1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Matrix Factorizations (GNU Octave (version 10.3.0))</title>
<meta name="description" content="Matrix Factorizations (GNU Octave (version 10.3.0))">
<meta name="keywords" content="Matrix Factorizations (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Linear-Algebra.html" rel="up" title="Linear Algebra">
<link href="Functions-of-a-Matrix.html" rel="next" title="Functions of a Matrix">
<link href="Basic-Matrix-Functions.html" rel="prev" title="Basic Matrix Functions">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
ul.mark-bullet {list-style-type: disc}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="section-level-extent" id="Matrix-Factorizations">
<div class="nav-panel">
<p>
Next: <a href="Functions-of-a-Matrix.html" accesskey="n" rel="next">Functions of a Matrix</a>, Previous: <a href="Basic-Matrix-Functions.html" accesskey="p" rel="prev">Basic Matrix Functions</a>, Up: <a href="Linear-Algebra.html" accesskey="u" rel="up">Linear Algebra</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="Matrix-Factorizations-1"><span>18.3 Matrix Factorizations<a class="copiable-link" href="#Matrix-Factorizations-1"> ¶</a></span></h3>
<a class="index-entry-id" id="index-matrix-factorizations"></a>
<a class="anchor" id="XREFchol"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-chol"><span><code class="def-type"><var class="var">R</var> =</code> <strong class="def-name">chol</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-chol"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-chol-1"><span><code class="def-type">[<var class="var">R</var>, <var class="var">p</var>] =</code> <strong class="def-name">chol</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-chol-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-chol-2"><span><code class="def-type">[<var class="var">R</var>, <var class="var">p</var>, <var class="var">Q</var>] =</code> <strong class="def-name">chol</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-chol-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-chol-3"><span><code class="def-type">[<var class="var">R</var>, <var class="var">p</var>, <var class="var">Q</var>] =</code> <strong class="def-name">chol</strong> <code class="def-code-arguments">(<var class="var">A</var>, "vector")</code><a class="copiable-link" href="#index-chol-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-chol-4"><span><code class="def-type">[<var class="var">L</var>, …] =</code> <strong class="def-name">chol</strong> <code class="def-code-arguments">(…, "lower")</code><a class="copiable-link" href="#index-chol-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-chol-5"><span><code class="def-type">[<var class="var">R</var>, …] =</code> <strong class="def-name">chol</strong> <code class="def-code-arguments">(…, "upper")</code><a class="copiable-link" href="#index-chol-5"> ¶</a></span></dt>
<dd><a class="index-entry-id" id="index-Cholesky-factorization"></a>
<p>Compute the upper Cholesky factor, <var class="var">R</var>, of the real symmetric
or complex Hermitian positive definite matrix <var class="var">A</var>.
</p>
<p>The upper Cholesky factor <var class="var">R</var> is computed by using the upper
triangular part of matrix <var class="var">A</var> and is defined by
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">R</var>' * <var class="var">R</var> = <var class="var">A</var>.
</pre></div>
<p>Calling <code class="code">chol</code> using the optional <code class="code">"upper"</code> flag has the
same behavior. In contrast, using the optional <code class="code">"lower"</code> flag,
<code class="code">chol</code> returns the lower triangular factorization, computed by using
the lower triangular part of matrix <var class="var">A</var>, such that
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">L</var> * <var class="var">L</var>' = <var class="var">A</var>.
</pre></div>
<p>Called with one output argument <code class="code">chol</code> fails if matrix <var class="var">A</var> is
not positive definite. Note that if matrix <var class="var">A</var> is not real symmetric
or complex Hermitian then the lower triangular part is considered to be
the (complex conjugate) transpose of the upper triangular part, or vice
versa, given the <code class="code">"lower"</code> flag.
</p>
<p>Called with two or more output arguments <var class="var">p</var> flags whether the matrix
<var class="var">A</var> was positive definite and <code class="code">chol</code> does not fail. A zero value
of <var class="var">p</var> indicates that matrix <var class="var">A</var> is positive definite and <var class="var">R</var>
gives the factorization. Otherwise, <var class="var">p</var> will have a positive value.
</p>
<p>If called with three output arguments matrix <var class="var">A</var> must be sparse and
a sparsity preserving row/column permutation is applied to matrix <var class="var">A</var>
prior to the factorization. That is <var class="var">R</var> is the factorization of
<code class="code"><var class="var">A</var>(<var class="var">Q</var>,<var class="var">Q</var>)</code> such that
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">R</var>' * <var class="var">R</var> = <var class="var">Q</var>' * <var class="var">A</var> * <var class="var">Q</var>.
</pre></div>
<p>The sparsity preserving permutation is generally returned as a matrix.
However, given the optional flag <code class="code">"vector"</code>, <var class="var">Q</var> will be
returned as a vector such that
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">R</var>' * <var class="var">R</var> = <var class="var">A</var>(<var class="var">Q</var>, <var class="var">Q</var>).
</pre></div>
<p>In general the lower triangular factorization is significantly faster for
sparse matrices.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFhess">hess</a>, <a class="ref" href="#XREFlu">lu</a>, <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqz">qz</a>, <a class="ref" href="#XREFschur">schur</a>, <a class="ref" href="#XREFsvd">svd</a>, <a class="ref" href="Iterative-Techniques.html#XREFichol">ichol</a>, <a class="ref" href="#XREFcholinv">cholinv</a>, <a class="ref" href="#XREFchol2inv">chol2inv</a>, <a class="ref" href="#XREFcholupdate">cholupdate</a>, <a class="ref" href="#XREFcholinsert">cholinsert</a>, <a class="ref" href="#XREFcholdelete">choldelete</a>, <a class="ref" href="#XREFcholshift">cholshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFcholinv"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-cholinv"><span><code class="def-type"><var class="var">Ainv</var> =</code> <strong class="def-name">cholinv</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-cholinv"> ¶</a></span></dt>
<dd><p>Compute the inverse of the symmetric positive definite matrix <var class="var">A</var> using
the Cholesky factorization.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFchol2inv">chol2inv</a>, <a class="ref" href="Basic-Matrix-Functions.html#XREFinv">inv</a>.
</p></dd></dl>
<a class="anchor" id="XREFchol2inv"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-chol2inv"><span><code class="def-type"><var class="var">Ainv</var> =</code> <strong class="def-name">chol2inv</strong> <code class="def-code-arguments">(<var class="var">R</var>)</code><a class="copiable-link" href="#index-chol2inv"> ¶</a></span></dt>
<dd><p>Invert a symmetric, positive definite square matrix from its Cholesky
decomposition, <var class="var">R</var>.
</p>
<p>Note that <var class="var">R</var> should be an upper-triangular matrix with positive diagonal
elements. <code class="code">chol2inv (<var class="var">U</var>)</code> provides <code class="code">inv (<var class="var">R</var>'*<var class="var">R</var>)</code> but
is much faster than using <code class="code">inv</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFcholinv">cholinv</a>, <a class="ref" href="Basic-Matrix-Functions.html#XREFinv">inv</a>.
</p></dd></dl>
<a class="anchor" id="XREFcholupdate"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-cholupdate"><span><code class="def-type">[<var class="var">R1</var>, <var class="var">info</var>] =</code> <strong class="def-name">cholupdate</strong> <code class="def-code-arguments">(<var class="var">R</var>, <var class="var">u</var>, <var class="var">op</var>)</code><a class="copiable-link" href="#index-cholupdate"> ¶</a></span></dt>
<dd><p>Update or downdate a Cholesky factorization.
</p>
<p>Given an upper triangular matrix <var class="var">R</var> and a column vector <var class="var">u</var>,
attempt to determine another upper triangular matrix <var class="var">R1</var> such that
</p>
<ul class="itemize mark-bullet">
<li><var class="var">R1</var>’*<var class="var">R1</var> = <var class="var">R</var>’*<var class="var">R</var> + <var class="var">u</var>*<var class="var">u</var>’
if <var class="var">op</var> is <code class="code">"+"</code>
</li><li><var class="var">R1</var>’*<var class="var">R1</var> = <var class="var">R</var>’*<var class="var">R</var> - <var class="var">u</var>*<var class="var">u</var>’
if <var class="var">op</var> is <code class="code">"-"</code>
</li></ul>
<p>If <var class="var">op</var> is <code class="code">"-"</code>, <var class="var">info</var> is set to
</p>
<ul class="itemize mark-bullet">
<li>0 if the downdate was successful,
</li><li>1 if <var class="var">R</var>’*<var class="var">R</var> - <var class="var">u</var>*<var class="var">u</var>’ is not positive definite,
</li><li>2 if <var class="var">R</var> is singular.
</li></ul>
<p>If <var class="var">info</var> is not present, an error message is printed in cases 1 and 2.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFcholinsert">cholinsert</a>, <a class="ref" href="#XREFcholdelete">choldelete</a>, <a class="ref" href="#XREFcholshift">cholshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFcholinsert"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-cholinsert"><span><code class="def-type"><var class="var">R1</var> =</code> <strong class="def-name">cholinsert</strong> <code class="def-code-arguments">(<var class="var">R</var>, <var class="var">j</var>, <var class="var">u</var>)</code><a class="copiable-link" href="#index-cholinsert"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-cholinsert-1"><span><code class="def-type">[<var class="var">R1</var>, <var class="var">info</var>] =</code> <strong class="def-name">cholinsert</strong> <code class="def-code-arguments">(<var class="var">R</var>, <var class="var">j</var>, <var class="var">u</var>)</code><a class="copiable-link" href="#index-cholinsert-1"> ¶</a></span></dt>
<dd><p>Update a Cholesky factorization given a row or column to insert in the
original factored matrix.
</p>
<p>Given a Cholesky factorization of a real symmetric or complex Hermitian
positive definite matrix <var class="var">A</var> = <var class="var">R</var>’*<var class="var">R</var><!-- /@w -->, <var class="var">R</var> upper
triangular, return the Cholesky factorization of
<var class="var">A1</var>, where A1(p,p) = A<!-- /@w -->, A1(:,j) = A1(j,:)’ = u<!-- /@w --> and
p = [1:j-1,j+1:n+1]<!-- /@w -->. u(j)<!-- /@w --> should be positive.
</p>
<p>On return, <var class="var">info</var> is set to
</p>
<ul class="itemize mark-bullet">
<li>0 if the insertion was successful,
</li><li>1 if <var class="var">A1</var> is not positive definite,
</li><li>2 if <var class="var">R</var> is singular.
</li></ul>
<p>If <var class="var">info</var> is not present, an error message is printed in cases 1 and 2.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFcholupdate">cholupdate</a>, <a class="ref" href="#XREFcholdelete">choldelete</a>, <a class="ref" href="#XREFcholshift">cholshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFcholdelete"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-choldelete"><span><code class="def-type"><var class="var">R1</var> =</code> <strong class="def-name">choldelete</strong> <code class="def-code-arguments">(<var class="var">R</var>, <var class="var">j</var>)</code><a class="copiable-link" href="#index-choldelete"> ¶</a></span></dt>
<dd><p>Update a Cholesky factorization given a row or column to delete from the
original factored matrix.
</p>
<p>Given a Cholesky factorization of a real symmetric or complex Hermitian
positive definite matrix <var class="var">A</var> = <var class="var">R</var>’*<var class="var">R</var><!-- /@w -->, <var class="var">R</var> upper
triangular, return the Cholesky factorization of A(p,p)<!-- /@w -->, where
p = [1:j-1,j+1:n+1]<!-- /@w -->.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFcholupdate">cholupdate</a>, <a class="ref" href="#XREFcholinsert">cholinsert</a>, <a class="ref" href="#XREFcholshift">cholshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFcholshift"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-cholshift"><span><code class="def-type"><var class="var">R1</var> =</code> <strong class="def-name">cholshift</strong> <code class="def-code-arguments">(<var class="var">R</var>, <var class="var">i</var>, <var class="var">j</var>)</code><a class="copiable-link" href="#index-cholshift"> ¶</a></span></dt>
<dd><p>Update a Cholesky factorization given a range of columns to shift in the
original factored matrix.
</p>
<p>Given a Cholesky factorization of a real symmetric or complex Hermitian
positive definite matrix <var class="var">A</var> = <var class="var">R</var>’*<var class="var">R</var><!-- /@w -->, <var class="var">R</var> upper
triangular, return the Cholesky factorization of
<var class="var">A</var>(p,p)<!-- /@w -->, where p is the permutation <br>
<code class="code">p = [1:i-1, circshift(i:j, 1), j+1:n]</code> if <var class="var">i</var> < <var class="var">j</var><!-- /@w --> <br>
or <br>
<code class="code">p = [1:j-1, circshift(j:i,-1), i+1:n]</code> if <var class="var">j</var> < <var class="var">i</var><!-- /@w -->. <br>
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFcholupdate">cholupdate</a>, <a class="ref" href="#XREFcholinsert">cholinsert</a>, <a class="ref" href="#XREFcholdelete">choldelete</a>.
</p></dd></dl>
<a class="anchor" id="XREFhess"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-hess"><span><code class="def-type"><var class="var">H</var> =</code> <strong class="def-name">hess</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-hess"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-hess-1"><span><code class="def-type">[<var class="var">P</var>, <var class="var">H</var>] =</code> <strong class="def-name">hess</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-hess-1"> ¶</a></span></dt>
<dd><a class="index-entry-id" id="index-Hessenberg-decomposition"></a>
<p>Compute the Hessenberg decomposition of the matrix <var class="var">A</var>.
</p>
<p>The Hessenberg decomposition is
<code class="code"><var class="var">P</var> * <var class="var">H</var> * <var class="var">P</var>' = <var class="var">A</var></code> where <var class="var">P</var> is a square
unitary matrix (<code class="code"><var class="var">P</var>' * <var class="var">P</var> = I</code>, using complex-conjugate
transposition) and <var class="var">H</var> is upper Hessenberg
(<code class="code"><var class="var">H</var>(i, j) = 0 forall i > j+1)</code>.
</p>
<p>The Hessenberg decomposition is usually used as the first step in an
eigenvalue computation, but has other applications as well
(see Golub, Nash, and Van Loan,
IEEE Transactions on Automatic Control, 1979).
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFlu">lu</a>, <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqz">qz</a>, <a class="ref" href="#XREFschur">schur</a>, <a class="ref" href="#XREFsvd">svd</a>.
</p></dd></dl>
<a class="anchor" id="XREFlu"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-lu"><span><code class="def-type">[<var class="var">L</var>, <var class="var">U</var>] =</code> <strong class="def-name">lu</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-lu"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lu-1"><span><code class="def-type">[<var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var>] =</code> <strong class="def-name">lu</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-lu-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lu-2"><span><code class="def-type">[<var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var>, <var class="var">Q</var>] =</code> <strong class="def-name">lu</strong> <code class="def-code-arguments">(<var class="var">S</var>)</code><a class="copiable-link" href="#index-lu-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lu-3"><span><code class="def-type">[<var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var>, <var class="var">Q</var>, <var class="var">R</var>] =</code> <strong class="def-name">lu</strong> <code class="def-code-arguments">(<var class="var">S</var>)</code><a class="copiable-link" href="#index-lu-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lu-4"><span><code class="def-type">[…] =</code> <strong class="def-name">lu</strong> <code class="def-code-arguments">(<var class="var">S</var>, <var class="var">thresh</var>)</code><a class="copiable-link" href="#index-lu-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lu-5"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">lu</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-lu-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-lu-6"><span><code class="def-type">[…] =</code> <strong class="def-name">lu</strong> <code class="def-code-arguments">(…, "vector")</code><a class="copiable-link" href="#index-lu-6"> ¶</a></span></dt>
<dd><a class="index-entry-id" id="index-LU-decomposition"></a>
<p>Compute the LU decomposition of <var class="var">A</var>.
</p>
<p>If <var class="var">A</var> is full then subroutines from <small class="sc">LAPACK</small> are used, and if
<var class="var">A</var> is sparse then <small class="sc">UMFPACK</small> is used.
</p>
<p>The result is returned in a permuted form, according to the optional return
value <var class="var">P</var>. For example, given the matrix <code class="code"><var class="var">A</var> = [1, 2; 3, 4]</code>,
</p>
<div class="example">
<pre class="example-preformatted">[<var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var>] = lu (<var class="var">A</var>)
</pre></div>
<p>returns
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">L =
1.00000 0.00000
0.33333 1.00000
U =
3.00000 4.00000
0.00000 0.66667
P =
0 1
1 0
</pre></div></div>
<p>The matrix is not required to be square.
</p>
<p>When called with two or three output arguments and a sparse input matrix,
<code class="code">lu</code> does not attempt to perform sparsity preserving column permutations.
Called with a fourth output argument, the sparsity preserving column
transformation <var class="var">Q</var> is returned, such that
<code class="code"><var class="var">P</var> * <var class="var">A</var> * <var class="var">Q</var> = <var class="var">L</var> * <var class="var">U</var></code>. This is the
<strong class="strong">preferred</strong> way to call <code class="code">lu</code> with sparse input matrices.
</p>
<p>Called with a fifth output argument and a sparse input matrix, <code class="code">lu</code>
attempts to use a scaling factor <var class="var">R</var> on the input matrix such that
<code class="code"><var class="var">P</var> * (<var class="var">R</var> \ <var class="var">A</var>) * <var class="var">Q</var> = <var class="var">L</var> * <var class="var">U</var></code>.
This typically leads to a sparser and more stable factorization.
</p>
<p>An additional input argument <var class="var">thresh</var> that defines the pivoting
threshold can be given. <var class="var">thresh</var> can be a scalar, in which case
it defines the <small class="sc">UMFPACK</small> pivoting tolerance for both symmetric and
unsymmetric cases. If <var class="var">thresh</var> is a 2-element vector, then the first
element defines the pivoting tolerance for the unsymmetric <small class="sc">UMFPACK</small>
pivoting strategy and the second for the symmetric strategy. By default,
the values defined by <code class="code">spparms</code> are used ([0.1, 0.001]).
</p>
<p>Given the string argument <code class="code">"vector"</code>, <code class="code">lu</code> returns the values
of <var class="var">P</var> and <var class="var">Q</var> as vector values, such that for full matrix,
<code class="code"><var class="var">A</var>(<var class="var">P</var>,:) = <var class="var">L</var> * <var class="var">U</var></code>, and <code class="code"><var class="var">R</var>(<var class="var">P</var>,:)
* <var class="var">A</var>(:,<var class="var">Q</var>) = <var class="var">L</var> * <var class="var">U</var></code>.
</p>
<p>With two output arguments, returns the permuted forms of the upper and
lower triangular matrices, such that <code class="code"><var class="var">A</var> = <var class="var">L</var> * <var class="var">U</var></code>.
With one output argument <var class="var">y</var>, then the matrix returned by the
<small class="sc">LAPACK</small> routines is returned. If the input matrix is sparse then the
matrix <var class="var">L</var> is embedded into <var class="var">U</var> to give a return value similar to
the full case. For both full and sparse matrices, <code class="code">lu</code> loses the
permutation information.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFluupdate">luupdate</a>, <a class="ref" href="Iterative-Techniques.html#XREFilu">ilu</a>, <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFhess">hess</a>, <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqz">qz</a>, <a class="ref" href="#XREFschur">schur</a>, <a class="ref" href="#XREFsvd">svd</a>.
</p></dd></dl>
<a class="anchor" id="XREFluupdate"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-luupdate"><span><code class="def-type">[<var class="var">L</var>, <var class="var">U</var>] =</code> <strong class="def-name">luupdate</strong> <code class="def-code-arguments">(<var class="var">L</var>, <var class="var">U</var>, <var class="var">x</var>, <var class="var">y</var>)</code><a class="copiable-link" href="#index-luupdate"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-luupdate-1"><span><code class="def-type">[<var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var>] =</code> <strong class="def-name">luupdate</strong> <code class="def-code-arguments">(<var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var>, <var class="var">x</var>, <var class="var">y</var>)</code><a class="copiable-link" href="#index-luupdate-1"> ¶</a></span></dt>
<dd><p>Given an LU factorization of a real or complex matrix
<var class="var">A</var> = <var class="var">L</var>*<var class="var">U</var><!-- /@w -->, <var class="var">L</var> lower unit trapezoidal and
<var class="var">U</var> upper trapezoidal, return the LU factorization
of <var class="var">A</var> + <var class="var">x</var>*<var class="var">y</var>.’<!-- /@w -->, where <var class="var">x</var> and <var class="var">y</var> are
column vectors (rank-1 update) or matrices with equal number of columns
(rank-k update).
</p>
<p>Optionally, row-pivoted updating can be used by supplying a row permutation
(pivoting) matrix <var class="var">P</var>; in that case, an updated permutation matrix is
returned. Note that if <var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var> is a pivoted
LU factorization as obtained by <code class="code">lu</code>:
</p>
<div class="example">
<pre class="example-preformatted">[<var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var>] = lu (<var class="var">A</var>);
</pre></div>
<p>then a factorization of <code class="code"><var class="var">A</var>+<var class="var">x</var>*<var class="var">y</var>.'</code> can be obtained
either as
</p>
<div class="example">
<pre class="example-preformatted">[<var class="var">L1</var>, <var class="var">U1</var>] = lu (<var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var>*<var class="var">x</var>, <var class="var">y</var>)
</pre></div>
<p>or
</p>
<div class="example">
<pre class="example-preformatted">[<var class="var">L1</var>, <var class="var">U1</var>, <var class="var">P1</var>] = lu (<var class="var">L</var>, <var class="var">U</var>, <var class="var">P</var>, <var class="var">x</var>, <var class="var">y</var>)
</pre></div>
<p>The first form uses the unpivoted algorithm, which is faster, but less
stable. The second form uses a slower pivoted algorithm, which is more
stable.
</p>
<p>The matrix case is done as a sequence of rank-1 updates; thus, for large
enough k, it will be both faster and more accurate to recompute the
factorization from scratch.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFlu">lu</a>, <a class="ref" href="#XREFcholupdate">cholupdate</a>, <a class="ref" href="#XREFqrupdate">qrupdate</a>.
</p></dd></dl>
<a class="anchor" id="XREFqr"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-qr"><span><code class="def-type">[<var class="var">Q</var>, <var class="var">R</var>] =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-qr"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qr-1"><span><code class="def-type">[<var class="var">Q</var>, <var class="var">R</var>, <var class="var">P</var>] =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-qr-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qr-2"><span><code class="def-type"><var class="var">X</var> =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(<var class="var">A</var>) # non-sparse A</code><a class="copiable-link" href="#index-qr-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qr-3"><span><code class="def-type"><var class="var">R</var> =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(<var class="var">A</var>) # sparse A</code><a class="copiable-link" href="#index-qr-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qr-4"><span><code class="def-type"><var class="var">X</var> =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>) # sparse A</code><a class="copiable-link" href="#index-qr-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qr-5"><span><code class="def-type">[<var class="var">C</var>, <var class="var">R</var>] =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>)</code><a class="copiable-link" href="#index-qr-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qr-6"><span><code class="def-type">[…] =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(…, "econ")</code><a class="copiable-link" href="#index-qr-6"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qr-7"><span><code class="def-type">[…] =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(…, "vector")</code><a class="copiable-link" href="#index-qr-7"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qr-8"><span><code class="def-type">[…] =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(…, "matrix")</code><a class="copiable-link" href="#index-qr-8"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qr-9"><span><code class="def-type">[…] =</code> <strong class="def-name">qr</strong> <code class="def-code-arguments">(…, 0)</code><a class="copiable-link" href="#index-qr-9"> ¶</a></span></dt>
<dd><a class="index-entry-id" id="index-QR-factorization"></a>
<p>Compute the QR factorization of <var class="var">A</var>, using standard <small class="sc">LAPACK</small>
subroutines.
</p>
<p>The QR factorization is
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">Q</var> * <var class="var">R</var> = <var class="var">A</var>
</pre></div>
<p>where <var class="var">Q</var> is an orthogonal matrix and <var class="var">R</var> is upper triangular.
</p>
<p>For example, given the matrix <code class="code"><var class="var">A</var> = [1, 2; 3, 4]</code>,
</p>
<div class="example">
<pre class="example-preformatted">[<var class="var">Q</var>, <var class="var">R</var>] = qr (<var class="var">A</var>)
</pre></div>
<p>returns
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">Q</var> =
-0.31623 -0.94868
-0.94868 0.31623
<var class="var">R</var> =
-3.16228 -4.42719
0.00000 -0.63246
</pre></div></div>
<p>which multiplied together return the original matrix
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">Q</var> * <var class="var">R</var>
⇒
1.0000 2.0000
3.0000 4.0000
</pre></div></div>
<p>If just a single return value is requested then it is either <var class="var">R</var>, if
<var class="var">A</var> is sparse, or <var class="var">X</var>, such that <code class="code"><var class="var">R</var> = triu (<var class="var">X</var>)</code> if
<var class="var">A</var> is full. (Note: unlike most commands, the single return value is not
the first return value when multiple values are requested.)
</p>
<p>If a third output <var class="var">P</var> is requested, then <code class="code">qr</code> calculates the permuted
QR factorization
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">Q</var> * <var class="var">R</var> = <var class="var">A</var> * <var class="var">P</var>
</pre></div>
<p>where <var class="var">Q</var> is an orthogonal matrix, <var class="var">R</var> is upper triangular, and
<var class="var">P</var> is a permutation matrix.
</p>
<p>If <var class="var">A</var> is dense, the permuted QR factorization has the additional
property that the diagonal entries of <var class="var">R</var> are ordered by decreasing
magnitude. In other words, <code class="code">abs (diag (<var class="var">R</var>))</code> will be ordered
from largest to smallest.
</p>
<p>If <var class="var">A</var> is sparse, <var class="var">P</var> is a fill-reducing ordering of the columns
of <var class="var">A</var>. In that case, the diagonal entries of <var class="var">R</var> are not ordered by
decreasing magnitude.
</p>
<p>For example, given the matrix <code class="code"><var class="var">A</var> = [1, 2; 3, 4]</code>,
</p>
<div class="example">
<pre class="example-preformatted">[<var class="var">Q</var>, <var class="var">R</var>, <var class="var">P</var>] = qr (<var class="var">A</var>)
</pre></div>
<p>returns
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">Q</var> =
-0.44721 -0.89443
-0.89443 0.44721
<var class="var">R</var> =
-4.47214 -3.13050
0.00000 0.44721
<var class="var">P</var> =
0 1
1 0
</pre></div></div>
<p>If the input matrix <var class="var">A</var> is sparse, the sparse QR factorization
is computed by using <small class="sc">SPQR</small> or <small class="sc">CXSPARSE</small> (e.g., if <small class="sc">SPQR</small> is not
available). Because the matrix <var class="var">Q</var> is, in general, a full matrix, it is
recommended to request only one return value <var class="var">R</var>. In that case, the
computation avoids the construction of <var class="var">Q</var> and returns a sparse <var class="var">R</var>
such that <code class="code"><var class="var">R</var> = chol (<var class="var">A</var>' * <var class="var">A</var>)</code>.
</p>
<p>If <var class="var">A</var> is dense, an additional input matrix <var class="var">B</var> is supplied, and two
return values are requested, then <code class="code">qr</code> returns <var class="var">C</var>, where
<code class="code"><var class="var">C</var> = <var class="var">Q</var>' * <var class="var">B</var></code>. This allows the least squares
approximation of <code class="code"><var class="var">A</var> \ <var class="var">B</var></code> to be calculated as
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">[<var class="var">C</var>, <var class="var">R</var>] = qr (<var class="var">A</var>, <var class="var">B</var>)
<var class="var">X</var> = <var class="var">R</var> \ <var class="var">C</var>
</pre></div></div>
<p>If <var class="var">A</var> is a sparse MxN matrix and an additional matrix <var class="var">B</var> is
supplied, one or two return values are possible. If one return value <var class="var">X</var>
is requested and M < N, then <var class="var">X</var> is the minimum 2-norm solution of
<code class="code"><var class="var">A</var> \ <var class="var">B</var></code><!-- /@w -->. If M >= N, <var class="var">X</var> is the least squares
approximation of <code class="code"><var class="var">A</var> \ <var class="var">B</var></code><!-- /@w -->. If two return values are
requested, <var class="var">C</var> and <var class="var">R</var> have the same meaning as in the dense case
(<var class="var">C</var> is dense and <var class="var">R</var> is sparse). The version with one return
parameter should be preferred because it uses less memory and can handle
rank-deficient matrices better.
</p>
<p>If the final argument is the string <code class="code">"vector"</code> then <var class="var">P</var> is a
permutation vector (of the columns of <var class="var">A</var>) instead of a permutation
matrix. In this case, the defining relationship is:
</p>
<div class="example">
<pre class="example-preformatted"><var class="var">Q</var> * <var class="var">R</var> = <var class="var">A</var>(:, <var class="var">P</var>)
</pre></div>
<p>The default, however, is to return a permutation matrix and this may be
explicitly specified by using a final argument of <code class="code">"matrix"</code>.
</p>
<p>When the optional argument is the string <code class="code">"econ"</code>, an economy
factorization is returned. If the original matrix <var class="var">A</var> has size
MxN and M > N, then the economy factorization will calculate just N
rows in <var class="var">R</var> and N columns in <var class="var">Q</var> and omit the zeros in <var class="var">R</var>. If M
≤ N, there is no difference between the economy and standard
factorizations.
</p>
<p>If the optional argument is the numeric value 0 then <code class="code">qr</code> acts as if
the <code class="code">"econ"</code> and <code class="code">"vector"</code> arguments were both given.
<strong class="strong">Warning:</strong> This syntax is accepted, but no longer recommended and may
be removed in the future. Use <code class="code">"econ"</code> instead.
</p>
<p>Background: The QR factorization has applications in the solution of least
squares problems
</p>
<div class="example">
<pre class="example-preformatted">min norm (A*x - b)
</pre></div>
<p>for overdetermined systems of equations (i.e.,
<var class="var">A</var>
is a tall, thin matrix).
</p>
<p>The permuted QR factorization
<code class="code">[<var class="var">Q</var>, <var class="var">R</var>, <var class="var">P</var>] = qr (<var class="var">A</var>)</code> allows the construction of an
orthogonal basis of <code class="code">span (A)</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFhess">hess</a>, <a class="ref" href="#XREFlu">lu</a>, <a class="ref" href="#XREFqz">qz</a>, <a class="ref" href="#XREFschur">schur</a>, <a class="ref" href="#XREFsvd">svd</a>, <a class="ref" href="#XREFqrupdate">qrupdate</a>, <a class="ref" href="#XREFqrinsert">qrinsert</a>, <a class="ref" href="#XREFqrdelete">qrdelete</a>, <a class="ref" href="#XREFqrshift">qrshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFqrupdate"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-qrupdate"><span><code class="def-type">[<var class="var">Q1</var>, <var class="var">R1</var>] =</code> <strong class="def-name">qrupdate</strong> <code class="def-code-arguments">(<var class="var">Q</var>, <var class="var">R</var>, <var class="var">u</var>, <var class="var">v</var>)</code><a class="copiable-link" href="#index-qrupdate"> ¶</a></span></dt>
<dd><p>Update a QR factorization given update vectors or matrices.
</p>
<p>Given a QR factorization of a real or complex matrix
<var class="var">A</var> = <var class="var">Q</var>*<var class="var">R</var><!-- /@w -->, <var class="var">Q</var> unitary and
<var class="var">R</var> upper trapezoidal, return the QR factorization of
<var class="var">A</var> + <var class="var">u</var>*<var class="var">v</var>’<!-- /@w -->, where <var class="var">u</var> and <var class="var">v</var> are column vectors
(rank-1 update) or matrices with equal number of columns
(rank-k update). Notice that the latter case is done as a sequence of
rank-1 updates; thus, for k large enough, it will be both faster and more
accurate to recompute the factorization from scratch.
</p>
<p>The QR factorization supplied may be either full (Q is square) or
economized (R is square).
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqrinsert">qrinsert</a>, <a class="ref" href="#XREFqrdelete">qrdelete</a>, <a class="ref" href="#XREFqrshift">qrshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFqrinsert"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-qrinsert"><span><code class="def-type">[<var class="var">Q1</var>, <var class="var">R1</var>] =</code> <strong class="def-name">qrinsert</strong> <code class="def-code-arguments">(<var class="var">Q</var>, <var class="var">R</var>, <var class="var">j</var>, <var class="var">x</var>, <var class="var">orient</var>)</code><a class="copiable-link" href="#index-qrinsert"> ¶</a></span></dt>
<dd><p>Update a QR factorization given a row or column to insert in the original
factored matrix.
</p>
<p>Given a QR factorization of a real or complex matrix
<var class="var">A</var> = <var class="var">Q</var>*<var class="var">R</var><!-- /@w -->, <var class="var">Q</var> unitary and
<var class="var">R</var> upper trapezoidal, return the QR factorization of
[A(:,1:j-1) x A(:,j:n)]<!-- /@w -->, where <var class="var">u</var> is a column vector to be inserted
into <var class="var">A</var> (if <var class="var">orient</var> is <code class="code">"col"</code>), or the
QR factorization of [A(1:j-1,:);x;A(:,j:n)]<!-- /@w -->, where <var class="var">x</var> is a row
vector to be inserted into <var class="var">A</var> (if <var class="var">orient</var> is <code class="code">"row"</code>).
</p>
<p>The default value of <var class="var">orient</var> is <code class="code">"col"</code>. If <var class="var">orient</var> is
<code class="code">"col"</code>, <var class="var">u</var> may be a matrix and <var class="var">j</var> an index vector
resulting in the QR factorization of a matrix <var class="var">B</var> such that
B(:,<var class="var">j</var>)<!-- /@w --> gives <var class="var">u</var> and B(:,<var class="var">j</var>) = []<!-- /@w --> gives <var class="var">A</var>.
Notice that the latter case is done as a sequence of k insertions;
thus, for k large enough, it will be both faster and more accurate to
recompute the factorization from scratch.
</p>
<p>If <var class="var">orient</var> is <code class="code">"col"</code>, the QR factorization supplied may
be either full (Q is square) or economized (R is square).
</p>
<p>If <var class="var">orient</var> is <code class="code">"row"</code>, full factorization is needed.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqrupdate">qrupdate</a>, <a class="ref" href="#XREFqrdelete">qrdelete</a>, <a class="ref" href="#XREFqrshift">qrshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFqrdelete"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-qrdelete"><span><code class="def-type">[<var class="var">Q1</var>, <var class="var">R1</var>] =</code> <strong class="def-name">qrdelete</strong> <code class="def-code-arguments">(<var class="var">Q</var>, <var class="var">R</var>, <var class="var">j</var>, <var class="var">orient</var>)</code><a class="copiable-link" href="#index-qrdelete"> ¶</a></span></dt>
<dd><p>Update a QR factorization given a row or column to delete from the original
factored matrix.
</p>
<p>Given a QR factorization of a real or complex matrix
<var class="var">A</var> = <var class="var">Q</var>*<var class="var">R</var><!-- /@w -->, <var class="var">Q</var> unitary and
<var class="var">R</var> upper trapezoidal, return the QR factorization of
[A(:,1:j-1), U, A(:,j:n)]<!-- /@w -->,
where <var class="var">u</var> is a column vector to be inserted into <var class="var">A</var>
(if <var class="var">orient</var> is <code class="code">"col"</code>),
or the QR factorization of [A(1:j-1,:);X;A(:,j:n)]<!-- /@w -->,
where <var class="var">x</var> is a row <var class="var">orient</var> is <code class="code">"row"</code>).
The default value of <var class="var">orient</var> is <code class="code">"col"</code>.
</p>
<p>If <var class="var">orient</var> is <code class="code">"col"</code>, <var class="var">j</var> may be an index vector
resulting in the QR factorization of a matrix <var class="var">B</var> such that
A(:,<var class="var">j</var>) = []<!-- /@w --> gives <var class="var">B</var>. Notice that the latter case is done as
a sequence of k deletions; thus, for k large enough, it will be both faster
and more accurate to recompute the factorization from scratch.
</p>
<p>If <var class="var">orient</var> is <code class="code">"col"</code>, the QR factorization supplied may
be either full (Q is square) or economized (R is square).
</p>
<p>If <var class="var">orient</var> is <code class="code">"row"</code>, full factorization is needed.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqrupdate">qrupdate</a>, <a class="ref" href="#XREFqrinsert">qrinsert</a>, <a class="ref" href="#XREFqrshift">qrshift</a>.
</p></dd></dl>
<a class="anchor" id="XREFqrshift"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-qrshift"><span><code class="def-type">[<var class="var">Q1</var>, <var class="var">R1</var>] =</code> <strong class="def-name">qrshift</strong> <code class="def-code-arguments">(<var class="var">Q</var>, <var class="var">R</var>, <var class="var">i</var>, <var class="var">j</var>)</code><a class="copiable-link" href="#index-qrshift"> ¶</a></span></dt>
<dd><p>Update a QR factorization given a range of columns to shift in the original
factored matrix.
</p>
<p>Given a QR factorization of a real or complex matrix
<var class="var">A</var> = <var class="var">Q</var>*<var class="var">R</var><!-- /@w -->, <var class="var">Q</var> unitary and
<var class="var">R</var> upper trapezoidal, return the QR factorization
of <var class="var">A</var>(:,p)<!-- /@w -->, where p<!-- /@w --> is the permutation <br>
<code class="code">p = [1:i-1, circshift(i:j, 1), j+1:n]</code> if <var class="var">i</var> < <var class="var">j</var><!-- /@w --> <br>
or <br>
<code class="code">p = [1:j-1, circshift(j:i,-1), i+1:n]</code> if <var class="var">j</var> < <var class="var">i</var><!-- /@w -->. <br>
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqrupdate">qrupdate</a>, <a class="ref" href="#XREFqrinsert">qrinsert</a>, <a class="ref" href="#XREFqrdelete">qrdelete</a>.
</p></dd></dl>
<a class="anchor" id="XREFqz"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-qz"><span><code class="def-type">[<var class="var">AA</var>, <var class="var">BB</var>, <var class="var">Q</var>, <var class="var">Z</var>, <var class="var">V</var>, <var class="var">W</var>] =</code> <strong class="def-name">qz</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>)</code><a class="copiable-link" href="#index-qz"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-qz-1"><span><code class="def-type">[<var class="var">AA</var>, <var class="var">BB</var>, <var class="var">Q</var>, <var class="var">Z</var>, <var class="var">V</var>, <var class="var">W</var>] =</code> <strong class="def-name">qz</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>, <var class="var">opt</var>)</code><a class="copiable-link" href="#index-qz-1"> ¶</a></span></dt>
<dd><p>Compute the QZ decomposition of a generalized eigenvalue problem.
</p>
<p>The generalized eigenvalue problem is defined as
</p>
<p><em class="math">A x = <var class="var">lambda</var> B x</em>
</p>
<p>There are two calling forms of the function:
</p>
<ol class="enumerate">
<li> <code class="code">[<var class="var">AA</var>, <var class="var">BB</var>, <var class="var">Q</var>, <var class="var">Z</var>, <var class="var">V</var>, <var class="var">W</var>] = qz (<var class="var">A</var>, <var class="var">B</var>)</code>
<p>Compute the complex QZ decomposition, generalized eigenvectors, and
generalized eigenvalues.
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">
<var class="var">AA</var> = <var class="var">Q</var> * <var class="var">A</var> * <var class="var">Z</var>, <var class="var">BB</var> = <var class="var">Q</var> * <var class="var">B</var> * <var class="var">Z</var>
<var class="var">A</var> * <var class="var">V</var> * diag (diag (<var class="var">BB</var>)) = <var class="var">B</var> * <var class="var">V</var> * diag (diag (<var class="var">AA</var>))
diag (diag (<var class="var">BB</var>)) * <var class="var">W</var>' * <var class="var">A</var> = diag (diag (<var class="var">AA</var>)) * <var class="var">W</var>' * <var class="var">B</var>
</pre></div></div>
<p>with <var class="var">AA</var> and <var class="var">BB</var> upper triangular, and <var class="var">Q</var> and <var class="var">Z</var>
unitary. The matrices <var class="var">V</var> and <var class="var">W</var> respectively contain the right
and left generalized eigenvectors.
</p>
</li><li> <code class="code">[<var class="var">AA</var>, <var class="var">BB</var>, <var class="var">Q</var>, <var class="var">Z</var>, <var class="var">V</var>, <var class="var">W</var>] = qz (<var class="var">A</var>, <var class="var">B</var>, <var class="var">opt</var>)</code>
<p>The <var class="var">opt</var> argument must be equal to either <code class="code">"real"</code> or
<code class="code">"complex"</code>. If it is equal to <code class="code">"complex"</code>, then this
calling form is equivalent to the first one with only two input
arguments.
</p>
<p>If <var class="var">opt</var> is equal to <code class="code">"real"</code>, then the real QZ decomposition
is computed. In particular, <var class="var">AA</var> is only guaranteed to be
quasi-upper triangular with 1-by-1 and 2-by-2 blocks on the diagonal,
and <var class="var">Q</var> and <var class="var">Z</var> are orthogonal. The identities mentioned above
for right and left generalized eigenvectors are only verified if
<var class="var">AA</var> is upper triangular (i.e., when all the generalized eigenvalues
are real, in which case the real and complex QZ coincide).
</p>
</li></ol>
<p>Note: <code class="code">qz</code> performs permutation balancing, but not scaling
(see <a class="pxref" href="Basic-Matrix-Functions.html#XREFbalance"><code class="code">balance</code></a>), which may lead to less accurate
results than <code class="code">eig</code>. The order of output arguments was selected for
compatibility with <small class="sc">MATLAB</small>.
</p>
<p>For eigenvalues, use the <code class="code">ordeig</code> function to compute them based on
the resulting <var class="var">AA</var> and <var class="var">BB</var> matrices.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a class="ref" href="Basic-Matrix-Functions.html#XREFgsvd">gsvd</a>, <a class="ref" href="Basic-Matrix-Functions.html#XREFbalance">balance</a>, <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFhess">hess</a>, <a class="ref" href="#XREFlu">lu</a>, <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqzhess">qzhess</a>, <a class="ref" href="#XREFschur">schur</a>, <a class="ref" href="#XREFordeig">ordeig</a>.
</p></dd></dl>
<a class="anchor" id="XREFqzhess"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-qzhess"><span><code class="def-type">[<var class="var">aa</var>, <var class="var">bb</var>, <var class="var">q</var>, <var class="var">z</var>] =</code> <strong class="def-name">qzhess</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>)</code><a class="copiable-link" href="#index-qzhess"> ¶</a></span></dt>
<dd><p>Compute the Hessenberg-triangular decomposition of the matrix pencil
<code class="code">(<var class="var">A</var>, <var class="var">B</var>)</code>, returning
<code class="code"><var class="var">aa</var> = <var class="var">q</var> * <var class="var">A</var> * <var class="var">z</var></code>,
<code class="code"><var class="var">bb</var> = <var class="var">q</var> * <var class="var">B</var> * <var class="var">z</var></code>, with <var class="var">q</var> and <var class="var">z</var>
orthogonal.
</p>
<p>For example:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
⇒ aa =
-3.02244 -4.41741
0.92998 0.69749
⇒ bb =
-8.60233 -9.99730
0.00000 -0.23250
⇒ q =
-0.58124 -0.81373
-0.81373 0.58124
⇒ z =
Diagonal Matrix
1 0
0 1
</pre></div></div>
<p>The Hessenberg-triangular decomposition is the first step in
Moler and Stewart’s QZ decomposition algorithm.
</p>
<p>Algorithm taken from Golub and Van Loan,
<cite class="cite">Matrix Computations, 2nd edition</cite>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFlu">lu</a>, <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFhess">hess</a>, <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqz">qz</a>, <a class="ref" href="#XREFschur">schur</a>, <a class="ref" href="#XREFsvd">svd</a>.
</p></dd></dl>
<a class="anchor" id="XREFschur"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-schur"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">schur</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-schur"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-schur-1"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">schur</strong> <code class="def-code-arguments">(<var class="var">A</var>, "real")</code><a class="copiable-link" href="#index-schur-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-schur-2"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">schur</strong> <code class="def-code-arguments">(<var class="var">A</var>, "complex")</code><a class="copiable-link" href="#index-schur-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-schur-3"><span><code class="def-type"><var class="var">S</var> =</code> <strong class="def-name">schur</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">opt</var>)</code><a class="copiable-link" href="#index-schur-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-schur-4"><span><code class="def-type">[<var class="var">U</var>, <var class="var">S</var>] =</code> <strong class="def-name">schur</strong> <code class="def-code-arguments">(…)</code><a class="copiable-link" href="#index-schur-4"> ¶</a></span></dt>
<dd><a class="index-entry-id" id="index-Schur-decomposition"></a>
<p>Compute the Schur decomposition of <var class="var">A</var>.
</p>
<p>The Schur decomposition of a square matrix <var class="var">A</var> is defined as
</p>
<div class="example">
<pre class="example-preformatted"><code class="code"><var class="var">S</var> = <var class="var">U</var>' * <var class="var">A</var> * <var class="var">U</var></code>
</pre></div>
<p>where <var class="var">U</var> is a unitary matrix
(<code class="code"><var class="var">U</var>'* <var class="var">U</var></code> is identity)
and <var class="var">S</var> is upper triangular. The eigenvalues of <var class="var">A</var> (and <var class="var">S</var>)
are the diagonal elements of <var class="var">S</var>. If the matrix <var class="var">A</var> is real, then
the real Schur decomposition is computed, in which the matrix <var class="var">U</var>
is orthogonal and <var class="var">S</var> is block upper triangular with blocks of size at
most
<code class="code">2 x 2</code>
along the diagonal.
</p>
<p>The default for real matrices is a real Schur decomposition. A complex
decomposition may be forced by passing the flag <code class="code">"complex"</code>.
</p>
<p>The eigenvalues are optionally ordered along the diagonal according to the
value of <var class="var">opt</var>:
</p>
<dl class="table">
<dt><code class="code"><var class="var">opt</var> = "a"</code></dt>
<dd><p>Move eigenvalues with negative real parts to the leading block of <var class="var">S</var>.
Mnemonic: <code class="code">"a"</code> for Algebraic Riccati Equations, where this
ordering is useful.
</p>
</dd>
<dt><code class="code"><var class="var">opt</var> = "d"</code></dt>
<dd><p>Move eigenvalues with magnitude less than one to the leading block of <var class="var">S</var>.
Mnemonic: <code class="code">"d"</code> for Discrete Algebraic Riccati Equations,
where this ordering is useful.
</p>
</dd>
<dt><code class="code"><var class="var">opt</var> = "u"</code></dt>
<dd><p>Unordered. No particular ordering of eigenvalues (default).
</p></dd>
</dl>
<p>The leading <var class="var">k</var> columns of <var class="var">U</var> always span the <var class="var">A</var>-invariant
subspace corresponding to the <var class="var">k</var> leading eigenvalues of <var class="var">S</var>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFrsf2csf">rsf2csf</a>, <a class="ref" href="#XREFordschur">ordschur</a>, <a class="ref" href="#XREFordeig">ordeig</a>, <a class="ref" href="#XREFlu">lu</a>, <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFhess">hess</a>, <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqz">qz</a>, <a class="ref" href="#XREFsvd">svd</a>, <a class="ref" href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>
<a class="anchor" id="XREFrsf2csf"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-rsf2csf"><span><code class="def-type">[<var class="var">U</var>, <var class="var">T</var>] =</code> <strong class="def-name">rsf2csf</strong> <code class="def-code-arguments">(<var class="var">UR</var>, <var class="var">TR</var>)</code><a class="copiable-link" href="#index-rsf2csf"> ¶</a></span></dt>
<dd><p>Convert a real, upper quasi-triangular Schur form <var class="var">TR</var> to a
complex, upper triangular Schur form <var class="var">T</var>.
</p>
<p>Note that the following relations hold:
<code class="code"><var class="var">UR</var> * <var class="var">TR</var> * <var class="var">UR</var>' = <var class="var">U</var> * <var class="var">T</var> * <var class="var">U</var>'</code> and
<code class="code"><var class="var">U</var>' * <var class="var">U</var></code> is the identity matrix I.
</p>
<p>Note also that <var class="var">U</var> and <var class="var">T</var> are not unique.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFschur">schur</a>.
</p></dd></dl>
<a class="anchor" id="XREFordschur"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ordschur"><span><code class="def-type">[<var class="var">UR</var>, <var class="var">SR</var>] =</code> <strong class="def-name">ordschur</strong> <code class="def-code-arguments">(<var class="var">U</var>, <var class="var">S</var>, <var class="var">select</var>)</code><a class="copiable-link" href="#index-ordschur"> ¶</a></span></dt>
<dd><p>Reorder the real Schur factorization (<var class="var">U</var>,<var class="var">S</var>) obtained with the
<code class="code">schur</code> function, so that selected eigenvalues appear in the upper left
diagonal blocks of the quasi triangular Schur matrix.
</p>
<p>The logical vector <var class="var">select</var> specifies the selected eigenvalues as they
appear along <var class="var">S</var>’s diagonal.
</p>
<p>For example, given the matrix <code class="code"><var class="var">A</var> = [1, 2; 3, 4]</code>, and its Schur
decomposition
</p>
<div class="example">
<pre class="example-preformatted">[<var class="var">U</var>, <var class="var">S</var>] = schur (<var class="var">A</var>)
</pre></div>
<p>which returns
</p>
<div class="example">
<div class="group"><pre class="example-preformatted"><var class="var">U</var> =
-0.82456 -0.56577
0.56577 -0.82456
<var class="var">S</var> =
-0.37228 -1.00000
0.00000 5.37228
</pre></div></div>
<p>It is possible to reorder the decomposition so that the positive eigenvalue
is in the upper left corner, by doing:
</p>
<div class="example">
<pre class="example-preformatted">[<var class="var">U</var>, <var class="var">S</var>] = ordschur (<var class="var">U</var>, <var class="var">S</var>, [0,1])
</pre></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFschur">schur</a>, <a class="ref" href="#XREFordeig">ordeig</a>, <a class="ref" href="#XREFordqz">ordqz</a>.
</p></dd></dl>
<a class="anchor" id="XREFordqz"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ordqz"><span><code class="def-type">[<var class="var">AR</var>, <var class="var">BR</var>, <var class="var">QR</var>, <var class="var">ZR</var>] =</code> <strong class="def-name">ordqz</strong> <code class="def-code-arguments">(<var class="var">AA</var>, <var class="var">BB</var>, <var class="var">Q</var>, <var class="var">Z</var>, <var class="var">keyword</var>)</code><a class="copiable-link" href="#index-ordqz"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ordqz-1"><span><code class="def-type">[<var class="var">AR</var>, <var class="var">BR</var>, <var class="var">QR</var>, <var class="var">ZR</var>] =</code> <strong class="def-name">ordqz</strong> <code class="def-code-arguments">(<var class="var">AA</var>, <var class="var">BB</var>, <var class="var">Q</var>, <var class="var">Z</var>, <var class="var">select</var>)</code><a class="copiable-link" href="#index-ordqz-1"> ¶</a></span></dt>
<dd><p>Reorder the QZ decomposition of a generalized eigenvalue problem.
</p>
<p>The generalized eigenvalue problem is defined as
</p>
<p><em class="math">A x = <var class="var">lambda</var> B x</em>
</p>
<p>Its generalized Schur decomposition is computed using the <code class="code">qz</code> algorithm:
</p>
<p><code class="code">[<var class="var">AA</var>, <var class="var">BB</var>, <var class="var">Q</var>, <var class="var">Z</var>] = qz (<var class="var">A</var>, <var class="var">B</var>)</code>
</p>
<p>where <var class="var">AA</var>, <var class="var">BB</var>, <var class="var">Q</var>, and <var class="var">Z</var> fulfill
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">
<var class="var">AA</var> = <var class="var">Q</var> * <var class="var">A</var> * <var class="var">Z</var>, <var class="var">BB</var> = <var class="var">Q</var> * <var class="var">B</var> * <var class="var">Z</var>
</pre></div></div>
<p>The <code class="code">ordqz</code> function computes a unitary transformation <var class="var">QR</var> and
<var class="var">ZR</var> such that the order of the eigenvalue on the diagonal of <var class="var">AA</var> and
<var class="var">BB</var> is changed. The resulting reordered matrices <var class="var">AR</var> and <var class="var">BR</var>
fulfill:
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">
<var class="var">AR</var> = <var class="var">QR</var> * <var class="var">A</var> * <var class="var">ZR</var>, <var class="var">BR</var> = <var class="var">QR</var> * <var class="var">B</var> * <var class="var">ZR</var>
</pre></div></div>
<p>The function can either be called with the <var class="var">keyword</var> argument which
selects the eigenvalues in the top left block of <var class="var">AR</var> and <var class="var">BR</var> in the
following way:
</p>
<dl class="table">
<dt><code class="code">"S"</code>, <code class="code">"udi"</code></dt>
<dd><p>small: leading block has all
|<var class="var">lambda</var>| < 1
</p>
</dd>
<dt><code class="code">"B"</code>, <code class="code">"udo"</code></dt>
<dd><p>big: leading block has all
|<var class="var">lambda</var>| ≥ 1
</p>
</dd>
<dt><code class="code">"-"</code>, <code class="code">"lhp"</code></dt>
<dd><p>negative real part: leading block has all eigenvalues in the open left
half-plane
</p>
</dd>
<dt><code class="code">"+"</code>, <code class="code">"rhp"</code></dt>
<dd><p>non-negative real part: leading block has all eigenvalues in the closed right
half-plane
</p></dd>
</dl>
<p>If a logical vector <var class="var">select</var> is given instead of a keyword the <code class="code">ordqz</code>
function reorders all eigenvalues <code class="code">k</code> to the left block for which
<code class="code">select(k)</code> is true.
</p>
<p>Note: The keywords are compatible with the ones from <code class="code">qr</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a class="ref" href="#XREFordeig">ordeig</a>, <a class="ref" href="#XREFqz">qz</a>, <a class="ref" href="#XREFschur">schur</a>, <a class="ref" href="#XREFordschur">ordschur</a>.
</p></dd></dl>
<a class="anchor" id="XREFordeig"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-ordeig"><span><code class="def-type"><var class="var">lambda</var> =</code> <strong class="def-name">ordeig</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-ordeig"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-ordeig-1"><span><code class="def-type"><var class="var">lambda</var> =</code> <strong class="def-name">ordeig</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>)</code><a class="copiable-link" href="#index-ordeig-1"> ¶</a></span></dt>
<dd><p>Return the eigenvalues of quasi-triangular matrices in their order of
appearance in the matrix <var class="var">A</var>.
</p>
<p>The quasi-triangular matrix <var class="var">A</var> is usually the result of a Schur
factorization. If called with a second input <var class="var">B</var> then the generalized
eigenvalues of the pair <var class="var">A</var>, <var class="var">B</var> are returned in the order of
appearance of the matrix <code class="code"><var class="var">A</var>-<var class="var">lambda</var>*<var class="var">B</var></code>. The pair
<var class="var">A</var>, <var class="var">B</var> is usually the result of a QZ decomposition.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFordschur">ordschur</a>, <a class="ref" href="#XREFordqz">ordqz</a>, <a class="ref" href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a class="ref" href="#XREFschur">schur</a>, <a class="ref" href="#XREFqz">qz</a>.
</p></dd></dl>
<a class="anchor" id="XREFsubspace"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-subspace"><span><code class="def-type"><var class="var">angle</var> =</code> <strong class="def-name">subspace</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">B</var>)</code><a class="copiable-link" href="#index-subspace"> ¶</a></span></dt>
<dd><p>Determine the largest principal angle between two subspaces
spanned by the columns of matrices <var class="var">A</var> and <var class="var">B</var>.
</p></dd></dl>
<a class="anchor" id="XREFsvd"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-svd"><span><code class="def-type"><var class="var">s</var> =</code> <strong class="def-name">svd</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-svd"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-svd-1"><span><code class="def-type">[<var class="var">U</var>, <var class="var">S</var>, <var class="var">V</var>] =</code> <strong class="def-name">svd</strong> <code class="def-code-arguments">(<var class="var">A</var>)</code><a class="copiable-link" href="#index-svd-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-svd-2"><span><code class="def-type">[<var class="var">U</var>, <var class="var">S</var>, <var class="var">V</var>] =</code> <strong class="def-name">svd</strong> <code class="def-code-arguments">(<var class="var">A</var>, "econ")</code><a class="copiable-link" href="#index-svd-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-svd-3"><span><code class="def-type">[<var class="var">U</var>, <var class="var">S</var>, <var class="var">V</var>] =</code> <strong class="def-name">svd</strong> <code class="def-code-arguments">(<var class="var">A</var>, 0)</code><a class="copiable-link" href="#index-svd-3"> ¶</a></span></dt>
<dd><a class="index-entry-id" id="index-singular-value-decomposition"></a>
<p>Compute the singular value decomposition of <var class="var">A</var>.
</p>
<p>The singular value decomposition is defined by the relation
</p>
<div class="example">
<pre class="example-preformatted">A = U*S*V'
</pre></div>
<p>The function <code class="code">svd</code> normally returns only the vector of singular values.
When called with three return values, it computes
<var class="var">U</var>, <var class="var">S</var>, and <var class="var">V</var>.
For example,
</p>
<div class="example">
<pre class="example-preformatted">svd (hilb (3))
</pre></div>
<p>returns
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">ans =
1.4083189
0.1223271
0.0026873
</pre></div></div>
<p>and
</p>
<div class="example">
<pre class="example-preformatted">[u, s, v] = svd (hilb (3))
</pre></div>
<p>returns
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">u =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
s =
1.40832 0.00000 0.00000
0.00000 0.12233 0.00000
0.00000 0.00000 0.00269
v =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
</pre></div></div>
<p>When given a second argument that is not 0, <code class="code">svd</code> returns an economy-sized
decomposition, eliminating the unnecessary rows or columns of <var class="var">U</var> or
<var class="var">V</var>.
</p>
<p>If the second argument is exactly 0, then the choice of decomposition is based
on the matrix <var class="var">A</var>. If <var class="var">A</var> has more rows than columns then an
economy-sized decomposition is returned, otherwise a regular decomposition
is calculated.
</p>
<p>Algorithm Notes: When calculating the full decomposition (left and right
singular matrices in addition to singular values) there is a choice of two
routines in <small class="sc">LAPACK</small>. The default routine used by Octave is <code class="code">gesvd</code>.
The alternative is <code class="code">gesdd</code> which is 5X faster, but may use more memory
and may be inaccurate for some input matrices. There is a third routine
<code class="code">gejsv</code>, suitable for better accuracy at extreme scale. See the
documentation for <code class="code">svd_driver</code> for more information on choosing a driver.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsvd_005fdriver">svd_driver</a>, <a class="ref" href="Sparse-Linear-Algebra.html#XREFsvds">svds</a>, <a class="ref" href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a class="ref" href="#XREFlu">lu</a>, <a class="ref" href="#XREFchol">chol</a>, <a class="ref" href="#XREFhess">hess</a>, <a class="ref" href="#XREFqr">qr</a>, <a class="ref" href="#XREFqz">qz</a>.
</p></dd></dl>
<a class="anchor" id="XREFsvd_005fdriver"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-svd_005fdriver"><span><code class="def-type"><var class="var">val</var> =</code> <strong class="def-name">svd_driver</strong> <code class="def-code-arguments">()</code><a class="copiable-link" href="#index-svd_005fdriver"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-svd_005fdriver-1"><span><code class="def-type"><var class="var">old_val</var> =</code> <strong class="def-name">svd_driver</strong> <code class="def-code-arguments">(<var class="var">new_val</var>)</code><a class="copiable-link" href="#index-svd_005fdriver-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-svd_005fdriver-2"><span><code class="def-type"><var class="var">old_val</var> =</code> <strong class="def-name">svd_driver</strong> <code class="def-code-arguments">(<var class="var">new_val</var>, "local")</code><a class="copiable-link" href="#index-svd_005fdriver-2"> ¶</a></span></dt>
<dd><p>Query or set the underlying <small class="sc">LAPACK</small> driver used by <code class="code">svd</code>.
</p>
<p>Currently recognized values are <code class="code">"gesdd"</code>, <code class="code">"gesvd"</code>, and
<code class="code">"gejsv"</code>. The default is <code class="code">"gesvd"</code>.
</p>
<p>When called from inside a function with the <code class="code">"local"</code> option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
</p>
<p>Algorithm Notes: The <small class="sc">LAPACK</small> library routines <code class="code">gesvd</code> and <code class="code">gesdd</code>
are different only when calculating the full singular value decomposition (left
and right singular matrices as well as singular values). When calculating just
the singular values the following discussion is not relevant.
</p>
<p>The newer <code class="code">gesdd</code> routine is based on a Divide-and-Conquer algorithm that
is 5X faster than the alternative <code class="code">gesvd</code>, which is based on QR
factorization. However, the new algorithm can use significantly more memory.
For an MxN input matrix the memory usage is of order O(min(M,N) ^ 2),
whereas the alternative is of order O(max(M,N)).
</p>
<p>The routine <code class="code">gejsv</code> uses a preconditioned Jacobi SVD algorithm. Unlike
<code class="code">gesvd</code> and <code class="code">gesdd</code>, in <code class="code">gejsv</code>, there is no bidiagonalization
step that could contaminate accuracy in some extreme cases. Also, <code class="code">gejsv</code>
is known to be optimally accurate in some sense. However, the speed is slower
(single threaded at its core) and uses more memory (O(min(M,N) ^ 2 + M + N)).
</p>
<p>Beyond speed and memory issues, there have been instances where some input
matrices were not accurately decomposed by <code class="code">gesdd</code>. See currently active
bug <a class="url" href="https://savannah.gnu.org/bugs/?55564">https://savannah.gnu.org/bugs/?55564</a>. Until these accuracy issues
are resolved in a new version of the <small class="sc">LAPACK</small> library, the default driver
in Octave has been set to <code class="code">"gesvd"</code>.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFsvd">svd</a>.
</p></dd></dl>
<a class="anchor" id="XREFhoush"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-housh"><span><code class="def-type">[<var class="var">housv</var>, <var class="var">beta</var>, <var class="var">zer</var>] =</code> <strong class="def-name">housh</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">j</var>, <var class="var">z</var>)</code><a class="copiable-link" href="#index-housh"> ¶</a></span></dt>
<dd><p>Compute Householder reflection vector <var class="var">housv</var> to reflect <var class="var">x</var> to be
the j-th column of identity, i.e.,
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">(I - beta*housv*housv')x = norm (x)*e(j) if x(j) < 0,
(I - beta*housv*housv')x = -norm (x)*e(j) if x(j) >= 0
</pre></div></div>
<p>Inputs
</p>
<dl class="table">
<dt><var class="var">x</var></dt>
<dd><p>vector
</p>
</dd>
<dt><var class="var">j</var></dt>
<dd><p>index into vector
</p>
</dd>
<dt><var class="var">z</var></dt>
<dd><p>threshold for zero (usually should be the number 0)
</p></dd>
</dl>
<p>Outputs (see Golub and Van Loan):
</p>
<dl class="table">
<dt><var class="var">beta</var></dt>
<dd><p>If beta = 0, then no reflection need be applied (zer set to 0)
</p>
</dd>
<dt><var class="var">housv</var></dt>
<dd><p>householder vector
</p></dd>
</dl>
</dd></dl>
<a class="anchor" id="XREFkrylov"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-krylov"><span><code class="def-type">[<var class="var">u</var>, <var class="var">h</var>, <var class="var">nu</var>] =</code> <strong class="def-name">krylov</strong> <code class="def-code-arguments">(<var class="var">A</var>, <var class="var">V</var>, <var class="var">k</var>, <var class="var">eps1</var>, <var class="var">pflg</var>)</code><a class="copiable-link" href="#index-krylov"> ¶</a></span></dt>
<dd><p>Construct an orthogonal basis <var class="var">u</var> of a block Krylov subspace.
</p>
<p>The block Krylov subspace has the following form:
</p>
<div class="example">
<pre class="example-preformatted">[v a*v a^2*v ... a^(k+1)*v]
</pre></div>
<p>The construction is made with Householder reflections to guard against loss
of orthogonality.
</p>
<p>If <var class="var">V</var> is a vector, then <var class="var">h</var> contains the Hessenberg matrix
such that <code class="code">a*u == u*h+rk*ek'</code>, in which
<code class="code">rk = a*u(:,k)-u*h(:,k)</code>, and <code class="code">ek'</code> is the vector
<code class="code">[0, 0, …, 1]</code> of length <var class="var">k</var>. Otherwise, <var class="var">h</var> is
meaningless.
</p>
<p>If <var class="var">V</var> is a vector and <var class="var">k</var> is greater than <code class="code">length (A) - 1</code>,
then <var class="var">h</var> contains the Hessenberg matrix such that <code class="code">a*u == u*h</code>.
</p>
<p>The value of <var class="var">nu</var> is the dimension of the span of the Krylov subspace
(based on <var class="var">eps1</var>).
</p>
<p>If <var class="var">b</var> is a vector and <var class="var">k</var> is greater than <var class="var">m-1</var>, then <var class="var">h</var>
contains the Hessenberg decomposition of <var class="var">A</var>.
</p>
<p>The optional parameter <var class="var">eps1</var> is the threshold for zero. The default
value is 1e-12.
</p>
<p>If the optional parameter <var class="var">pflg</var> is nonzero, row pivoting is used to
improve numerical behavior. The default value is 0.
</p>
<p>Reference: A. Hodel, P. Misra, <cite class="cite">Partial Pivoting in the
Computation of Krylov Subspaces of Large Sparse Systems</cite>, Proceedings of
the 42nd IEEE Conference on Decision and Control, December 2003.
</p></dd></dl>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Functions-of-a-Matrix.html">Functions of a Matrix</a>, Previous: <a href="Basic-Matrix-Functions.html">Basic Matrix Functions</a>, Up: <a href="Linear-Algebra.html">Linear Algebra</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|