1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>One-dimensional Interpolation (GNU Octave (version 10.3.0))</title>
<meta name="description" content="One-dimensional Interpolation (GNU Octave (version 10.3.0))">
<meta name="keywords" content="One-dimensional Interpolation (GNU Octave (version 10.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Interpolation.html" rel="up" title="Interpolation">
<link href="Multi_002ddimensional-Interpolation.html" rel="next" title="Multi-dimensional Interpolation">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.center {text-align:center}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="section-level-extent" id="One_002ddimensional-Interpolation">
<div class="nav-panel">
<p>
Next: <a href="Multi_002ddimensional-Interpolation.html" accesskey="n" rel="next">Multi-dimensional Interpolation</a>, Up: <a href="Interpolation.html" accesskey="u" rel="up">Interpolation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h3 class="section" id="One_002ddimensional-Interpolation-1"><span>29.1 One-dimensional Interpolation<a class="copiable-link" href="#One_002ddimensional-Interpolation-1"> ¶</a></span></h3>
<p>Octave supports several methods for one-dimensional interpolation, most
of which are described in this section. <a class="ref" href="Polynomial-Interpolation.html">Polynomial Interpolation</a>
and <a class="ref" href="Interpolation-on-Scattered-Data.html">Interpolation on Scattered Data</a> describe additional methods.
</p>
<a class="anchor" id="XREFinterp1"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-interp1"><span><code class="def-type"><var class="var">yi</var> =</code> <strong class="def-name">interp1</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">xi</var>)</code><a class="copiable-link" href="#index-interp1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-interp1-1"><span><code class="def-type"><var class="var">yi</var> =</code> <strong class="def-name">interp1</strong> <code class="def-code-arguments">(<var class="var">y</var>, <var class="var">xi</var>)</code><a class="copiable-link" href="#index-interp1-1"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-interp1-2"><span><code class="def-type"><var class="var">yi</var> =</code> <strong class="def-name">interp1</strong> <code class="def-code-arguments">(…, <var class="var">method</var>)</code><a class="copiable-link" href="#index-interp1-2"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-interp1-3"><span><code class="def-type"><var class="var">yi</var> =</code> <strong class="def-name">interp1</strong> <code class="def-code-arguments">(…, <var class="var">extrap</var>)</code><a class="copiable-link" href="#index-interp1-3"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-interp1-4"><span><code class="def-type"><var class="var">yi</var> =</code> <strong class="def-name">interp1</strong> <code class="def-code-arguments">(…, "left")</code><a class="copiable-link" href="#index-interp1-4"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-interp1-5"><span><code class="def-type"><var class="var">yi</var> =</code> <strong class="def-name">interp1</strong> <code class="def-code-arguments">(…, "right")</code><a class="copiable-link" href="#index-interp1-5"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-interp1-6"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">interp1</strong> <code class="def-code-arguments">(…, "pp")</code><a class="copiable-link" href="#index-interp1-6"> ¶</a></span></dt>
<dd>
<p>One-dimensional interpolation.
</p>
<p>Interpolate input data to determine the value of <var class="var">yi</var> at the points
<var class="var">xi</var>. If not specified, <var class="var">x</var> is taken to be the indices of <var class="var">y</var>
(<code class="code">1:length (<var class="var">y</var>)</code>). If <var class="var">y</var> is a matrix or an N-dimensional
array, the interpolation is performed on each column of <var class="var">y</var>.
</p>
<p>The interpolation <var class="var">method</var> is one of:
</p>
<dl class="table">
<dt><code class="code">"nearest"</code></dt>
<dd><p>Return the nearest neighbor.
</p>
</dd>
<dt><code class="code">"previous"</code></dt>
<dd><p>Return the previous neighbor.
</p>
</dd>
<dt><code class="code">"next"</code></dt>
<dd><p>Return the next neighbor.
</p>
</dd>
<dt><code class="code">"linear"</code> (default)</dt>
<dd><p>Linear interpolation from nearest neighbors.
</p>
</dd>
<dt><code class="code">"pchip"</code></dt>
<dd><p>Piecewise cubic Hermite interpolating polynomial—shape-preserving
interpolation with smooth first derivative.
</p>
</dd>
<dt><code class="code">"cubic"</code></dt>
<dd><p>Cubic interpolation (same as <code class="code">"pchip"</code>).
</p>
</dd>
<dt><code class="code">"spline"</code></dt>
<dd><p>Cubic spline interpolation—smooth first and second derivatives
throughout the curve.
</p></dd>
</dl>
<p>Adding ’*’ to the start of any method above forces <code class="code">interp1</code>
to assume that <var class="var">x</var> is uniformly spaced, and only <code class="code"><var class="var">x</var>(1)</code>
and <code class="code"><var class="var">x</var>(2)</code> are referenced. This is usually faster,
and is never slower. The default method is <code class="code">"linear"</code>.
</p>
<p>If <var class="var">extrap</var> is the string <code class="code">"extrap"</code>, then extrapolate values
beyond the endpoints using the current <var class="var">method</var>. If <var class="var">extrap</var> is a
number, then replace values beyond the endpoints with that number. When
unspecified, <var class="var">extrap</var> defaults to <code class="code">NA</code>.
</p>
<p>If the string argument <code class="code">"pp"</code> is specified, then <var class="var">xi</var> should not
be supplied and <code class="code">interp1</code> returns a piecewise polynomial object. This
object can later be used with <code class="code">ppval</code> to evaluate the interpolation.
There is an equivalence, such that <code class="code">ppval (interp1 (<var class="var">x</var>,
<var class="var">y</var>, <var class="var">method</var>, <code class="code">"pp"</code>), <var class="var">xi</var>) == interp1 (<var class="var">x</var>,
<var class="var">y</var>, <var class="var">xi</var>, <var class="var">method</var>, <code class="code">"extrap"</code>)</code>.
</p>
<p>Duplicate points in <var class="var">x</var> specify a discontinuous interpolant. There
may be at most 2 consecutive points with the same value.
If <var class="var">x</var> is increasing, the default discontinuous interpolant is
right-continuous. If <var class="var">x</var> is decreasing, the default discontinuous
interpolant is left-continuous.
The continuity condition of the interpolant may be specified by using
the options <code class="code">"left"</code> or <code class="code">"right"</code> to select a left-continuous
or right-continuous interpolant, respectively.
Discontinuous interpolation is only allowed for <code class="code">"nearest"</code> and
<code class="code">"linear"</code> methods; in all other cases, the <var class="var">x</var>-values must be
unique.
</p>
<p>An example of the use of <code class="code">interp1</code> is
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">xf = [0:0.05:10];
yf = sin (2*pi*xf/5);
xp = [0:10];
yp = sin (2*pi*xp/5);
lin = interp1 (xp, yp, xf);
near = interp1 (xp, yp, xf, "nearest");
pch = interp1 (xp, yp, xf, "pchip");
spl = interp1 (xp, yp, xf, "spline");
plot (xf,yf,"r", xf,near,"g", xf,lin,"b", xf,pch,"c", xf,spl,"m",
xp,yp,"r*");
legend ("original", "nearest", "linear", "pchip", "spline");
</pre></div></div>
<p><strong class="strong">See also:</strong> <a class="ref" href="Signal-Processing.html#XREFpchip">pchip</a>, <a class="ref" href="#XREFspline">spline</a>, <a class="ref" href="#XREFinterpft">interpft</a>, <a class="ref" href="Multi_002ddimensional-Interpolation.html#XREFinterp2">interp2</a>, <a class="ref" href="Multi_002ddimensional-Interpolation.html#XREFinterp3">interp3</a>, <a class="ref" href="Multi_002ddimensional-Interpolation.html#XREFinterpn">interpn</a>.
</p></dd></dl>
<p>There are some important differences between the various interpolation
methods. The <code class="code">"spline"</code> method enforces that both the first and second
derivatives of the interpolated values have a continuous derivative,
whereas the other methods do not. This means that the results of the
<code class="code">"spline"</code> method are generally smoother. If the function to be
interpolated is in fact smooth, then <code class="code">"spline"</code> will give excellent
results. However, if the function to be evaluated is in some manner
discontinuous, then <code class="code">"pchip"</code> interpolation might give better results.
</p>
<p>This can be demonstrated by the code
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">t = -2:2;
dt = 1;
ti =-2:0.025:2;
dti = 0.025;
y = sign (t);
ys = interp1 (t,y,ti,"spline");
yp = interp1 (t,y,ti,"pchip");
ddys = diff (diff (ys)./dti) ./ dti;
ddyp = diff (diff (yp)./dti) ./ dti;
figure (1);
plot (ti,ys,"r-", ti,yp,"g-");
legend ("spline", "pchip", 4);
figure (2);
plot (ti,ddys,"r+", ti,ddyp,"g*");
legend ("spline", "pchip");
</pre></div></div>
<p>The result of which can be seen in <a class="ref" href="#fig_003ainterpderiv1">Figure 29.1</a> and
<a class="ref" href="#fig_003ainterpderiv2">Figure 29.2</a>.
</p>
<div class="float" id="fig_003ainterpderiv1">
<div class="center"><img class="image" src="interpderiv1.png" alt="interpderiv1">
</div><div class="caption"><p><strong class="strong">Figure 29.1: </strong>Comparison of <code class="code">"pchip"</code> and <code class="code">"spline"</code> interpolation methods for a
step function</p></div></div>
<div class="float" id="fig_003ainterpderiv2">
<div class="center"><img class="image" src="interpderiv2.png" alt="interpderiv2">
</div><div class="caption"><p><strong class="strong">Figure 29.2: </strong>Comparison of the second derivative of the <code class="code">"pchip"</code> and <code class="code">"spline"</code>
interpolation methods for a step function</p></div></div>
<p>Fourier interpolation, is a resampling technique where a signal is
converted to the frequency domain, padded with zeros and then
reconverted to the time domain.
</p>
<a class="anchor" id="XREFinterpft"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-interpft"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">interpft</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">n</var>)</code><a class="copiable-link" href="#index-interpft"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-interpft-1"><span><code class="def-type"><var class="var">y</var> =</code> <strong class="def-name">interpft</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">n</var>, <var class="var">dim</var>)</code><a class="copiable-link" href="#index-interpft-1"> ¶</a></span></dt>
<dd>
<p>Fourier interpolation.
</p>
<p>If <var class="var">x</var> is a vector then <var class="var">x</var> is resampled with <var class="var">n</var> points. The
data in <var class="var">x</var> is assumed to be equispaced. If <var class="var">x</var> is a matrix or an
N-dimensional array, the interpolation is performed on each column of
<var class="var">x</var>.
</p>
<p>If <var class="var">dim</var> is specified, then interpolate along the dimension <var class="var">dim</var>.
</p>
<p><code class="code">interpft</code> assumes that the interpolated function is periodic, and so
assumptions are made about the endpoints of the interpolation.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="#XREFinterp1">interp1</a>.
</p></dd></dl>
<p>There are two significant limitations on Fourier interpolation. First,
the function signal is assumed to be periodic, and so non-periodic
signals will be poorly represented at the edges. Second, both the
signal and its interpolation are required to be sampled at equispaced
points. An example of the use of <code class="code">interpft</code> is
</p>
<div class="example">
<div class="group"><pre class="example-preformatted">t = 0 : 0.3 : pi; dt = t(2)-t(1);
n = length (t); k = 100;
ti = t(1) + [0 : k-1]*dt*n/k;
y = sin (4*t + 0.3) .* cos (3*t - 0.1);
yp = sin (4*ti + 0.3) .* cos (3*ti - 0.1);
plot (ti, yp, "g", ti, interp1 (t, y, ti, "spline"), "b", ...
ti, interpft (y, k), "c", t, y, "r+");
legend ("sin(4t+0.3)cos(3t-0.1)", "spline", "interpft", "data");
</pre></div></div>
<p>which demonstrates the poor behavior of Fourier interpolation for non-periodic
functions, as can be seen in <a class="ref" href="#fig_003ainterpft">Figure 29.3</a>.
</p>
<div class="float" id="fig_003ainterpft">
<div class="center"><img class="image" src="interpft.png" alt="interpft">
</div><div class="caption"><p><strong class="strong">Figure 29.3: </strong>Comparison of <code class="code">interp1</code> and <code class="code">interpft</code> for non-periodic data</p></div></div>
<p>In addition, the support functions <code class="code">spline</code> and <code class="code">lookup</code> that
underlie the <code class="code">interp1</code> function can be called directly.
</p>
<a class="anchor" id="XREFspline"></a><span style="display:block; margin-top:-4.5ex;"> </span>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-spline"><span><code class="def-type"><var class="var">pp</var> =</code> <strong class="def-name">spline</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>)</code><a class="copiable-link" href="#index-spline"> ¶</a></span></dt>
<dt class="deftypefnx def-cmd-deftypefn" id="index-spline-1"><span><code class="def-type"><var class="var">yi</var> =</code> <strong class="def-name">spline</strong> <code class="def-code-arguments">(<var class="var">x</var>, <var class="var">y</var>, <var class="var">xi</var>)</code><a class="copiable-link" href="#index-spline-1"> ¶</a></span></dt>
<dd><p>Return the cubic spline interpolant of points <var class="var">x</var> and <var class="var">y</var>.
</p>
<p>When called with two arguments, return the piecewise polynomial <var class="var">pp</var>
that may be used with <code class="code">ppval</code> to evaluate the polynomial at specific
points.
</p>
<p>When called with a third input argument, <code class="code">spline</code> evaluates the spline
at the points <var class="var">xi</var>. The third calling form
<code class="code">spline (<var class="var">x</var>, <var class="var">y</var>, <var class="var">xi</var>)</code> is equivalent to
<code class="code">ppval (spline (<var class="var">x</var>, <var class="var">y</var>), <var class="var">xi</var>)</code>.
</p>
<p>The variable <var class="var">x</var> must be a vector of length <var class="var">n</var>.
</p>
<p><var class="var">y</var> can be either a vector or array. If <var class="var">y</var> is a vector it must
have a length of either <var class="var">n</var> or <code class="code"><var class="var">n</var> + 2</code>. If the length of
<var class="var">y</var> is <var class="var">n</var>, then the <code class="code">"not-a-knot"</code> end condition is used.
If the length of <var class="var">y</var> is <code class="code"><var class="var">n</var> + 2</code>, then the first and last
values of the vector <var class="var">y</var> are the values of the first derivative of the
cubic spline at the endpoints.
</p>
<p>If <var class="var">y</var> is an array, then the size of <var class="var">y</var> must have the form
<code class="code">[<var class="var">s1</var>, <var class="var">s2</var>, …, <var class="var">sk</var>, <var class="var">n</var>]</code>
or
<code class="code">[<var class="var">s1</var>, <var class="var">s2</var>, …, <var class="var">sk</var>, <var class="var">n</var> + 2]</code>.
The array is reshaped internally to a matrix where the leading
dimension is given by
<code class="code"><var class="var">s1</var> * <var class="var">s2</var> * … * <var class="var">sk</var></code>
and each row of this matrix is then treated separately. Note that this is
exactly the opposite of <code class="code">interp1</code> but is done for <small class="sc">MATLAB</small>
compatibility.
</p>
<p><strong class="strong">See also:</strong> <a class="ref" href="Signal-Processing.html#XREFpchip">pchip</a>, <a class="ref" href="Polynomial-Interpolation.html#XREFppval">ppval</a>, <a class="ref" href="Polynomial-Interpolation.html#XREFmkpp">mkpp</a>, <a class="ref" href="Polynomial-Interpolation.html#XREFunmkpp">unmkpp</a>.
</p></dd></dl>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Multi_002ddimensional-Interpolation.html">Multi-dimensional Interpolation</a>, Up: <a href="Interpolation.html">Interpolation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|