<dd><p>First fractional variable.
</p>
</dd>
<dt>2 (<code class="code">GLP_BR_LFV</code><!-- /@w -->)</dt>
<dd><p>Last fractional variable.
</p>
</dd>
<dt>3 (<code class="code">GLP_BR_MFV</code><!-- /@w -->)</dt>
<dd><p>Most fractional variable.
</p>
</dd>
<dt>4 (<code class="code">GLP_BR_DTH</code><!-- /@w -->)</dt>
<dd><p>Heuristic by Driebeck and Tomlin.
</p>
</dd>
<dt>5 (<code class="code">GLP_BR_PCH</code><!-- /@w -->)</dt>
<dd><p>Hybrid pseudocost heuristic.
</p></dd>
</dl>

</dd>
<dt><code class="code">btrack (default: 4)</code></dt>
<dd><p>Backtracking technique option (for MIP only):
</p>
<dl class="table">
<dt>1 (<code class="code">GLP_BT_DFS</code><!-- /@w -->)</dt>
<dd><p>Depth first search.
</p>
</dd>
<dt>2 (<code class="code">GLP_BT_BFS</code><!-- /@w -->)</dt>
<dd><p>Breadth first search.
</p>
</dd>
<dt>3 (<code class="code">GLP_BT_BLB</code><!-- /@w -->)</dt>
<dd><p>Best local bound.
</p>
</dd>
<dt>4 (<code class="code">GLP_BT_BPH</code><!-- /@w -->)</dt>
<dd><p>Best projection heuristic.
</p></dd>
</dl>

</dd>
<dt><code class="code">presol (default: 1)</code></dt>
<dd><p>If this flag is set, the simplex solver uses the built-in LP presolver.
Otherwise the LP presolver is not used.
</p>
</dd>
<dt><code class="code">lpsolver (default: 1)</code></dt>
<dd><p>Select which solver to use.  If the problem is a MIP problem this flag
will be ignored.
</p>
<dl class="table">
<dt>1</dt>
<dd><p>Revised simplex method.
</p>
</dd>
<dt>2</dt>
<dd><p>Interior point method.
</p></dd>
</dl>

</dd>
<dt><code class="code">rtest (default: 34)</code></dt>
<dd><p>Ratio test technique:
</p>
<dl class="table">
<dt>17 (<code class="code">GLP_RT_STD</code><!-- /@w -->)</dt>
<dd><p>Standard (&quot;textbook&quot;).
</p>
</dd>
<dt>34 (<code class="code">GLP_RT_HAR</code><!-- /@w -->)</dt>
<dd><p>Harris&rsquo; two-pass ratio test.
</p></dd>
</dl>

</dd>
<dt><code class="code">tmlim (default: intmax)</code></dt>
<dd><p>Searching time limit, in milliseconds.
</p>
</dd>
<dt><code class="code">outdly (default: 0)</code></dt>
<dd><p>Output delay, in seconds.  This parameter specifies how long the solver
should delay sending information about the solution to the standard output.
</p>
</dd>
<dt><code class="code">save (default: 0)</code></dt>
<dd><p>If this parameter is nonzero, save a copy of the problem in CPLEX
LP format to the file <samp class="file">&quot;outpb.lp&quot;</samp>.  There is currently no way to
change the name of the output file.
</p></dd>
</dl>

<p>Real parameters:
</p>
<dl class="table">
<dt><code class="code">tolbnd (default: 1e-7)</code></dt>
<dd><p>Relative tolerance used to check if the current basic solution is primal
feasible.  It is not recommended that you change this parameter unless you
have a detailed understanding of its purpose.
</p>
</dd>
<dt><code class="code">toldj (default: 1e-7)</code></dt>
<dd><p>Absolute tolerance used to check if the current basic solution is dual
feasible.  It is not recommended that you change this parameter unless you
have a detailed understanding of its purpose.
</p>
</dd>
<dt><code class="code">tolpiv (default: 1e-9)</code></dt>
<dd><p>Relative tolerance used to choose eligible pivotal elements of the simplex
table.  It is not recommended that you change this parameter unless you have
a detailed understanding of its purpose.
</p>
</dd>
<dt><code class="code">objll (default: -DBL_MAX)</code></dt>
<dd><p>Lower limit of the objective function.  If the objective function reaches
this limit and continues decreasing, the solver stops the search.  This
parameter is used in the dual simplex method only.
</p>
</dd>
<dt><code class="code">objul (default: +DBL_MAX)</code></dt>
<dd><p>Upper limit of the objective function.  If the objective function reaches
this limit and continues increasing, the solver stops the search.  This
parameter is used in the dual simplex only.
</p>
</dd>
<dt><code class="code">tolint (default: 1e-5)</code></dt>
<dd><p>Relative tolerance used to check if the current basic solution is integer
feasible.  It is not recommended that you change this parameter unless you
have a detailed understanding of its purpose.
</p>
</dd>
<dt><code class="code">tolobj (default: 1e-7)</code></dt>
<dd><p>Relative tolerance used to check if the value of the objective function is
not better than in the best known integer feasible solution.  It is not
recommended that you change this parameter unless you have a detailed
understanding of its purpose.
</p></dd>
</dl>
</dd>
</dl>

<p>Output values:
</p>
<dl class="table">
<dt><var class="var">xopt</var></dt>
<dd><p>The optimizer (the value of the decision variables at the optimum).
</p>
</dd>
<dt><var class="var">fopt</var></dt>
<dd><p>The optimum value of the objective function.
</p>
</dd>
<dt><var class="var">errnum</var></dt>
<dd><p>Error code.
</p>
<dl class="table">
<dt>0</dt>
<dd><p>No error.
</p>
</dd>
<dt>1 (<code class="code">GLP_EBADB</code><!-- /@w -->)</dt>
<dd><p>Invalid basis.
</p>
</dd>
<dt>2 (<code class="code">GLP_ESING</code><!-- /@w -->)</dt>
<dd><p>Singular matrix.
</p>
</dd>
<dt>3 (<code class="code">GLP_ECOND</code><!-- /@w -->)</dt>
<dd><p>Ill-conditioned matrix.
</p>
</dd>
<dt>4 (<code class="code">GLP_EBOUND</code><!-- /@w -->)</dt>
<dd><p>Invalid bounds.
</p>
</dd>
<dt>5 (<code class="code">GLP_EFAIL</code><!-- /@w -->)</dt>
<dd><p>Solver failed.
</p>
</dd>
<dt>6 (<code class="code">GLP_EOBJLL</code><!-- /@w -->)</dt>
<dd><p>Objective function lower limit reached.
</p>
</dd>
<dt>7 (<code class="code">GLP_EOBJUL</code><!-- /@w -->)</dt>
<dd><p>Objective function upper limit reached.
</p>
</dd>
<dt>8 (<code class="code">GLP_EITLIM</code><!-- /@w -->)</dt>
<dd><p>Iterations limit exhausted.
</p>
</dd>
<dt>9 (<code class="code">GLP_ETMLIM</code><!-- /@w -->)</dt>
<dd><p>Time limit exhausted.
</p>
</dd>
<dt>10 (<code class="code">GLP_ENOPFS</code><!-- /@w -->)</dt>
<dd><p>No primal feasible solution.
</p>
</dd>
<dt>11 (<code class="code">GLP_ENODFS</code><!-- /@w -->)</dt>
<dd><p>No dual feasible solution.
</p>
</dd>
<dt>12 (<code class="code">GLP_EROOT</code><!-- /@w -->)</dt>
<dd><p>Root LP optimum not provided.
</p>
</dd>
<dt>13 (<code class="code">GLP_ESTOP</code><!-- /@w -->)</dt>
<dd><p>Search terminated by application.
</p>
</dd>
<dt>14 (<code class="code">GLP_EMIPGAP</code><!-- /@w -->)</dt>
<dd><p>Relative MIP gap tolerance reached.
</p>
</dd>
<dt>15 (<code class="code">GLP_ENOFEAS</code><!-- /@w -->)</dt>
<dd><p>No primal/dual feasible solution.
</p>
</dd>
<dt>16 (<code class="code">GLP_ENOCVG</code><!-- /@w -->)</dt>
<dd><p>No convergence.
</p>
</dd>
<dt>17 (<code class="code">GLP_EINSTAB</code><!-- /@w -->)</dt>
<dd><p>Numerical instability.
</p>
</dd>
<dt>18 (<code class="code">GLP_EDATA</code><!-- /@w -->)</dt>
<dd><p>Invalid data.
</p>
</dd>
<dt>19 (<code class="code">GLP_ERANGE</code><!-- /@w -->)</dt>
<dd><p>Result out of range.
</p></dd>
</dl>

</dd>
<dt><var class="var">extra</var></dt>
<dd><p>A data structure containing the following fields:
</p>
<dl class="table">
<dt><code class="code">lambda</code></dt>
<dd><p>Dual variables.
</p>
</dd>
<dt><code class="code">redcosts</code></dt>
<dd><p>Reduced Costs.
</p>
</dd>
<dt><code class="code">time</code></dt>
<dd><p>Time (in seconds) used for solving LP/MIP problem.
</p>
</dd>
<dt><code class="code">status</code></dt>
<dd><p>Status of the optimization.
</p>
<dl class="table">
<dt>1 (<code class="code">GLP_UNDEF</code><!-- /@w -->)</dt>
<dd><p>Solution status is undefined.
</p>
</dd>
<dt>2 (<code class="code">GLP_FEAS</code><!-- /@w -->)</dt>
<dd><p>Solution is feasible.
</p>
</dd>
<dt>3 (<code class="code">GLP_INFEAS</code><!-- /@w -->)</dt>
<dd><p>Solution is infeasible.
</p>
</dd>
<dt>4 (<code class="code">GLP_NOFEAS</code><!-- /@w -->)</dt>
<dd><p>Problem has no feasible solution.
</p>
</dd>
<dt>5 (<code class="code">GLP_OPT</code><!-- /@w -->)</dt>
<dd><p>Solution is optimal.
</p>
</dd>
<dt>6 (<code class="code">GLP_UNBND</code><!-- /@w -->)</dt>
<dd><p>Problem has no unbounded solution.
</p></dd>
</dl>
</dd>
</dl>
</dd>
</dl>

<p>Example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">c = [10, 6, 4]';
A = [ 1, 1, 1;
     10, 4, 5;
      2, 2, 6];
b = [100, 600, 300]';
lb = [0, 0, 0]';
ub = [];
ctype = &quot;UUU&quot;;
vartype = &quot;CCC&quot;;
s = -1;

param.msglev = 1;
param.itlim = 100;

[xmin, fmin, status, extra] = ...
   glpk (c, A, b, lb, ub, ctype, vartype, s, param);
</pre></div></div>
</dd></dl>


</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Quadratic-Programming.html">Quadratic Programming</a>, Up: <a href="Optimization.html">Optimization</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>